簡易檢索 / 詳目顯示

研究生: 蔡岳勳
Yueh-Hsun Tsai
論文名稱: 電致動力應用於銅化學機械拋光平坦化效應研究
Effect of Electro-Kinetic Force on Cu-Chemical Mechanical Polishing for Planarization Efficiency
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 李汝諒
Ju-Lian Lee
康來成
Lai-Cheng Kong
許厲生
Li-Sheng Hsu
劉孟昆
Meng-Kun Liu
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 151
中文關鍵詞: 化學機械平坦化電滲流銅導線凹陷介電質腐蝕電極設計。
外文關鍵詞: CMP, electro-osmosis flow, dishing, erosion, electrode design
相關次數: 點閱:283下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 半導體製程中昂貴複雜及無可取代之製程-化學機械拋光/平坦化(Chemical Mechanical Plolishing/Planarization, CMP),因具可有效地解決銅導線化及特徵尺寸進入20奈米世代所需之全域平坦化表面,其決定最終元件效能、可靠度及成本,藉由製程改良能得到更快速、零缺陷之晶圓表面之關鍵製程而備受重視。早期電化學機械拋光(Eelectro-CMP, ECMP),雖可提升移除率,但參數複雜及電化學對奈米級導線有極大不確定性而終止研發。本研發新一代電致動力輔助CMP (Electro-Kinetic Force Chemical Mechanical Plolishing, EKF-CMP),以電滲流(Electro-osmosis Flow)提升磨粒分佈於拋光墊上之有效拋光。首先研究方法使用COMSOL軟體進行電極參數化模擬與輔助設計,強化電滲流強度及分布均勻性。銅膜晶圓拋光實驗中發現表面粗糙度(Sa)從8.62nm降至7.72nm,銅圖案化晶圓(SEMATECH 854AZ)實驗結果顯示,可減少37.5%所需之Over-Polishing時數,且降低100/100、50/50及10/90之銅導線凹陷(Dishing)為2.84%-9.79%及介電質腐蝕(Erosion)為73.78%-96.14%之程度。本研究創先研究奈米磨粒擾動之現象,未來能針對非金屬基材料,如單晶氧化鋁及碳化矽之硬脆基板平坦化製程,以及二維/三維結構變化之電極改良設計的EKF-CMP探討。


    Chemical Mechanical Polishing/Planarization (CMP) has been recognized as an
    irreplaceable technology of approaching the IC fabrication with global planarization, solving
    the issues of copper metallization and miniaturization of feature size down to 20nm, though
    it is expensive and complicated. CMP affects the final efficiency, reliability, and cost of IC
    production so that the process has been improved for efficient and defect-free surface
    demands. Electrochemical mechanical polishing (ECMP) though gained high removal rate,
    unfortunately, it was terminated due to the potential threat to nano-wire devices and
    complicated parameters in high volume manufacturing. This study aims to develop a novel
    Electro-Kinetic Force assisted CMP (EKF-CMP) to enhance the electro-osmosis flow for
    distributing flow on pad asperity to increase the abrasives effectivity. Based on numerical
    simulation by a commercial software, COMSOL Multiphysics, of hybrid energy field on
    characteristics of EKF-CMP, a novel design of electrode has been developed. Experiments
    of EKF-CMP have been performed on Cu-blanket and patterned wafer (SEMATECH 854AZ)
    polishing. Results of Cu blanket CMP show that the lower surface roughness have been
    observed from Sa 8.62nm to 7.72nm. For Cu patterned wafers CMP, it has achieved in
    reducing the total-process time by reducing the over-polishing stage of 37.5% Moreover,
    EKF-CMP has also reduced dishing as 2.84%-9.79%, and erosion as 73.78%-96.14% on
    100/100, 50/50, and 10/90 pattern. Finally, the EKF-CMP can significantly control not only
    slurry circulation to enhance removal rate of copper film, but also to reduce the degrees of
    dishing and erosion on the test key patterns. Future study can focus on non-metallic substrate,
    such as sapphire and SiC wafers. The electrode design can also be developed for 2D and 3D
    FinFET CMP for advanced node applications.

    摘要 I Abstract II 誌謝 III 目錄 V 圖目錄 IX 表目錄 XVI 符號表 XVIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 5 1.3 論文架構 6 第二章 文獻回顧 8 2.1 銅化學機械平坦化(Cu-CMP) 9 2.2 電化學拋光(ECP)/電化學機械拋光(ECMP) 17 2.3 終點偵測(Endpoint detection, EPD ) 24 2.4 文獻回顧總結 32 2.5 導電電極設計相關專利分析 35 2.5.1 專利整理 35 2.5.2 專利分析及探討 39 第三章 EKF-CMP原理介紹 40 3.1 電化學拋光(Electrochemical polishing, ECP)原理 40 3.2 間接型電化學拋光 43 3.3 電致動力技術(Electro-kinetics Technology) 43 3.3.1 電雙層及電滲理論 46 3.3.2 共平面式陰陽電極之電滲應用 50 3.4 EKF-CMP磨粒擾動之散佈力(Ability of Spread, AOS) 53 第四章 EKF-CMP導電拋光盤參數化設計與分析 54 4.1 二維毛細管電滲(Capillary Electroosmosis)模擬 54 4.2 “Inside Windows” EKF-CMP電滲流模型模擬 56 4.3 三維EKF-CMP直流電滲行為模擬 63 4.4 ”Above Grooves” EKF-CMP直流電滲模型 68 4.5 參數化模擬之結果討論 71 4.6 EKF-CMP之流場可視化模擬與驗證 73 4.6.1 “Inside Window” 之電滲流可視化觀察 73 4.6.2 “Above Grooves”之電滲流可視化觀察 76 4.6.1 電滲流場可視化觀察結果探討 77 4.7 參數化設計之EKF-CMP導電拋光盤製作 78 第五章 實驗設備與規劃 79 5.1 EKF-CMP系統 79 5.1.1 拋光機 79 5.1.2 導電拋光盤及側向導電刷 80 5.1.3 摩擦力量測系統(Friction Sensor System, FSS) 81 5.1.4 實驗試片 82 5.1.5 拋光墊 85 5.1.6 拋光液與化學藥劑 86 5.2 量測儀器 89 5.3 實驗規劃 89 5.3.1 EKF-CMP運用於非導體基板拋光 (實驗I) 90 5.3.2 拋光液CMP/EKF-CMP測試 (實驗II-A) 91 5.3.3 銅圖案化晶圓拋光 (實驗II-B) 92 第六章 結果與討論 93 6.1 EKF-CMP運用於非導體基板拋光 (實驗I) 94 6.1.1 非導體基板EKF-CMP 94 6.1.2 非導體(玻璃)基板EKF-CMP製程探討 97 6.2 拋光液CMP/EKF-CMP測試 (實驗II-A) 98 6.2.1 拋光液電化學分析-Etching rate/PD-curve 98 6.2.2 銅膜晶圓CMP/EKF-CMP結果-MRR/Roughness & COF 99 6.2.3 CMP/EKF-CMP銅膜晶圓拋光製程探討 105 6.3 銅圖案化晶圓拋光 (實驗II-B) 106 第七章 結論與建議 114 7.1 結論 114 7.2 建議 116 參考文獻 117 附錄 122 附錄A 改良電極型之EKF-CMP導電拋光盤詳細規格 122 附錄B 交流電場下之電滲流模擬 124 附錄C Non-Windows EKF-CMP 之玻璃基板EKF-CMP 128 作者簡介 129

    [1] E. A. Haissam, "Structural and Hardware Complexities of Microprocessor Design According to Moore's Law," International Journal of Computer Science & Information Technology (IJCSIT), vol. Vol 6, 2014.
    [2] D. Dornfeld, "Sustainable Manufacturing and CMP," ICPT Taiwan, 2008.
    [3] F. M. Serry and D. Dawson, "Minimizing Dishing and Erosion in Copper CMP: In-Line Monitoring with the DimensionTM Vx Atomic Force Profiler,"[Online].Available: http://www.veeco.com/pdfs /database_pdfs /minimizing_de_in_copper_cmp_45.pdf.
    [4] P. Bernard, S. Valette, S. Daveau, J. C. Abry, P. Tabary, and P. Kapsa, "Nature and removal of the modified layer in Cu CMP with ferric nitrate as oxidizer," Tribology International, vol. 41, pp. 416-424, 2008.
    [5] H. Xiao, "Introduction to Semiconductor Manufacturing Technology," Pearson Education Taiwan Ltd, 2002.
    [6] Y. L. Chen, S. M. Zhu, S. J. Lee, and J. C. Wang, "The technology combined electrochemical mechanical polishing," Journal of Materials Processing Technology, vol. 140, pp. 203-205, 2003.
    [7] M. H. Fang, "Reaearch on abrasive Free Electrochemical Mechanical Polishing (AF-ECMP) Process of Copper Film," MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2009.
    [8] C. C. Huang, "Investigation of Copper Electroplishing for Damascene Interconnects in ULSI," MS Thesis, Department of Science and Engineering, National Chiao Tung University, 2002.
    [9] L. C. Yang, "Development of an Electrical Kinetic Force Assisted Chemical Mechanical Planarization (EKF-CMP) for Functional Wafer Planarization," MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2014.
    [10] C. H. Hsieh, "Development of an Electrical Assisted Chemical Mechanical Polishing (EACMP) for Cu Film Planarization," MS Thesis, Department of Mechanical Engineering, National Taiwan University of Science and Technology, 2011.
    [11] N. Saka, J. Y. Lai, J. H. Chun, and N. P. Suh, "Mechanisms of the Chemical Mechanical Polishing (CMP) Process in Integrated Circuit Fabrication," CIRP Annals-Manufacturing Technology, vol. 50, pp. 233–238, 2001.
    [12] L. Jiang, Y. Q. Lan, Y. Y. He, Y. Li, Y. H. Li, and J. B. Luo, "1,2,4-triazole as a corrosion inhibitor in copper chemical mechanical polishing," Thin Solid Films, vol. 556, pp. 395–404, 2014.
    [13] P. Bernard, P. Kapsa, T. Coud´e, and J. C. Abry, "Influence of surfactant and salts on chemical mechanical," Wear, vol. 259, pp. 1367-1371, 2005.
    [14] G. Banerjee and R. L. Rhoades, "Chemical Mechanical Planarization Historical Review and Future Direction," ECS Transactions, vol. 13, pp. 1-19, 2008.
    [15] R. J. Contolini, A. F. Bernhardt, and S. T. Mayer, "Electrochemical planarization for multilevel metallization," J. Electrochem. Soc., vol. 141, pp. 2503–2510, 1994.
    [16] M. H. Tsai, S. W. Chou, and C. L. Chang, "CMP-Free and CMP-
    Less approaches for multilevel Cu/low-k BEOL integration," IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, IEDM2001.
    [17] S. Sato and Z. Yasuda, "Newly developed electro-chemical polishing process of copper as replacement of CMP suitable for damascene copper inlaid in fragile low-k dielectrics," IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, IEDM2001.
    [18] Y. L. Chen, S. M. Zhu, S. J. Lee, and J. C. Wang, "The technology combined elelctrochemical mechanical polishing," Journal of Materials Processing Technology, vol. 140, 2003.
    [19] M. Mellier, T. Berger, R. Duru, and M. Zaleski, "Full Copper Electrochemical Mechanical Planarization (Ecmp) as a Technology Enabler for the 45 and 32nm Nodes," IEEE, pp. 1-4244-1070-3, 2007.
    [20] Y. J. Oh, G. S. Park, and C. H. Chung, "Planarization of copper layer for damascene interconnection by electrochemical polishing in alkali-based solution," Journal of The Electrochemical Society, vol. 153(7), pp. 617-621, 2006.
    [21] K. Wijekoon, S. Mishra, S. Tsai, K. Puntambekar, M. Chandrachood, F. Redeker, et al., "Development of a production worthy copper CMP process," in Advanced Semiconductor Manufacturing Conference and Workshop, 1998. 1998 IEEE/SEMI, 1998, pp. 354-363.
    [22] T. Kojima, M. Miyajima, F. Akaboshi, T. Yogo, S. Ishimoto, and A. Okuda, "Application of CMP Process Monitor to Cu Polishing," IEEE TRANSACTIONS ON SEMICONDUCTOR MANUFACTURING, vol. 13 No.3, p. 7, 2000.
    [23] H. Jeong, H. Kim, S. Lee, and D. Dornfeld, "Multi-Sensor Monitoring System in Chemical Mechanical Planarization (CMP) for Correlations with Process Issues," Annals of the CIRP, vol. 55, p. 4, 2006.
    [24] Y. Yamada, M. Kawakubo, O. Hirai, N. Konishi, S. Kurokawa, and T. Doi, "Fictional Characterization of Chemical-Mechanical Polishing Pad Surface and Diamond Conditioner Wear," Japanese Jornal of Applied Physics, vol. 47 ,No. 8, p. 6, 2008.
    [25] D. Zeidler, M. Plotner, and K. Drescher, "Endpoint detection method for CMP of copper," Microelectronic Engineering, vol. 50, p. 6, 2000.
    [26] Z. Qu, Q. Zhao, Q. Yu, D. Zhao, H. Li, X. Lu, et al., "Cu Layer thickness monitoring in CMP process by using eddy current sensor," ICPT 2012, October, 15-17, 2012.
    [27] H. Wang, "Methods and Apparatus for Electropolishing Metal Interconnections on Semiconductor Devices," US Patent US6395152B1, 2002.
    [28] J. K. S, "Conductive Polishing Pad with Anode and Cathode," US Patent, 2004.
    [29] B. M. Basol and M. Beach, "System for Electropolishing and Electrochemical mechanical Polishing," US Patent, 2005.
    [30] 陳炤彰,謝啟祥,"電場輔助化學機械拋光系統及其方法",中華民國專利,2013。
    [31] A. Manz, N. Graber, and H. M. Widmer, "Miniaturized total chemical analysis systems a novel concept for chemical sensing," Sensors and Actuators, vol. BI, pp. 244-248, 1990.
    [32] K. H. Bhatt, S. Grego, and O. D. Velev, "An AC Electrokinetic Technique for Collection and Concentration of Particles and Cells on Patterned Electrodes," Langmuir vol. 21, pp. 6603-6612, 2005.
    [33] P. K. Wong, C. Y. Chen, T. H. Wang, and C. M. Ho, "Electrokinetic Bioprocessor for Concentrating Cells and Molecules," A n a l . C h e m, vol. 76, pp. 6908-6914, 2004.
    [34] P. Mruetusatorn, Mohfouz, and J. J. Wu, "Low-voltage dynamic control for DC electroosmotic devices," Sensors and Actuators A, vol. 153, pp. 237-243, 2009.
    [35] P. R. Matthew, R. Tomkins, and A. Docoslis, "Enhancing the Performance of Surface-based Biosensors by AC Electrokinetic Effects - a Review," in Biosensors - Emerging Materials and Applications M. T. a. A. D. Protiva Rani Roy, Ed., ed: InTech 2011, pp. 243-264.
    [36] M. P. Hughes, "Nanoelectromechanics in engineering and biology," CRC Press, 2003.
    [37] M. T. Bowser, G. M. Bebault, X. Peng, and D. Y. Chen. (1997). Introduction to Capillary Electrophoresis.
    [38] C. W. Hsu, "An Investigation on The Collecting Efficiency of Cells and Micro Particles by Electro-osmosis," MS Thesis, Department of Mechanical Engineering, Tatung University, 2007.
    [39] M. Pribyl, D. Snita, and M. Marek, Modelling and Simulation: Multiphysical Modeling of DC and AC Electroosmosis in Micro- and Nanosystems, Giuseppe Petrone and Giuliano Cammarata ed.: I-Tech Education and Publishing 2008
    [40] P. Tathireddy, T. H. Choi, and M. Skliar, "Particle AC electrokinetics in planar interdigitated microelectrode geometry," Journal of Electrostatics vol. 66, pp. 609-619, 2008.

    QR CODE