簡易檢索 / 詳目顯示

研究生: 王詩堯
Shih-Yao Wang
論文名稱: 拋光墊性能分析於淺溝槽隔離化學機械拋光製程研究
Analysis on Pad Performance for Chemical Mechanical Polishing/Planarization of Shallow Trench Isolation
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 康來成
Lai-Cheng Kang
黃正吉
Zheng-Ji Huang
林建憲
Jian-Xian Lin
鍾俊輝
Chun-Hui Chung
陳炤彰
Chao-Chang A. Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 200
中文關鍵詞: 化學機械平坦化淺溝槽隔離製程拋光墊性能介面展開面積比拋光效率指標
外文關鍵詞: CMP, Shallow trench isolation, Surface morphology, Developed Interfacial Area ratio, Polishing efficiency index
相關次數: 點閱:268下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 化學機械平坦化(Chemical Mechanical Planarization, CMP)目前已被廣泛應用於IC產業中,隨著近年來半導體線寬不斷縮減,CMP製程之穩定性與重現性不斷面臨挑戰。而在評估拋光墊性能的部分,目前大多單以高度參數或是空間參數定義拋光墊性能狀態,使得拋光墊無法最有效被應用,致使耗材經費高居不下。本研究目的為使用混合參數搭配功能參數來評估拋光墊拋光效率指標(Polishing Efficiency Index, PEI),針對精拋墊較特殊之表面形貌,定義CMP精拋墊性能狀態。研究方法,於CMP製程前,透過雷射共軛焦量測精拋墊表面形貌,以量測之表面粗度高度參數即均方根高度(Sq)作為假設精拋墊受壓後之乘載作為基準,接著判斷功能參數即粗度波峰高度(Spk)作為拋光墊粗度峰未受壓之高度,再以量測之點資料計算混合參數即介面展開比(Developed interfacial area ratio, Sdr)表示拋光墊受壓後的工作面積百分比,進而推算出拋光墊拋光效率指標(PEI),最後再由半導體淺溝槽隔離(Shallow Trench Isolation, STI)製程中之CMP製程進行驗證。實驗結果,透過Politex-Hi拋光墊對二氧化矽薄膜晶圓(SiO2)進行九組實驗參數分析,以1.82 psi與80 rpm可取得最佳晶圓表面粗糙度且精拋墊PEI越大,晶圓材料移除率上升,但晶圓表面形貌也較差。研究成果顯示,精拋墊PEI越小,晶圓材料移除率下降,但會取得較佳之晶圓表面形貌。未來於STI CMP製程前,可先透過拋光墊拋光效率指標評估所用之拋光墊性能,以提高製程效能。


    Chemical mechanical planarization/polishing (CMP) has been widely adopted in the integrated circuit (IC) fabrication. Due to demand of IC downsizing to nanoscale, CMP process stability and reproducibility continue to face stringent challenges. Polishing pad surface topography is one of the major factors for determination on wafer planarization, which pad polishing efficiency index (PEI) can be considered as one of quantification of pad surface performance in CMP process. This study is to develop PEI based on the interfacial area ratio (Sdr) and related root-mean-square surface roughness(Sq) and (Spk). The PEI is (Sdr) defined by the ratio between multiplication of the interfacial area ratio and reduced peak height (Spk) dividing to the root mean square height (Sq). Finally, the shallow trench isolation (STI) CMP process is used to verified by PEI. The CMP process of silicon oxide (SiO2) and silicon nitride (Si3N4) film wafers has been verified to identify the correlation between the pad PEI and material removal rate (MRR) of oxide and nitride film wafer. Experimental results show that the PEI increases as with MRR of oxide wafer increasing and also as decreasing wafer surface topography. Thus the PEI can be used a pad performance index for STI CMP process based on current configuration of this study. Results of this study can be further adopted as an index for in-situ monitoring of pad topography for process control of STI CMP for advanced node IC demands.

    摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XV 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 5 1.3 論文架構 6 第二章 文獻回顧 8 2.1 拋光墊分析及文獻回顧 8 2.2 STI CMP文獻回顧 21 2.3 STI選擇比文獻回顧 29 2.4 介面展開比文獻回顧 37 2.5 文獻回顧總結 42 第三章 淺溝槽隔離製程與拋光墊特性分析 43 3.1 淺溝槽隔離製程 43 3.2 拋光墊性能之分析 47 3.2.1 拋光墊之功能 47 3.2.2 拋光墊結構與性能分析 48 3.2.3 拋光墊表面形貌與量測方法 50 3.3 乘載面積比分析拋光墊 52 3.4 拋光墊拋光效率指標分析 55 3.4.1 介面展開比 55 3.4.2 拋光效率指標 59 第四章 STI CMP實驗設備與規劃 61 4.1 STI CMP實驗設備 61 4.2 量測設備 62 4.3 實驗耗材 64 4.3.1 拋光墊 64 4.3.2 晶圓 66 4.3.3 拋光液 67 4.3.4 毛刷 69 4.4 實驗規劃 70 4.4.1 STI CMP 製程參數分析 71 4.4.2 STI CMP 選擇比分析 72 4.4.3 拋光墊拋光效率指標分析 73 第五章 實驗結果與討論 74 5.1 STI CMP製程參數分析(實驗A) 75 5.1.1 製程參數對於晶圓移除率之影響 75 5.1.2 製程參數對於晶圓表面粗糙度之影響 80 5.2 STI CMP選擇比分析(實驗B) 85 5.2.1 拋光墊溝槽對於晶圓材料移除率之影響 86 5.2.2 拋光墊溝槽對於晶圓表面粗糙度與N.U.之影響 90 5.2.3 拋光墊與晶圓接觸角分析 96 5.3 拋光墊拋光效率指標分析(實驗C) 101 5.3.1 拋光墊表面形貌與微結構分析 101 5.3.2 拋光墊基本物理性質 107 5.3.3 拋光墊動摩擦係數分析 111 5.3.4 介面展開比取樣大小分析 116 5.3.5 拋光墊之拋光效率指標 126 5.4 綜合結果與討論 132 第六章 結論與建議 133 6.1 結論 133 6.2 建議 134 參考文獻 135 附錄A 實驗中所使用之設備 141 附錄B 晶圓薄膜厚度 144 附錄C 拋光墊表面粗糙度 152 附錄D SiO2薄膜晶圓表面粗糙度 158 附錄E 拋光墊介面展開比程式碼 171 附錄F 晶圓薄膜製程 172 F.1薄膜成長 172 F.2 LPCVD 173 F.3 PECVD 174 附錄G 8吋TEOS AFM量測結果 175 作者簡介 178

    [1] 王建榮, 林必窕, 林慶福, 半導體平坦化CMP技術(Global Planarization Chemical Mechanical Polishing), 全華圖書公司, 2000.
    [2] Krishnan, Mahadevaiyer, Jakub W. Nalaskowski, and Lee M. Cook. "Chemical mechanical planarization: slurry chemistry, materials, and mechanisms." Chemical reviews 110.1: 178-204, 2009.
    [3] Liou, Fu-Tai, and Fusen E. Chen. "Method for forming planarized shallow trench isolation in an integrated circuit and a structure formed thereby." U.S. Patent No. 5,130,268. 14 Jul. 1992.
    [4] P. B. Zantye, A. Kumar and A. K. Sikder, "Chemical mechanical planarization fire microelectronics applications", Material Science and Engineer R: Report, Vol.45, 2004.
    [5] Babu, Suryadevara. ‶Advances in Chemical Mechanical Planarization (CMP). " Wood head Publishing, 2016.
    [6] Muldowney, Gregory P., and David B. James. "Characterization of CMP pad surface texture and pad-wafer contact." MRS Online Proceedings Library Archive 816, 2004.
    [7] 周聖尉, "化學機械拋光中拋光墊動態及靜態特性之研究", 國立清華大學, 動力機械工程學系碩士論文, 2005.
    [8] Park, Kihyun, et al. "Correlation between break-in characteristics and pad surface conditions in silicon wafer polishing." journal of materials processing technology 205.1: 360-365, 2008.
    [9] Park, Kihyun, and Haedo Jeong. "Investigation of pad surface topography distribution for material removal uniformity in CMP process." Journal of the Electrochemical Society 155.8: H595-H602, 2008.
    [10] Park, K. H., et al. "Effects of pad properties on material removal in chemical mechanical polishing." Journal of Materials Processing Technology 187: 73-76, 2007.
    [11] Zhang, L. C., A. Q. Biddut, and Y. M. Ali. "Dependence of pad performance on its texture in polishing mono-crystalline silicon wafers." International Journal of Mechanical Sciences 52.5: 657-662, 2010.
    [12] 黃星豪, ‶藍寶石晶圓拋光加工之摩擦力語拋光墊機械性質分析研究″, 國立臺灣科技大學, 機械工程學系碩士論文,2013.
    [13] Mu, Yan, et al. "Effect of pad groove width on slurry mean residence time and slurry utilization efficiency in CMP." Microelectronic Engineering 157: 60-63, 2016.
    [14] Kim, Sang-Yong, and Yong-Jin Seo. "Correlation analysis between pattern and non-pattern wafer for characterization of shallow trench isolation–chemical–mechanical polishing (STI–CMP) process." Microelectronic engineering 60.3: 357-364, 2002.
    [15] Wei, Jiang. "Application of chemical‐mechanical polishing for planarizing of silicon nitride passivation layers used in high power III‐V laser devices." Crystal Research and Technology 41.2: 180-185, 2006.
    [16] Choi, Jae-Gon, et al. "The synergetic role of pores and grooves of the pad on the scratch formation during STI CMP." Journal of the Electrochemical Society157.8 (2010): H806-H809.
    [17] Liao, Xiaoyan, et al. "Effect of pad surface micro-texture on dishing and erosion during shallow trench isolation chemical mechanical planarization." Japanese Journal of Applied Physics 53.8: 086501, 2014.
    [18] Cho, Chae-Woong, et al. "Atomic force microscopy study of the role of molecular weight of poly (acrylic acid) in chemical mechanical planarization for shallow trench isolation." Journal of materials research 21.2: 473-479, 2006.
    [19] Kim, Ye-Hwan, et al. "Constraints on removal of Si3N4 film with conformation-controlled poly (acrylic acid) in shallow-trench isolation chemical–mechanical planarization (STI CMP)." Journal of Materials Research 23.1: 49-54, 2008.
    [20] Kim, Sarah, et al. "Adsorption behavior of anionic polyelectrolyte for chemical mechanical polishing (CMP)." Journal of colloid and interface science 319.1: 48-52, 2008.
    [21] Oh, Myoung-Hwan, et al. "Polishing behaviors of ceria abrasives on silicon dioxide and silicon nitride CMP." Powder technology 206.3: 239-245, 2011.
    [22] Han, Jahyung, et al. "Effect of Reactive Ion Etch on the Polishing Selectivity during Silicon Nitride Chemical Mechanical Polishing for Sub-10 nm Logic Device." ECS Journal of Solid State Science and Technology 6.4: P101-P104, 2017.
    [23] Wehbi, D., et al. "Three-dimensional quantification of wear tracks on amorphous NiB coatings." Wear107.3: 263-278, 1986.
    [24] Dong, W. P., P. J. Sullivan, and K. J. Stout. "Comprehensive study of parameters for characterising three-dimensional surface topography: IV: parameter for characterising spatial and hybrid properties." Wear 178.1-2: 45-60, 1994.
    [25] Ehrenfest, David M. Dohan, et al. "Classification of osseointegrated implant surfaces: materials, chemistry and topography." Trends in biotechnology28.4: 198-206, 2010.
    [26] Landry, Véronic, Pierre Blanchet, and Lyne M. Cormier. "Water-based and solvent-based stains: impact on the grain raising in yellow birch." BioResources 8.2: 1997-2009, 2013.
    [27] Kedzierski, Jakub, et al. "Extension and source/drain design for high-performance Fin FET devices." IEEE Transactions on Electron Devices 50.4: 952-958, 2003.

    [28] Liu, Chengsheng, et al. "Novel tri-independent-gate Fin FET for multi-current modes control." Superlattices and Microstructures, 2017.
    [29] Sun, Pei, Lei Xie, and Junghui Chen. "Spatial batch optimal design based on self-learning gaussian process models for LPCVD processes." Chinese Journal of Chemical Engineering 23.12: 1958-1964, 2015.
    [30] Quirk, Michael, and Julian Serda. Semiconductor manufacturing technology. Vol. 1. Upper Saddle River, NJ: Prentice Hall, 2001.
    [31] Sherrington, I., and S. Mercer. "The use of topography‐based parameters for the assessment and prediction of surface wear." Lubrication Science 7.1: 1-11, 2011.
    [32] 王柏凱, ‶雷射共軛焦三維表面形貌量測儀開發應用於拋光墊之碎行維度漢承載比分析″, 國立臺灣科技大學, 機械工程學系博士論文, 2013.
    [33] "ISO 25178-2:2012 Geometrical Product Specifications (GPS) - Surface texture: Areal, Part1: Terms, definitions and surface texture parameters."
    [34] 薛慶堂, ‶化學機械拋光之拋光墊性能分析與平坦化加工研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2011.
    [35] 溫禪孺, ‶單晶矽與藍寶石晶圓化學機械平坦化之拋光墊有效壽命指標分析研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2014.
    [36] 陳鈺庭, ‶拋光墊修整磨合期對銅膜晶圓化學機械拋光影響研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2014.
    [37] 蔡明城, ‶開發線上監控量測方法與系統應用於拋光墊性能水準分析之研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2016.
    [38] Brown, Christopher A., William A. Johnsen, and Kevin M. Hult. "Scale-sensitivity, fractal analysis and simulations." International Journal of Machine Tools and Manufacture 38.5: 633-637, 1998.
    [39] Su, Pin. An international standard model for SOI circuit design. University of California, Berkeley, 2002.
    [40] Ettl, Peter, et al. "Roughness parameters and surface deformation measured by coherence radar." International Conference on Applied Optical Metrology. International Society for Optics and Photonics, 1998.
    [41] 楊宗融, ‶可撓式顆粒輔助化學機械拋光製程研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2016.
    [42] 傅彥綺, ‶拋光墊線上量測系統於修整性能分析與銅化學機械拋光之相關性研究″, 國立臺灣科技大學, 機械工程學系博士論文, 2016.
    [43] Kim, Kijung, et al. "Communication—Reduction of Friction Force between Ceria and SiO2 for Low Dishing in STI CMP." ECS Journal of Solid State Science and Technology 6.10: P752-P754, 2017.

    QR CODE