簡易檢索 / 詳目顯示

研究生: Muhammad Adil Khalil
Muhammad Adil Khalil
論文名稱: 應用於HER2乳癌標靶治療 之 DISH影像分析深度學習方法
Automatic deep learning precision oncology system for breast cancer HER2 target therapy using brightfield dual in situ hybridization
指導教授: 王靖維
Ching-Wei Wang
口試委員: 王靖維
Ching-Wei Wang
許維君
Wei-Chun Hsu
許昕
Hsin Hsiu
趙載光
Tai-Kuang Chao
林宜嘉
Yi-Jia Lin
學位類別: 碩士
Master
系所名稱: 應用科技學院 - 醫學工程研究所
Graduate Institute of Biomedical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 45
外文關鍵詞: Dual-color Chromogenic in situ hybridization
相關次數: 點閱:155下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • The amount of overexpression of the human epidermal growth factor receptor 2 (HER2) is a predictive biomarker for metastatic breast cancer that may be used to evaluate therapeutic treatments. In HER2 immunohistochemical scores 2+ equivocal cases, accurate HER2 testing is critical for determining the most suitable precision treatment. HER2 in situ hybridization has generally been carried out using fluorescence in situ hybridization techniques (FISH). In recent years, brightfield dual in situ hybridization (DISH) has emerged as an efficient and viable alternative approach to replace fluorescent in situ hybridization (FISH) in various labs, including ours. The presented deep learning based framework allows effective and precise automated detection of ERBB2 to CEN17 signals ratio and the mean HER2 copies for each nucleus in DISH images for clinical usage, consequently avoid inter-oberserver variability and shortening the time required for routine manual assessment. To the best of author's knowledge, this is the first study to explore the use of deep learning technology to automatically detect HER2 overexpression in HER2 DISH images acquired from clinical breast cancer samples. On two datasets, we assess the efficiency of the proposed models. The results illustrate that the proposed method 1 accomplishes better performance than the baseline techniques with an accuracy of 97.11±2.39, precision of 96.92±1.45, recall of 92.49±2.04, F1-score of 94.65±3.59, and Jaccard Index of 88.43±10.27 on dataset 1 and an accuracy of 97.80±1.05, precision of 97.48±1.07, recall of 91.80±3.84, F1-score of 94.56±3.04, and Jaccard Index of 88.39±5.16 for dataset 2. Additionally, using Fisher's LSD, the proposed method 1 outperforms the baseline approaches by a significant margin (P<0.001). With a high degree of accuracy, precision, and sensitivity of over 91%, the proposed model 1 demonstrate that incorporating the deep learning based tools in DISH diagnosis for an accurate evaluation of HER2 overexpression in breast cancer patients, has significant potential to enable precision personalized medicine.

    Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i Acknowledgement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii Table of Content . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v List of Figure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Challenges and Related Works . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1 Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2 Related Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.2.1 U-Net . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.2 SegNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2.3 Fully Convolutional Network (FCN) . . . . . . . . . . . . . . . 8 2.2.4 Cascade R-CNN . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2.5 YOLOv5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.1 Proposed Method 1: Weakly Supervised Cascade R-CNN (W-CRCNN) 11 3.1.1 Soft Sampling Weighted Loss function . . . . . . . . . . . . . 11 3.1.2 Dual Layer Filtered Negative Instance Sampling (Dual Layer FNIS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 3.1.3 Data Augmentation and Normalization . . . . . . . . . . . . . 14 3.1.4 Adaptive Learning . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Proposed Method 2: U-Net with Inception-v4 encoder . . . . . . . . . 16 3.3 Proposed Method 3: Ensemble of (U-Net with Inception-v4), (U-Net with ResNet-34) and (U-Net with Inception-ResNet-v2) . . . . . . . . 17 4 Experiments and Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1 Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.1.1 HER2 DISH data preparation . . . . . . . . . . . . . . . . . . 20 4.2 Quantitative Evaluation with Statistical Analysis . . . . . . . . . . . 21 4.3 Ablation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 5 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 5.1 Discussion and conclusion . . . . . . . . . . . . . . . . . . . . . . . . 26

    [1] A. Jemal, F. Bray, M. M. Center, J. Ferlay, E. Ward, and D. Forman, Global
    cancer statistics, CA: a cancer journal for clinicians, vol. 61, no. 2, pp. 6990,
    2011.
    [2] A. C. Wol, M. E. H. Hammond, J. N. Schwartz, K. L. Hagerty, D. C. Allred,
    R. J. Cote, M. Dowsett, P. L. Fitzgibbons, W. M. Hanna, A. Langer et al.,
    American society of clinical oncology/college of american pathologists guideline
    recommendations for human epidermal growth factor receptor 2 testing in
    breast cancer, Archives of pathology & laboratory medicine, vol. 131, no. 1, pp.
    1843, 2007.
    [3] S. Kaptain, L. K. Tan, and B. Chen, Her-2/neu and breast cancer, Diagnostic
    molecular pathology, vol. 10, no. 3, pp. 139152, 2001.
    [4] D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L.
    McGuire, Human breast cancer: correlation of relapse and survival with ampli
    cation of the her-2/neu oncogene, science, vol. 235, no. 4785, pp. 177182,
    1987.
    [5] A. K. Tandon, G. M. Clark, G. C. Chamness, A. Ullrich, and W. McGuire, Her-
    2/neu oncogene protein and prognosis in breast cancer. Journal of Clinical
    Oncology, vol. 7, no. 8, pp. 11201128, 1989.
    [6] M. M. Moasser, The oncogene her2: its signaling and transforming functions
    and its role in human cancer pathogenesis, Oncogene, vol. 26, no. 45, pp.
    64696487, 2007.
    [7] Y. Yarden and M. X. Sliwkowski, Untangling the erbb signalling network,
    Nature reviews Molecular cell biology, vol. 2, no. 2, pp. 127137, 2001.
    [8] N. Benlimame, Q. He, S. Jie, D. Xiao, Y. J. Xu, M. Loignon, D. D. Schlaepfer,
    and M. A. Alaoui-Jamali, Fak signaling is critical for erbb-2/erbb-3 receptor
    cooperation for oncogenic transformation and invasion, The Journal of cell
    biology, vol. 171, no. 3, pp. 505516, 2005.
    [9] Z.-H. Liu, K. Wang, D.-Y. Lin, J. Xu, J. Chen, X.-Y. Long, Y. Ge, X.-L. Luo,
    K.-P. Zhang, Y.-H. Liu et al., Impact of the updated 2018 asco/cap guidelines
    on her2 sh testing in invasive breast cancer: a retrospective study of her2 sh
    results of 2233 cases, Breast cancer research and treatment, vol. 175, no. 1, pp.
    5157, 2019.
    [10] D. J. Slamon, B. Leyland-Jones, S. Shak, H. Fuchs, V. Paton, A. Bajamonde,
    T. Fleming, W. Eiermann, J. Wolter, M. Pegram et al., Use of chemotherapy
    plus a monoclonal antibody against her2 for metastatic breast cancer that
    overexpresses her2, New England journal of medicine, vol. 344, no. 11, pp.
    783792, 2001.
    [11] M. J. Piccart-Gebhart, M. Procter, B. Leyland-Jones, A. Goldhirsch, M. Untch,
    I. Smith, L. Gianni, J. Baselga, R. Bell, C. Jackisch et al., Trastuzumab after
    adjuvant chemotherapy in her2-positive breast cancer, New England Journal
    of Medicine, vol. 353, no. 16, pp. 16591672, 2005.
    [12] H. J. Burstein, L. N. Harris, P. K. Marcom, R. Lambert-Falls, K. Havlin,
    B. Overmoyer, R. J. Friedlander Jr, J. Gargiulo, R. Strenger, C. L. Vogel
    et al., Trastuzumab and vinorelbine as rst-line therapy for her2-overexpressing
    metastatic breast cancer: multicenter phase ii trial with clinical outcomes, analysis
    of serum tumor markers as predictive factors, and cardiac surveillance algorithm,
     Journal of clinical oncology, vol. 21, no. 15, pp. 28892895, 2003.
    [13] P. P. Rosen, M. L. Lesser, C. D. Arroyo, M. Cranor, P. Borgen, and L. Norton,
    Immunohistochemical detection of her2/neu in patients with axillary lymph
    node negative breast carcinoma. a study of epidemiologic risk factors, histologic
    features, and prognosis, Cancer, vol. 75, no. 6, pp. 13201326, 1995.
    [14] N. Pathmanathan and A. M. Bilous, Her2 testing in breast cancer: an overview
    of current techniques and recent developments, Pathology, vol. 44, no. 7, pp.
    587595, 2012.
    [15] R. R. Tubbs, D. G. Hicks, J. Cook, E. Downs-Kelly, J. Pettay, M. B. Hartke,
    L. Hood, R. Neelon, J. Myles, G. T. Budd et al., Fluorescence in situ hy-
    bridization (sh) as primary methodology for the assessment of her2 status
    in adenocarcinoma of the breast: a single institution experience, Diagnostic
    Molecular Pathology, vol. 16, no. 4, pp. 207210, 2007.
    [16] A. C. Wol, M. E. H. Hammond, D. G. Hicks, M. Dowsett, L. M. McShane,
    K. H. Allison, D. C. Allred, J. M. Bartlett, M. Bilous, P. Fitzgibbons et al.,
    Recommendations for human epidermal growth factor receptor 2 testing in
    breast cancer: American society of clinical oncology/college of american pathologists
    clinical practice guideline update, Archives of Pathology and Laboratory
    Medicine, vol. 138, no. 2, pp. 241256, 2014.
    [17] A. C. Wol, M. E. H. Hammond, K. H. Allison, B. E. Harvey, L. M. McShane,
    and M. Dowsett, Her2 testing in breast cancer: American society of clinical
    oncology/college of american pathologists clinical practice guideline focused
    update summary. Journal of oncology practice, vol. 14, no. 7, pp. 437441,
    2018.
    [18] J. Bartlett, F. M. Campbell, M. Ibrahim, A. OGrady, E. Kay, C. Faulkes,
    N. Collins, J. Starczynski, J. M. Morgan, B. Jasani et al., A uk neqas ish
    multicenter ring study using the ventana her2 dual-color ish assay, American
    journal of clinical pathology, vol. 135, no. 1, pp. 157162, 2011.
    [19] A. Brügmann, G. Lelkaitis, S. Nielsen, K. G. Jensen, and V. Jensen, Testing
    her2 in breast cancer: a comparative study on brish, sh, and ihc, Applied
    Immunohistochemistry & Molecular Morphology, vol. 19, no. 3, pp. 203211,
    2011.
    [20] Y. W. Koh, H. J. Lee, J. W. Lee, J. Kang, and G. Gong, Dual-color silverenhanced
    in situ hybridization for assessing her2 gene amplication in breast
    cancer, Modern Pathology, vol. 24, no. 6, pp. 794800, 2011.
    [21] A. S. Manseld, W. R. Sukov, J. E. Eckel-Passow, Y. Sakai, F. J. Walsh,
    M. Lonzo, A. E. Wiktor, A. Dogan, and R. B. Jenkins, Comparison of fuorescence
    in situ hybridization (sh) and dual-ish (dish) in the determination of
    her2 status in breast cancer, American journal of clinical pathology, vol. 139,
    no. 2, pp. 144150, 2013.
    [22] F. F. Gao, D. J. Dabbs, K. L. Cooper, and R. Bhargava, Bright-eld her2 dual
    in situ hybridization (dish) assay vs uorescence in situ hybridization (sh)
    focused study of immunohistochemical 2+ cases, American journal of clinical
    pathology, vol. 141, no. 1, pp. 102110, 2014.
    [23] J. Jacquemier, F. Spyratos, B. Esterni, M.-J. Mozziconacci, M. Antoine,
    L. Arnould, S. Lizard, P. Bertheau, J. Lehmann-Che, C. B. Fournier et al.,
    Sish/cish or qpcr as alternative techniques to sh for determination of her2
    amplication status on breast tumors core needle biopsies: a multicenter experience
    based on 840 cases, BMC cancer, vol. 13, no. 1, pp. 111, 2013.
    [24] S.-J. Lim, A. Cantillep, and P. M. Carpenter, Validation and workow optimization
    of human epidermal growth factor receptor 2 testing using inform
    her2 dual-color in situ hybridization, Human pathology, vol. 44, no. 11, pp.
    25902596, 2013.
    [25] R. Horii, M. Matsuura, T. Iwase, Y. Ito, and F. Akiyama, Comparison of
    dual-color in-situ hybridization and uorescence in-situ hybridization in her2
    gene amplication in breast cancer, Breast Cancer, vol. 21, no. 5, pp. 598604,
    2014.
    [26] M. Tang, I. S. Soong, M. Luk, D. T. Suen, F. Hoie, E. P. Man, O. K. Tsun, and
    U. Khoo, Comparison of uorescence in-situ hybridisation with dual-colour insitu
    hybridisation for assessment of her2 gene amplication of breast cancer in
    hong kong, Hong Kong Medical Journal, 2016.
    [27] L. J. Layeld, M. L. Wallander, S. R. Tripp, S. Redpath, and P. M. Banks,
    Comparison of dual-ish (dish) with uorescence in situ hybridization (sh) and
    correlation with immunohistochemical ndings for her2/neu status in breast
    carcinoma, Applied immunohistochemistry & molecular morphology, vol. 25,
    no. 4, pp. 231236, 2017.
    [28] R. Nishimura, N. Okamoto, M. Satou, K. Kojima, S. Tanaka, and N. Yamashita,
    Bright-eld her2 dual in situ hybridization (dish) assay on breast cancer cell
    blocks: a comparative study with histological sections, Breast Cancer, vol. 23,
    no. 6, pp. 917921, 2016.
    [29] M. Edelweiss, A. P. M. Sebastiao, H. Oen, M. Kracun, R. Serrette, and D. S.
    Ross, Her2 assessment by bright-eld dual in situ hybridization in cell blocks
    of recurrent and metastatic breast carcinoma, Cancer cytopathology, vol. 127,
    no. 11, pp. 684690, 2019.
    [30] B. Z. Clark and R. Bhargava, Bright-eld microscopy for her2 gene assessment:
    not just dish-ful thinking? 2013.
    [31] S. Kurozumi, M. Padilla, M. Kurosumi, H. Matsumoto, K. Inoue, J. Horiguchi,
    I. Takeyoshi, T. Oyama, J. Ranger-Moore, D. C. Allred et al., Her2 intratumoral
    heterogeneity analyses by concurrent her2 gene and protein assessment
    for the prognosis of her2 negative invasive breast cancer patients, Breast cancer
    research and treatment, vol. 158, no. 1, pp. 99111, 2016.
    [32] K.-H. Yu, A. L. Beam, and I. S. Kohane, Articial intelligence in healthcare,
    Nature biomedical engineering, vol. 2, no. 10, pp. 719731, 2018.
    [33] H. Höfener, A. Homeyer, M. Förster, N. Drieschner, H.-U. Schildhaus, and
    H. K. Hahn, Automated density-based counting of sh amplication signals
    for her2 status assessment, Computer methods and programs in biomedicine,
    vol. 173, pp. 7785, 2019.
    [34] Y. LeCun, Y. Bengio, and G. Hinton, Deep learning, nature, vol. 521, no.
    7553, pp. 436444, 2015.
    [35] F. Zakrzewski, W. de Back, M. Weigert, T. Wenke, S. Zeugner, R. Mantey,
    C. Sperling, K. Friedrich, I. Roeder, D. Aust et al., Automated detection of
    the her2 gene amplication status in uorescence in situ hybridization images
    for the diagnostics of cancer tissues, Scientic reports, vol. 9, no. 1, pp. 112,
    2019.
    [36] K. Bera, K. A. Schalper, D. L. Rimm, V. Velcheti, and A. Madabhushi, Arti
    cial intelligence in digital pathologynew tools for diagnosis and precision
    oncology, Nature reviews Clinical oncology, vol. 16, no. 11, pp. 703715, 2019.
    [37] Y.-J. Lin, T.-K. Chao, M.-A. Khalil, Y.-C. Lee, D.-Z. Hong, J.-J. Wu, and C.-
    W. Wang, Deep learning fast screening approach on cytological whole slides
    for thyroid cancer diagnosis, Cancers, vol. 13, no. 15, p. 3891, 2021.
    [38] C.-W. Wang, Y.-A. Liou, Y.-J. Lin, C.-C. Chang, P.-H. Chu, Y.-C. Lee, C.-H.
    Wang, and T.-K. Chao, Articial intelligence-assisted fast screening cervical
    high grade squamous intraepithelial lesion and squamous cell carcinoma diagnosis
    and treatment planning, Scientic Reports, vol. 11, no. 1, pp. 114,
    2021.
    [39] C.-W. Wang, S.-C. Huang, Y.-C. Lee, Y.-J. Shen, S.-I. Meng, and J. L. Gaol,
    Deep learning for bone marrow cell detection and classication on whole-slide
    images, Medical Image Analysis, vol. 75, p. 102270, 2022.
    [40] V. Badrinarayanan, A. Kendall, and R. Cipolla, Segnet: A deep convolutional
    encoder-decoder architecture for image segmentation, IEEE transactions on
    pattern analysis and machine intelligence, vol. 39, no. 12, pp. 24812495, 2017.
    [41] Z. Cai and N. Vasconcelos, Cascade r-cnn: High quality object detection and
    instance segmentation, IEEE Transactions on Pattern Analysis and Machine
    Intelligence, pp. 11, 2019.
    [42] T. Falk, D. Mai, R. Bensch, Ö. Çiçek, A. Abdulkadir, Y. Marrakchi, A. Böhm,
    J. Deubner, Z. Jäckel, K. Seiwald et al., U-net: deep learning for cell counting,
    detection, and morphometry, Nature methods, vol. 16, no. 1, pp. 6770, 2019.
    [43] F. Jubayer, J. A. Soeb, A. N. Mojumder, M. K. Paul, P. Barua, S. Kayshar,
    S. S. Akter, M. Rahman, and A. Islam, Detection of mold on the food surface
    using yolov5, Current Research in Food Science, vol. 4, pp. 724728, 2021.
    [44] E. Shelhamer, J. Long, and T. Darrell, Fully convolutional networks for semantic
    segmentation, IEEE transactions on pattern analysis and machine in-
    telligence, vol. 39, no. 4, pp. 640651, 2017.
    [45] Z. Wu, N. Bodla, B. Singh, M. Najibi, R. Chellappa, and L. S. Davis, Soft
    sampling for robust object detection, BMVC, p. 225, 2019.
    [46] I. Krasin, T. Duerig, N. Alldrin, V. Ferrari, S. Abu-El-Haija, A. Kuznetsova,
    H. Rom, J. Uijlings, S. Popov, A. Veit, S. Belongie, V. Gomes, A. Gupta,
    C. Sun, G. Chechik, D. Cai, Z. Feng, D. Narayanan, and K. Murphy, Openimages:
    A public dataset for large-scale multi-label and multi-class image classi
    cation. Dataset available from https://github.com/openimages, 2017.
    [47] D. Tellez, G. Litjens, P. Bándi, W. Bulten, J.-M. Bokhorst, F. Ciompi, and
    J. van der Laak, Quantifying the eects of data augmentation and stain color
    normalization in convolutional neural networks for computational pathology,
    Medical image analysis, vol. 58, p. 101544, 2019.
    [48] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep learning. MIT
    press Cambridge, 2016, vol. 1, no. 2.
    [49] D. Komura and S. Ishikawa, Machine learning methods for histopathological
    image analysis, Computational and structural biotechnology journal, vol. 16,
    pp. 3442, 2018.
    [50] M. Veta, Y. J. Heng, N. Stathonikos, B. E. Bejnordi, F. Beca, T. Wollmann,
    K. Rohr, M. A. Shah, D. Wang, M. Rousson et al., Predicting breast tumor
    proliferation from whole-slide images: the tupac16 challenge, Medical image
    analysis, vol. 54, pp. 111121, 2019.
    [51] K. Sirinukunwattana, J. P. Pluim, H. Chen, X. Qi, P.-A. Heng, Y. B. Guo, L. Y.
    Wang, B. J. Matuszewski, E. Bruni, U. Sanchez et al., Gland segmentation in
    colon histology images: The glas challenge contest, Medical image analysis,
    vol. 35, pp. 489502, 2017.
    [52] J. Deng, W. Dong, R. Socher, L. Li, Kai Li, and Li Fei-Fei, Imagenet: A
    large-scale hierarchical image database, pp. 248255, 2009.
    [53] C. Szegedy, S. Ioe, V. Vanhoucke, and A. A. Alemi, Inception-v4, inceptionresnet
    and the impact of residual connections on learning, in Thirty-rst AAAI
    conference on articial intelligence, 2017.
    [54] A. Sohail, A. Khan, H. Nisar, S. Tabassum, and A. Zameer, Mitotic nuclei
    analysis in breast cancer histopathology images using deep ensemble classier,
    Medical Image Analysis, p. 102121, 2021.
    [55] K. He, X. Zhang, S. Ren, and J. Sun, Deep residual learning for image recognition,
     in Proceedings of the IEEE conference on computer vision and pattern
    recognition, 2016, pp. 770778.
    [56] P. K. Gajaria, S. Tambe, T. Pai, A. Patil, S. B. Desai, T. M. Shet et al., Dualcolor
    dual-hapten in situ hybridization (d-dish)comparison with uorescence in
    situ hybridization (sh) for her2/neu testing in breast cancer, Indian Journal
    of Pathology and Microbiology, vol. 63, no. 2, p. 194, 2020.
    [57] S. Kunte, J. Abraham, and A. J. Montero, Novel her2targeted therapies for
    her2positive metastatic breast cancer, Cancer, vol. 126, no. 19, pp. 4278
    4288, 2020.
    [58] M. F. Press, J. A. Seoane, C. Curtis, E. Quinaux, R. Guzman, G. Sauter,
    W. Eiermann, J. R. Mackey, N. Robert, T. Pienkowski et al., Assessment of
    erbb2/her2 status in her2-equivocal breast cancers by sh and 2013/2014 ascocap
    guidelines, JAMA oncology, vol. 5, no. 3, pp. 366375, 2019.
    [59] E. J. A. Bowles, R. Wellman, H. S. Feigelson, A. A. Onitilo, A. N. Freedman,
    T. Delate, L. A. Allen, L. Nekhlyudov, K. A. Goddard, R. L. Davis et al., Risk
    of heart failure in breast cancer patients after anthracycline and trastuzumab
    treatment: a retrospective cohort study, Journal of the National Cancer Insti-
    tute, vol. 104, no. 17, pp. 12931305, 2012.
    [60] N. Mohan, J. Jiang, M. Dokmanovic, and W. J. Wu, Trastuzumab-mediated
    cardiotoxicity: current understanding, challenges, and frontiers, Antibody ther-
    apeutics, vol. 1, no. 1, pp. 1317, 2018.
    [61] F. Meric-Bernstam, A. M. Johnson, E. E. I. Dumbrava, K. Raghav, K. Balaji,
    M. Bhatt, R. K. Murthy, J. Rodon, and S. A. Piha-Paul, Advances in her2-
    targeted therapy: novel agents and opportunities beyond breast and gastric
    cancer, Clinical Cancer Research, vol. 25, no. 7, pp. 20332041, 2019.
    [62] G. V. P. Okaly, D. Panwar, K. B. Lingappa, P. Kumari, A. Anand, P. Kumar,
    M. H. Chikkalingaiah, R. V. Kumar et al., Fish and her2/neu equivocal
    immunohistochemistry in breast carcinoma, Indian journal of cancer, vol. 56,
    no. 2, p. 119, 2019.
    [63] F.-M. Chen, L.-J. Huang, F. Ou-Yang, J.-Y. Kan, L.-C. Kao, and M.-F. Hou,
    Activation of mitochondrial unfolded protein response is associated with her2-
    overexpression breast cancer, Breast Cancer Research and Treatment, vol. 183,
    no. 1, pp. 6170, 2020.
    [64] B. E. Bejnordi, M. Veta, P. J. Van Diest, B. Van Ginneken, N. Karssemeijer,
    G. Litjens, J. A. Van Der Laak, M. Hermsen, Q. F. Manson, M. Balkenhol et al.,
    Diagnostic assessment of deep learning algorithms for detection of lymph node
    metastases in women with breast cancer, Jama, vol. 318, no. 22, pp. 21992210,
    2017.
    [65] S. Sornapudi, R. J. Stanley, W. V. Stoecker, H. Almubarak, R. Long, S. Antani,
    G. Thoma, R. Zuna, and S. R. Frazier, Deep learning nuclei detection
    in digitized histology images by superpixels, Journal of pathology informatics,
    vol. 9, 2018.
    37

    無法下載圖示 全文公開日期 2027/01/25 (校內網路)
    全文公開日期 2027/01/25 (校外網路)
    全文公開日期 2027/01/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE