簡易檢索 / 詳目顯示

研究生: 陳冠諭
Guan-Yu Chen
論文名稱: 選擇性電泳沉積之反應式輔助複線式鑽石線鋸於單晶矽晶圓加工研究
Study on Multi-Wire Diamond Wire Sawing Process with Selective Reactive Electrophoretic Deposition for Monocrystalline Silicon Wafers
指導教授: 陳炤彰
Chao-Chang Chen
口試委員: 趙崇禮
Choung-Lii Chao
陳順同
Shun-Tong Chen
蔡曜陽
Yao-Yang Tsai
陳士勛
Shih-Hsun Chen
陳炤彰
Chao-Chang Chen
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 220
中文關鍵詞: 鑽石線鋸製程選擇性電泳沉積固相化學反應單晶矽晶圓次表層破壞
外文關鍵詞: Diamond Wire Sawing, Selective Electrophoretic Deposition, Solid-Phase Chemical Reaction, Mono-Si Wafers, Sub-Surface Damage
相關次數: 點閱:223下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 單晶矽晶圓為半導體的重要元件,近年來,電子產品被大量使用而導致矽晶圓供不應求,而如何有效率增加矽晶圓的產量是一直以來關切的議題。本研究將延續先前電泳反應式鑽石線鋸製程,並研發一款選擇性電泳沉積(Selective Electrophoretic Deposition, SEPD )漿料,本研究目的為改善矽晶圓表面品質及幾何形狀。利用碳酸鈣(CaCO3)與矽(Si)切屑之不同等電點(Isoelectric point)的特性,進行SEPD漿料之製備,透過靜態電泳沉積實驗與能量散射光譜儀驗證選擇性電泳沉積之效果。本研究將選擇性電泳沉積機制套用鑽石線鋸製程上,能使得鑽石線只吸附碳酸鈣反應磨料,避免吸附矽或含矽的反應物切屑,以減少切屑對晶圓表面的刮削。本研究先用單線式線鋸切割機進行切割實驗,由實驗結果顯示,利用選擇性反應式電泳沉積鑽石線鋸(Selective Electrophoretic Deposition Diamond Wire Sawing, SEPD-DWS)加工可有效改善矽晶圓表面粗糙度8.4%和降低次表層破壞深度7.2%,再利用拉曼光譜儀及接觸角等驗證固相化學反應(Solid Phase Chemical Reaction, SPCR)機制。後續將SEPD-DWS導入複線式線鋸切割機進行實驗,實驗結果可得,材料移除率增加約9.4%,更大幅改善翹曲量(Warp)約89%,以及減少次表層破壞深度約10.9%。


    Monocrystalline silicon (Mono-Si) wafers are important components of semiconductors. In recent years, the use of electronic products has led to a short supply of silicon wafers. How to efficiently increase the production of silicon wafers is an issue of concern. This study continues the previous reactive Electrophoretic Deposition (EPD) Diamond Wire Sawing (DWS) process and develops a Selective Electrophoretic Deposition (SEPD) slurry. This study aims to improve the surface quality and geometric shape of silicon wafers. The preparation of SEPD slurry is carried out by the characteristics of different isoelectric points of calcium carbonate (CaCO3) and slicing silicon chips, and the effect of SEPD is verified by static EPD experiments and Energy Dispersion Spectrometers (EDS). In this study, applying SEPD mechanisms to diamond wire sawing processes allows the diamond wire to absorb only reaction abrasives of CaCO3 and avoid adsorbing slicing Si chips or silicon-containing reactant chips to reduce chip scraping on the wafer surface. In this study, a single-wire sawing is used for slicing experiment, and the experimental results show that Selective Electrophoretic Deposition Diamond Wire Sawing (SEPD-DWS) process can effectively improve the surface roughness of wafers by 8.4% and Sub-Surface Damage (SSD) depth by 7.2%. The Solid Phase Chemical Reaction (SPCR) can be verified by Raman spectrometer, Contact angle and so on. The SEPD-DWS is adapted to a multi-wire sawing machine for 3-inch monocrystalline ingot, for experiments of results, the material removal rate (MRR) with SEPD is increased by 9.4%, the warp of wafer is obviously improved by 89%, and the sub-surface damage depth is decreased by 10.9%.

    摘要 I Abstract II 致謝 III 目錄 V 圖目錄 X 表目錄 XIX 符號表 XXIII 第一章 緒論 1 1.1 研究背景 1 1.2 研究目的與方法 4 1.3 論文架構 6 第二章 文獻回顧 8 2.1 線鋸切割製程 8 2.2 電泳沉積輔助線鋸製程 11 2.3 線鋸切割製程相關文獻 13 2.3.1 比切削能 23 2.3.2 固定鑽石線鋸之理想材料移除率 26 2.3.3 電泳沉積輔助鑽石線鋸之材料移除率 28 2.3.4 線鋸製程之耗線量估算 31 2.4 電泳沉積應用與界達電位相關文獻 34 2.4.1 電泳沉積原理 39 2.4.2 電泳沉積之遷移率 41 2.5 固相化學反應相關文獻 44 2.5.1 固相化學反應機制 46 2.5.2 固相化學反應之反應磨料 47 2.6 文獻回顧總結 48 第三章 選擇性電泳沉積與漿料製備 54 3.1 選擇性電泳沉積理論 55 3.2 選擇性反應式電泳沉積輔助鑽石線鋸製程 55 3.3 實驗耗材 57 3.3.1 單晶矽晶錠 57 3.3.2 單晶矽晶棒 57 3.3.3 氫氧化鈉(NaOH) 58 3.3.4 濃硫酸(H2SO4) 58 3.3.5 氫氧化鈣(Ca(OH)2) 59 3.3.6 碳酸鈣(CaCO3) 60 3.3.7 鑽石切割線 61 3.3.8 懸浮分散劑 64 3.3.9 混合型之環氧化合物接著劑 65 3.4 量測儀器 67 3.5 添加粉末之等電點分析 70 3.5.1 碳酸鈣之等電點分析 70 3.5.2 矽粉末之等電點分析 72 3.5.3 新選擇性電泳沉積漿料之調配 73 3.6 漿料之性質量測與分析 73 3.6.1 調配不同濃度漿料下對Zeta potential之影響 76 3.6.2 調配不同濃度漿料下對碳酸鈣粒徑大小之影響 78 3.6.3 調配不同濃度漿料下對沉降實驗之影響 80 3.6.4 實驗漿料之選用 87 3.6.5 調配不同濃度漿料下之黏度與pH值之影響 88 3.7 靜態電泳沉積實驗 91 3.7.1 不同電壓下對電泳沉積量之影響 93 3.7.2 選擇性電泳沉積驗證 98 3.8 綜合討論 99 第四章 單線式電泳反應式線鋸加工實驗 100 4.1 單線式線鋸切割機台(SWSM) 101 4.2 20×20×10單晶矽晶錠切割實驗 102 4.2.1 切口損失(Kerf Loss) 104 4.2.2 製程後之線材損耗與拉伸強度 106 4.2.3 切片厚度及總厚度變異量(Thickness and TTV) 108 4.2.4 表面粗糙度(Surface Roughness) 110 4.2.5 表面形貌與線痕(Surface Topography & Saw Mark ) 115 4.2.6 次表層破壞深度(Sub-Surface Damage Depth) 118 4.3 固相化學反應驗證 121 4.3.1 接觸角分析(Contact Angle Analysis) 121 4.3.2 維克氏硬度試驗(Vickers Hardness Test) 124 4.3.3 拉曼光譜儀(Raman Spectroscope) 128 4.3.4 切屑分析(Chip Analysis) 129 4.4 綜合討論 133 第五章 複線式電泳反應式線鋸加工實驗 135 5.1 複線式鑽石線鋸切割機(DWS-150 Machine) 136 5.2 實驗規劃與製程參數設定 139 5.3 實際切口損失及材料移除率計算 141 5.3.1 實際切口損失 141 5.3.2 理論材料移除率 142 5.3.3 實際材料移除率 143 5.4 切片製程後之線材損耗 144 5.5 晶圓幾何形狀(Wafer Geometric shape) 147 5.5.1 厚度變異量分析(Total Thickness Variation analysis) 147 5.5.2 晶圓翹曲分析(Bow and Warp Analysis) 150 5.6 晶圓表面品質分析(Surface Quality Analysis) 152 5.7 晶圓次表層破壞分析 155 5.8 綜合討論 159 第六章 結論與建議 160 6.1 結論 160 6.2 建議 162 參考文獻 163 附錄A SWSM單線式線鋸切割機規格與設計 167 附錄B DWS-150複線式線鋸切割機規格 169 附錄C 本研究相關圖片與數據 170 附錄D 晶圓之量測分析 174 附錄E 量測設備 185

    [1] 黃以宜, 胡曉, 蔡承佐, 范盛維, and (2017) 工業 4.0 通訊技術與應用. 機械工業雜誌. 17-29.
    [2] 張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽基板之平坦化製程分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2016.
    [3] S. Bhagavat and I. Kao, "A finite element analysis of temperature variation in silicon wafers during wiresaw slicing," International Journal of Machine Tools and Manufacture, vol. 48, no. 1, pp. 95-106, 2008.
    [4] C. C. A. Chen and P. H. Chao, "Surface Texture Analysis of Fixed and Free Abrasive Machining of Silicon Substrates for Solar Cells," Advanced Materials Research, vol. 126-128, pp. 177-180, 2010.
    [5] W. Wang, Z. X. Liu, W. Zhang, Y. H. Huang, and D. M. Allen, "Abrasive electrochemical multi-wire slicing of solar silicon ingots into wafers," CIRP Annals, vol. 60, no. 1, pp. 255-258, 2011.
    [6] Y. F. Gao and P. Q. Ge, "Relationship between the Grit Cut Depth and Process Parameters in Electroplated Diamond Wire Sawing KDP Crystal," Applied Mechanics and Materials, vol. 101-102, pp. 950-953, 2011.
    [7] 林鼎將, "矽基板線鋸加工之表面形貌分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
    [8] 許仙薇, "搖擺運動於單晶氧化鋁基板鑽石線鋸切割影響之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2013.
    [9] 詹明賢, "單晶與多晶矽基板鑽石線鋸加工之切屑分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2014.
    [10] T. Suzuki, Y. Nishino, and J. Yan, "Mechanisms of material removal and subsurface damage in fixed-abrasive diamond wire slicing of single-crystalline silicon," Precision Engineering, vol. 50, pp. 32-43, 2017.
    [11] Y. Gao, Y. Chen, P. Ge, L. Zhang, and W. Bi, "Study on the subsurface microcrack damage depth in electroplated diamond wire saw slicing SiC crystal," Ceramics International, vol. 44, no. 18, pp. 22927-22934, 2018.
    [12] Y. Gao, P. Ge, L. Zhang, and W. Bi, "Material removal and surface generation mechanisms in diamond wire sawing of silicon crystal," Materials Science in Semiconductor Processing, vol. 103, 2019.
    [13] L. Wang, Y. Gao, X. Li, T. Pu, and Y. Yin, "Analytical prediction of subsurface microcrack damage depth in diamond wire sawing silicon crystal," Materials Science in Semiconductor Processing, vol. 112, 2020.
    [14] U. Pala, F. Kuster, and K. Wegener, "Characterization of electroplated diamond wires and the resulting workpiece quality in silicon sawing," Journal of Materials Processing Technology, vol. 276, 2020.
    [15] T. Liu, P. Ge, W. Bi, and Y. Gao, "A new method of determining the slicing parameters for fixed diamond wire saw," Materials Science in Semiconductor Processing, vol. 120, 2020.
    [16] G. Ajay, "硬脆材料的鑽石線鋸加工研究之理論和實驗分析," 博士, 機械工程系, 國立臺灣科技大學, 台北市, 2020.
    [17] 黃浩維, "單晶碳化矽晶圓之鑽石線鋸加工模式分析研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [18] G. Tari and J. J. C. i. Ferreira, "Colloidal processing of calcium carbonate," vol. 24, no. 7, pp. 527-532, 1998.
    [19] A. R. Boccaccini, C. Kaya, and K. K. Chawla, "Use of electrophoretic deposition in the processing of fibre reinforced ceramic and glass matrix composites: a review," (in English), Composites Part a-Applied Science and Manufacturing, vol. 32, no. 8, pp. 997-1006, 2001.
    [20] J. Plank and G. Bassioni, "Adsorption of Carboxylate Anions on a CaCO3 Surface," Zeitschrift für Naturforschung B, vol. 62, no. 10, pp. 1277-1284, 2007.
    [21] R. S. Hyam, K. M. Subhedar, and S. H. Pawar, "Effect of particle size distribution and zeta potential on the electrophoretic deposition of boron films," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 315, no. 1-3, pp. 61-65, 2008.
    [22] 黃堯弘, "電泳沉積輔助線鋸切割於矽基板加工之永續性分析之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2012.
    [23] S. Kilic, G. Toprak, and E. Ozdemir, "Stability of CaCO3 in Ca(OH)2 solution," International Journal of Mineral Processing, vol. 147, pp. 1-9, 2016.
    [24] K. Cacua, F. Ordoñez, C. Zapata, B. Herrera, E. Pabón, and R. Buitrago-Sierra, "Surfactant concentration and pH effects on the zeta potential values of alumina nanofluids to inspect stability," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 583, 2019.
    [25] K. Ando, Y. Yamamoto, M. Ishizuka, and N. Yasunaga, "Polishing of si wafers by pure-water based BaCO3 slurry," 2001.
    [26] C-C. A. Chen, L.-S. Shu, and S.-R. Lee, "Mechano-chemical polishing of silicon wafers," Journal of Materials Processing Technology, vol. 140, no. 1-3, pp. 373-378, 2003.
    [27] 陳冠霖, "電泳反應式鑽石線鋸製程應用於太陽能矽基板加工之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2015.
    [28] 楊智安, "電泳沉積複合式游離磨料線鋸應用於單晶矽晶圓加工之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2017.
    [29] 李奕德, "複線式電泳反應式鑽石線鋸加工製程於單晶氧化鋁基板之研究," 碩士, 機械工程系, 國立臺灣科技大學, 台北市, 2018.

    無法下載圖示 全文公開日期 2024/08/20 (校內網路)
    全文公開日期 2024/08/20 (校外網路)
    全文公開日期 2024/08/20 (國家圖書館:臺灣博碩士論文系統)
    QR CODE