簡易檢索 / 詳目顯示

研究生: 吳則志
Tse-Chih Wu
論文名稱: 電化學輔助固定式磨料研光製程於單晶矽晶圓之薄化分析研究
Research on Electrochemical-Assisted Fixed Abrasive Lapping Process for Monocrystalline Silicon Wafer Thinning
指導教授: 陳炤彰
Chao-Chang A. Chen
口試委員: 陳炤彰
Chao-Chang A. Chen
楊宏智
Hong-Tsu Young
趙崇禮
Choung-Lii Chao
莊程媐
Cheng-Hsi Chuang
何羽健
Yu-Chien Ho
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 119
中文關鍵詞: 電化學輔助固定式磨料研光固定式磨料研光盤電化學鈍化極化曲線矽晶圓薄化
外文關鍵詞: Electrochemical-Assisted Fixed Abrasive Lapping, Fixed Abrasive Platen, Electrochemical Passivation, Polarization Curve, Silicon Wafer Thinning
相關次數: 點閱:250下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究旨在研發電化學輔助固定式磨料研光製程(Electrochemical Assisted-Fixed Abrasive Lapping, ECA-FA Lapping)並應用於單晶矽晶圓之研光製程,將單晶矽晶圓接以陽極,固定式磨料研光盤接以陰極,並輔以電解液導通直流電使矽晶圓表面生成易於移除之鈍化層,以提升晶圓薄化製程之材料移除率,解決傳統磨削製程中多道次磨輪快速消耗以及容易產生次表層損傷的問題。研究方法將分成三個階段進行:於第一階段,進行電化學之鈍化驗證。透過動電位及恆電位極化曲線觀測鈍化區並選取電解液NaNO3水溶液之最適濃度。使用AFM以觀測鈍化層表面形貌。藉由橢圓偏光儀量測鈍化層厚度。利用奈米壓痕硬度試驗量測鈍化層硬度。透過拉曼光譜分析鈍化層之化學鍵結。於第二階段,藉由一進給控制的砂輪進行20 mm x 80 mm之矽晶片電化學磨削(Electrochemical Grinding, ECG)實驗,了解電壓、主軸轉速和主軸進給速率三項因子分別對矽晶圓體積材料移除率之影響,由三因子兩水準的實驗設計結果發現電壓和材料移除率呈現正相關。於第三階段,建構一電化學輔助固定式磨料研光系統,由晶圓拋光機台結合水循環系統和晶圓導電裝置組成。並自製一固定式磨料研光盤用於6吋矽晶圓之ECA-FA Lapping,利用前面階段的文獻回顧及實驗結果,選出ECA-FA Lapping參數進行實驗,比較ECA-FA Lapping和傳統未通電的FA-Lapping分別進行單晶矽晶圓之研光製程後體積之材料移除率(MRR)結果,得出ECA-FA Lapping之材料移除率較傳統FA Lapping高出44%,證實ECA-FA Lapping可達矽晶圓有效薄化之製程目標。


    This study aims to develop an Electrochemical-assisted fixed abrasive lapping (ECA-FA Lapping) system to solve the issues of rapid consumption of multiple grinding wheels and the generation of subsurface damage in traditional grinding processes. The experiment is divided into three stages. In the first stage, this study focuses on electrochemical passivation verification. Through potentiodynamic and potentiostatic polarization curve, 10 wt% NaNO3 is selected as electrolyte based on passivation region. Surface morphology are observed by atomic force microscopy (AFM). Ellipsometry is employed to measure the thickness. Nanoindentation hardness tests are conducted and the hardness of the passivation layer can be confirmed. Raman spectroscopy is used to identify the chemical bonding and intensity of silicon-oxygen bond is significant. In the second stage, an Electrochemical Grinding (ECG) experiment is conducted on silicon wafers using a controlled feeding grinding wheel to investigate the effects of voltage, spindle speed, and feed rate. It can be found that voltage has positive correlation with material removal rate (MRR). In the third stage, an ECA-FA lapping system is constructed, composed of a wafer polishing machine, a water circulation system and wafer conductivity device. Additionally, a fixed abrasive lapping platen is fabricated. A comparison has been conducted between ECA-FA lapping and traditional non-electrochemical FA lapping of 6 inches silicon wafers. The volumetric MRR (MRRV) has been analyzed, revealing that the MRRV of ECA-FA lapping as 1.3 m exceed that of traditional FA lapping by 44%. This verifies that ECA-FA lapping can achieve the process objective of thinning of silicon wafers.

    摘要 2 Abstract 3 致謝 4 目錄 7 符號索引 10 圖目錄 13 表目錄 18 第一章 緒論 20 1.1 研究背景 20 1.2 研究目的與方法 22 1.3 論文架構 23 第二章 文獻回顧 25 2.1 單晶矽晶圓特性 25 2.2 研磨(Grinding)與研光(Lapping)製程之文獻回顧 27 2.3 電化學鈍化製程之文獻回顧 34 2.4 複合式能量晶圓減薄製程之文獻回顧 39 2.5 文獻回顧小結 48 第三章 電化學輔助固定式磨料研光製程(ECA-FA Lapping) 52 3.1 電化學測試法(Electrochemical Tests) 52 3.1.1 三電極系統[27] 52 3.1.2 金屬材料極化曲線[27] 53 3.1.3 極化曲線的測定 54 3.2 電化學輔助固定式磨料研光製程原理 56 3.3 電化學鈍化驗證實驗 57 3.3.1 矽晶圓動電位極化測試 58 3.3.2 矽晶圓恆電位極化測試 64 3.3.3 AFM表面形貌量測 68 3.3.4 橢偏儀鈍化層厚度分析 74 3.3.5 奈米壓痕硬度試驗 76 3.3.6 拉曼光譜量測分析 79 第四章 ECG實驗 82 4.1 TEC-100實驗系統介紹 82 4.2 TEC-100 ECG實驗操作流程 84 4.3 ECG實驗製程參數建立與規劃 85 4.4 三因子兩水準實驗結果與討論 88 第五章 ECA-FA Lapping實驗 92 5.1 ECA-FA Lapping實驗系統設計 92 5.1.1 ECA-FA Lapping陽極導電裝置 93 5.1.2 ECA-FA Lapping陰極導電裝置 94 5.1.3 ECA-FA Lapping水循環系統 95 5.2 ECA-FA Lapping實驗耗材 97 5.2.1 固定式磨料研光盤 97 5.2.2 電解液 100 5.2.3 6吋單晶矽晶圓 100 5.3 量測儀器 101 5.4 六吋晶圓應用於ECA-FA Lapping製程 103 第六章 結論與建議 105 6.1 結論 105 6.2 建議 106 參考文獻 107 附錄A、固定磨料研光盤 111 附錄B、固定磨料研光盤(使用金屬結合劑) 112 附錄C、與研究相關之電化學理論 113 C-1電化學 113 C-2電化學原理 113 C-3電極系統 114 附錄D、ECA-FA Lapping量測結果 118

    [1]Yingxia Liu, Yang Lu and K. N. Tu, "Low temperature interfacial reaction in 3D IC nanoscale materials", Materials Science and Engineering, vol. R: Reports 151, p. 100701, 2002.
    [2]TSMC development IC device. SOIIC, The Whats, whys, and HowsofTSMCSOI, https://3dfabric.tsmc.com/chinese/dedicatedFoundry/tecgnology/SoIC.htm,2023.I2
    [3]B. R. Law n, A. Evans and D. Marshall, "Elastic/plastic indentation damage in ceramics: the median/radial crack system", Journal of the American Ceramic Society, vol. 63, p. 574-581, 1980.
    [4]J. P. Gambino, S. A. Adderly and J. U. Knickerbocker, "An overview of through silicon-via technology and manufacturing challenges," Microelectronic Engineering, vol. 135, pp. 73-106, 2015.
    [5]周炳伸, "水解能量於可水解鋁酸鋰基板平坦化製程之研究", 國立臺灣科技大學, 機械工程研究所, 碩士學位論文, 2012.
    [6]Feng Zhao, Wei Du and Chih-Fang Huang, "Fabrication and characterization of single-crystal 4H-SiC microactuators for MHz frequency operation and determination of Young’s modulus", Microelectronic Engineering, vol. 129, p. 53-57, 2014.
    [7]T. Vodenitcharova, L. C. Zhang, I. Zarudi, Y. Yin, H. Domyo, T. Ho and M. Sato, "The effect of anisotropy on the deformation and fracture of sapphire wafers subjected to thermal shocks", Journal of Materials Processing Technology, vol. 194, p. 52-62, 2007.
    [8]Matthew A. Hopcroft, William D. Nix and Thomas W. Kenny, "What is the Young's Modulus of Silicon?", Journal of Microelectromechanical Systems, vol. 19, p. 229-238, 2010.
    [9]Xichun Luo, Saurav Goel and Robert L. Reuben, "A quantitative assessment of nanometric machinability of major polytypes of single crystal silicon carbide", Journal of the European Ceramic Society, vol. 32, p. 3423-3434, 2012.
    [10]許厲生, "矽晶圓薄化與平坦化加工研究", 碩士學位論文, 國立臺灣科技大學, 2007.
    [11]曾景祥, "藍寶石晶圓之研光加工與摩擦力分析研究", 碩士學位論文, 國立臺灣科技大學, 2012.
    [12]陳鼎鈞, "單晶碳化矽晶圓之鑽石研光與化學機械拋光平坦化製程研究", 碩士學位論文, 國立臺灣科技大學, 2014.
    [13]Ming-Yi Tsai, Yue-Feng Lin and Guan-Fu Lin, "Development of Combined Diamond-impregnated Lapping Plates", Sensors and Materials, vol. 30.11, p. 2549-2560, 2018.
    [14]林寬, "光觸媒催化輔助於單晶4H-碳化矽晶圓研光複合盤製造之研究", 碩士學位論文, 國立臺灣科技大學, 2020.
    [15]Joong S. Jeon and Srini Raghavan, "Electrochemical aspects of etching and passivation of silicon in alkaline solutions", MRS Online Proceedings Library (OPL), vol. 386, p. 63, 1995.
    [16]Weijia Guo, Senthil Kumar Anantharajan and Kui Liu, "Investigation of electrochemical oxidation behaviors and mechanism of single-crystal silicon (100) wafer under potentiostatic mode", vol. 10.6, p. 586, 2020.
    [17]Hiroki Ogawa, Michihiko Yanagisawa, Jun Kikuchi and Yasuhiro Horiike, "Study on the mechanism of silicon chemical mechanical polishing employing in situ infrared spectroscopy", Japanese journal of applied physics, vol. 42.2R, p. 587, 2003.
    [18]Chen Haoran, Liu Zhidong, Shen Lida, Qiu Mingbo, Tian Zongjune and Ge Mengxing, "Electrochemical polishing of monocrystalline silicon with specific crystallographic planes", Materials Science in Semiconductor Processing, vol. 67, p. 8-13, 2017.
    [19]謝啟祥, "電場輔助化學機械拋光製程於銅膜平坦化之研究", 碩士學位論文, 國立臺灣科技大學, 2011.
    [20]Osamu Ohnishi, Toshiro Doi, Syuhei Kurokawa, Tsutomu Yamazaki, Michio Uneda, Tao Yin, Isamu Koshiyama, Koichiro Ichikawa, and Hideo Aida, "Effects of Atmosphere and Ultraviolet Light Irradiation on Chemical Mechanical Polishing Characteristics of SiC Wafers", Japanese Journal of Applied Physics, vol. 51, p. 05EF05, 2012.
    [21]楊竣凱, "複合式能量化學機械拋光於單晶碳化矽晶圓平坦化製程之研究", 碩士學位論文, 國立臺灣科技大學, 2013.
    [22]張士宸, "氣液輔助化學機械拋光應用於單晶碳化矽晶圓之平坦化製程分析研究", 碩士學位論文, 國立臺灣科技大學, 2016.
    [23]Junji Murata, Koushi Yodogawa, and Kazuma Ban, "Polishing-pad-free electrochemical mechanical polishing of single-crystalline SiC surfaces using polyurethane-CeO2 core-shell particles", International Journal of Machine Tools and Manufacture, vol 114, p. 1-7, 2017.
    [24]黃裕程, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓化學機械拋光之研究", 碩士學位論文, 國立臺灣科技大學, 2017.
    [25]林妤靜, "氧化石墨烯複合式拋光液於單晶碳化矽晶圓之化學機械拋光製程分析研究", 碩士學位論文, 國立臺灣科技大學, 2019.
    [26]林易萱, "矽晶圓薄化之研磨特性研究", 碩士學位論文, 國立中山大學, 2006.
    [27]吳永富, "電化學工程原理", 五南圖書出版股份有限公司, 2018.
    [28]賈铮, "電化學測量方法", 化學工業出版社教材出版中心, 2018.
    [29]Lohrengel, MM Lohrengel and Chr Rosenkranz, "Microelectrochemical surface and
    product investigations during electrochemical machining (ECM) in NaNO3", Corrosion science, vol. 47.3, p. 785-794, 2005.
    [30]Guodong Liu, Hao Tong, Yong Li, Qifeng Tan and Yulan Zhu, "Passivation behavior of S136H steel in neutral electrolytes composed of NaClO3 and NaNO3 and its influence on micro electrochemical machining performance", Materials Today Communications, vol. 29, p. 102762, 2019.
    [31]A. Wolkenberg, "Anodic polarization of silicon electrodes in water solutions of NaNO3", Electrochemical Acta, vol. 21.12, p. 1165-1169, 1976.
    [32]C. Rosenkranz, M. M. Lohrengel and J. W. Schultze, "The surface structure during
    pulsed ECM of iron in NaNO3", Electrochemical Acta, vol. 50.10, p. 2009-2016, 2005.

    無法下載圖示 全文公開日期 2025/08/31 (校內網路)
    全文公開日期 2025/08/31 (校外網路)
    全文公開日期 2025/08/31 (國家圖書館:臺灣博碩士論文系統)
    QR CODE