簡易檢索 / 詳目顯示

研究生: 楊健章
Chien-chang Yang
論文名稱: FeCoNiCrAl0.5塊狀高熵合金的環境腐蝕行為之研究
Environments Corrosion Behavior of FeCoNiCrAl0.5 Bulky High Entropy Alloy
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 王朝正
Chaur-Jeng Wang
宋振銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 69
中文關鍵詞: 高熵合金電化學浸漬鑄態動態極化曲線
外文關鍵詞: electrochemical immersion
相關次數: 點閱:176下載:13
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討FeCoNiCrAl0.5塊狀高熵合金之環境腐蝕行為。將高週波熔煉法熔鑄之FeCoNiCrAl0.5五元高熵合金施以不同溫度時效熱處理,藉以探討於不同水溶液環境下之腐蝕行為及微結構觀察。將3.5 wt% NaCl、1N NaOH和1N H2SO4水溶液之實驗結果,與304L不銹鋼極化曲線比較;於3.5 wt% NaCl 水溶液之極化數據比較中,304L不銹鋼得到最低之腐蝕速率、FeCoNiCrAl0.5高熵合金具有最高之腐蝕速率;NaOH水溶液之極化數據比較中,304L不銹鋼得到最低之腐蝕速率、FeCoNiCrAl0.5高熵合金具有最高之腐蝕速率;於H2SO4水溶液之極化數據比較中,304L不銹鋼得到最高之腐蝕速率、FeCoNiCrAl0.5高熵合金得到最低之腐蝕速率,其中又以FeCoNiCrAl0.5高熵合金經由3.5 wt% NaCl 水溶液之FeCoNiCrAl 0.5塊狀高熵合金具有較差之抗蝕性,研判為FeCoNiCrAl 0.5高熵合金中含富Cr相形成,造成水溶液中氯離子易對Cr相攻擊反而造成腐蝕速率加快,抗蝕性變差。隨著熱處理溫度上升,FeCoNiCrAl0.5高熵合金的硬度變高。


    The corrosion behavior of FeCoNiCrAl0.5 bulky high entropy alloy was studied. The homogenization treatment of the as-cast alloy specimen was processed. After water quenching serial heat-treatment processes were carried out. The corrosion properties, mechanical properties and microstructures of the specimens had been evaluated after the immersion tests with the NaCl, NaOH and H2SO4 solutions, respectively. The alloy has higher corrosion rate in 3.5 wt% NaCl aqueous solutions due to significant segregation of Cr-riched phase. Because of the active sensitivity zone of appreciable potential difference the alloy was preferentially attacked along the Cr-riched phase. The alloy exhibits excellent hardness after the immersion tests in NaOH and H2SO4 solution.

    摘  要I AbstractII 致 謝II 目  錄II 圖 目 錄V 表 目 錄VIII 第1章前言1 第2章文獻回顧3 2.1 高熵合金的發展回顧3 2.2 高熵合金的定義4 2.3 高熵合金的研究5 2.3.1 高熵合金的特性5 2.3.2 高熵合金的應用8 2.3.3 等莫耳多元高熵合金微結構9 2.4 材料腐蝕10 2.4.1 腐蝕之發生原因10 2.4.2 腐蝕之型態11 2.4.3 電化學極化法13 2.4.4 腐蝕速率17 2.4.5 鈍化與鈍化膜18 第3章實驗方法19 3.1 基材製備21 3.2 時效熱處理21 3.3 試片研磨21 3.4 材料顯微組織觀察及成份分析22 3.5 X光繞射分析22 3.6 電化學實驗23 3.6.1 恆電位儀實驗設備及裝置23 3.6.2 動電位極化曲線量測23 3.7 微硬度測試24 3.8 浸泡試驗25 第4章結果與討論26 4.1 FeCoNiCrAl0.5高熵合金顯微組織及成份分析26 4.1.1 鑄態高熵合金的顯微組織及成份分析26 4.1.2 時效熱處理高熵合金的顯微組織及成份分析27 4.2 X-ray繞射30 4.3 硬度32 4.4 恆電位儀極化33 4.4.1 1N NaOH水溶液電化學實驗33 4.4.2 3.5% NaCl水溶液電化學實驗37 4.4.3 1N H2SO4水溶液電化學實驗41 4.5 浸泡腐蝕重量損失57 第5章結論64 參 考 資 料66

    1.M. Koberna and J. Fiala, “Intermetallic phases influencing the behaviour of Al-Cu joints “, J. Phys. Chem. Solids, Vol. 54 (1993), pp. 595-601.
    2.葉均蔚, 和陳凱瑞, “高熵合金” , 科學發展, 377期 (2004), pp. 16-21.
    3.P. K. Huang, J. W. Yeh, T. T. Shun, and S. K. Chen, “Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating”, Advance Engineering Materials, Vol. 6 (2004), pp. 74-78.
    4.J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T.S. Chin, T. T. Shun, C. H.Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multi-principal elements -- novel alloy design concepts and outcomes”, Advance Engineering Materials, Vol. 5 (2004), pp. 299-303.
    5.A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Mater., Vol. 48 (2000), pp. 279-306.
    6.Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of FeCoNiCrCux high entropy alloys in 3.5% NaCl Solution”, Materials Chemistry and Physics, Vol. 92 (2005), pp. 112-117.
    7.Y. Zhou, J. Zhang, T. H. North, Z. Wang, “The mechanical properties of friction welded aluminium-based metal-matrix composite materials”, Journal of Materials Science, Vol. 32 (1997), pp. 3883-3889.
    8.V. Medeleiene and A. Kosenko, “Structural and functional properties of electrodeposited copper metal matrix composite coating with inclusions of WC”, Materials Science, Vol. 14 (2008), pp. 29-33.
    9.C. M. Ward-Close, R. Minor, and P. J. Doorbar, “Intermetallic-matrix composites—a review”, Intermetallics , Vol. 4 (1996), pp. 217-229.
    10.葉均蔚, “具奈米結構之多元高熵合金系統” , 知識創新, 40期 (2003), pp. 1-4.
    11.Y. Y. Chen, T. Duval, U. D. Huang, J. W. Yeh, and P. K. Huang, “Micro- structure and electrochemical properties of high entropy alloys—a comparison with type-304 stainless steel”, Corrosion Science, Vol. 47 (2005), pp. 2257-2279.
    12.U. S. Hsu, U. D. Hung, J. W. Yeh, S. K. Chen, Y. S. Huang, and C. C. Yang, “Alloying behavior of iron, gold and silver in AlCoCrCuNi-based equimolar high-entropy alloys”, Materials Science and Engineering: A, Vol. 460-461 (2007), pp. 403-408.
    13.W. A. Oates, “Configurational entropies of mixing in solid alloys”, Journal of Phase Equilibria and diffusion, Vol. 28 (2007), pp. 79-89.
    14.C. Y. Hsu and J. W. Yeh, “Wear Resistance and High-Temperature Compres- sion Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition”, Metallurgical and Materials Transactions A, Vol. 31A (2004), pp. 1465-1469.
    15.S. Ranganathan, “Multimatallic cocktails”, Current Sci., Vol. 85 (2003), pp. 1404-1406.
    16.Karl E. Spear and Mark D. Allendorf, “Thermodynamic analysis of alumina refractory corrosion by sodium or potassium hydroxide in glass- melting furnaces”, Journal of The Electrochemical Society, Vol. 149 (2002), pp. 551-559.
    17.Z. Jialiang and K. Akira, “Corrosion resistance of Al2O3+ZrO2 composite coatings sprayed on stainless steel substrates”, Transaction of JWRI, Vol. 34 (2005), pp. 17-22.
    18.陳廷傑, ”簡單相高熵合金AlxCoCrFeNi (0 ≦ x ≦ 2)之電性質研究” , 國立清華大學材料科學與工程研究所碩士論文 (2005), pp. 73-197.
    19.M. C. Baykul, “Preparation of shape gold tips for STM by using electro- chemical etching method”, Materials Science and Engineer B, Vol. 74 (2000), pp. 229-233.
    20.A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper -aluminum-silver”, Electrochemica Acta, Vol. 40 (1995), pp. 2657-2668.
    21.Y. Tomita, Y. Hasegawa, and K. Kobayashi, “Nano-scale Cu metal patterning by using an atomic force microscope”, Applied Surface Science, Vol. 244 (2005), pp. 107-110.
    22.J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus, “In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions.”, Electrochemica Acta, Vol. 48 (2003), pp.1157-1167.
    23.C. Garcia, F. Martin, P.de Tiedra, Y. Blanco, and M. Lopez, “Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell ”, Corrosion Science, Vol. 50 (2008), pp. 1184-1194.
    24.S. J. Ahn, H. S. Kwon, and D. D. Macdonald, “Role of chloride ion in passivity breakdown on ion and nickel”, Journal of the electron- chemical Society, Vol. 152 (2005), pp. 482-490.
    25.J. Datta, C. Bhattacharya, and S. Bandyopadhyay, “Influence of Cl-, Br-, NO3-, and SO42- ions on the corrosion behavior of 6061 Al alloy”, Bull. Mater. Sci., Vol. 28 (2005), pp. 253-258.
    26.J. colin, S. Serna, B. Campillo, O. Florez, and J. G. Gonzalez-rodriguez, “Corrosion performance of a rapidly solidified NiAl intermetallic macro- allolled with Fe in 0.5M H2SO4”, Int. J. Electrochem. Sci., Vol. 2 (2007), pp. 947-957.
    27.Haynes and Baboian, “Laboratory Corrosion Test and Standards”, ASTM Special Technical Publication; 866, (Texas Instruments, Incorporate, USA (1983) , pp. 69-72.
    28.B. O. Oni, N. O. Egiebor, N. J. Ekekwe, and A. Chuku, “Corrosion behavior of Tin-plate carbon steel and aluminum in NaCl solution using electrochemical impedance spectroscopy”, Journal of Minerals & Materials Characterization & Engineering, Vol. 7 (2008), pp. 331-346.
    29.J. M. Wu, S. J. Lin, J. W. Yeh, S. K. Chen, Y. S. Huang and H. C. Chen, “Adhesive wear behavior of AlxCoCrCuFeNi high-entropy alloys as a function of aluminum content”, Wear, Vol. 261 (2006), pp. 513-519.
    30.G. K. Dey, “Physical metallurgy of nickel aluminides”, Sadhana, Vol.28 (2003), pp.247-262.
    31.Y. Y. Chen , U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval, “Electro- chemical kinetics of the high entropy alloys in aqueous enviroments–a comparison with type-304 stainless steel”, Corrosion Science, Vol. 47 (2005), pp. 2679-2699.
    32.T. K. Chen, M. S. Wong, T. T. Shun and J. W. Yeh, “Nanostructured nitride films of multi-element high-entropy alloys by reactive DC sputtering”, Surface & Coatings Technology, Vol. 200 (2005), pp. 1361- 1365.
    33.J. R. Regina, J. N. DuPont, and A. R. Marder, “The effect of water vapor on passive-layer stability and corrosion behavior of Fe-Al-Cr base alloys”, Oxidation of Metal, Vol. 61 (2004), pp. 69-90.
    34.G. Okamoto, “Passive film of 18-8 stainless steel structure and its function”, Corrosion Sci., Vol. 13 (1973), pp. 471-489.

    QR CODE