簡易檢索 / 詳目顯示

研究生: 黎郁均
Yu-Chun Li
論文名稱: 以高通量計算方法預測鈷-鉻-鐵-鎳-釩五元系統之高熵合金面心立方形成區域及顯微結構、硬度與腐蝕之研究
Prediction of the FCC formation area of the high-entropy alloy of the Co-Cr-Fe-Ni-V system with high-throughput calculation methods and study on microstructure, hardness and corrosion
指導教授: 顏怡文
Yee-Wen Yen
口試委員: 顏怡文
Yee-Wen Yen
陳志銘
Chih-Ming Chen
丘群
Chun Chiu
高振宏
Cheng-Heng Kao
黃爾文
E-Wen Huang
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 119
中文關鍵詞: 高熵合金相圖計算高通量計算硬度密度電化學腐蝕
外文關鍵詞: High-entropy alloy, Calphad, High-throughput calculation, Hardness, Density, Electrochemical corrosion
相關次數: 點閱:312下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 為了加速開發多元素為主的高熵合金,本研究以相圖計算方法(CALPHAD)搭配高通量技術(High-throughput computation),以Lever rule及Scheil model模擬鈷-鉻-鐵-鎳-釩高熵合金於凝固後的形成相。分析凝固之生成相為FCC單一相的計算結果,釩的比例大多都呈現偏低的狀況。只有在鎳元素含量較高時,生成FCC單一固溶相的釩元素含量才有稍微提升。Scheil model的計算結果指出此6組合金完全凝固時多以FCC為主要的相組成。
    將電弧熔煉法製備的鑄態合金,以及1100 ℃高溫固溶處理的試片,以X光繞射儀(XRD)和掃描式電子顯微鏡搭配能量散射X射線譜(SEM/EDS),檢視與驗證模擬計算之準確性。從各項結果分析,本研究中六個合金都是以FCC相為主,因實驗誤差而導致部分合金有Sigma介金屬相的析出。整體來說,實驗的結果與計算模擬相當吻合。密度測量結果說明六組合金皆與計算得出之理論密度接近,而介金屬相的成長將導致整體密度降低。本研究中合金的硬度皆比304不鏽鋼來的高,隨著釩元素比例的提高,硬度值也有隨之上升的趨勢,Sigma介金屬相析出的合金可使其硬度值明顯的提升。電化學腐蝕結果則顯示多產生孔蝕及晶界腐蝕之現象。


    In order to accelerate the development of multi-element-based high-entropy alloys, in this research, we use the phase diagram calculation method (CALPHAD) with high-throughput computation, and adopt the Lever rule and Scheil model to simulate the formation phase of cobalt-chromium-iron-nickel-vanadium high-entropy alloy system after solidification. Analyzing the result of calculation that the solidified phase is the FCC single phase, the proportion of vanadium is mostly low. Only when the content of nickel is high, the content of vanadium in the single solid solution phase of FCC is slightly increased. The calculation results of Scheil model indicate that FCC is the main phase composition when the six combination gold is completely solidified.
    The as-cast alloy prepared by the arc melting method and the test piece treated by high temperature heat treatment at 1100 ℃ are inspected, and verified by X-ray diffraction (XRD) and scanning electron microscope with energy scattering X-ray spectroscopy (SEM/EDS). In order to verify the accuracy of simulation calculation. From the analysis of various results, the six alloys in this study are mainly FCC phase, and some alloys have Sigma intermetallic phase precipitation due to experimental errors. On the whole, the experimental results are in good agreement with the calculation simulations. The density measurement results show that the six-component alloys are close to the calculated theoretical density, and the growth of the intermetallic phase will cause the overall density to decrease. The hardness of the alloy in this study is higher than that of 304 stainless steel. With the increase of the proportion of vanadium, the hardness value will also increase. The alloy precipitated by the Sigma intermetallic phase can significantly increase the hardness value.

    摘要 I Abstract II 致謝 III 目錄 IV 第一章 簡介 1 第二章 文獻回顧 2 2.1 高熵合金 2 2.1.1高熵概念發展 2 2.1.2高熵合金 4 2.1.3高熵合金四大效應 6 2.1.4評估高熵合金的形成之參數 12 2.2 CALPHAD (CALculation of PHAse Diagram)方法 21 2.2.1 Pandat 軟體 23 2.2.2 高通量計算 (High Throughput Calculation) 26 第三章 實驗方法 28 3.1 實驗流程 28 3.2高通量計算 29 3.3 合金組成 32 3.4 合金製備 35 3.5 合金固溶熱處理 36 3.6 金相處理 37 3.7 掃描式電子顯微鏡 37 3.8 X-ray繞射分析 38 3.9 穿透式電子顯微鏡 39 3.10 硬度分析 40 3.11 密度分析 41 3.12 腐蝕電化學 43 第四章 結果與討論 44 4.1 計算結果 44 4.1.1 高通量模擬計算結果─Lever Rule Model 44 4.1.2 高通量模擬計算結果─形成單一固溶相元素組成趨勢 45 4.1.3 高通量計算結果─合金篩選 50 4.1.4 所得高熵合金之各項參數 58 4.2 合金組成及微結構 59 4.2.1 合金1 (Co35Cr15Fe10Ni35V5 ) 之組成及微結構 59 4.2.2 合金2(Co15Cr10Fe35Ni35V5 )之組成及微結構 65 4.2.3 合金3 (Co30Cr5Fe20Ni35V10 )之組成及微結構 71 4.2.4 合金4 (Co35Cr5Fe10Ni35V15 )之組成及微結構 77 4.2.5 合金5(Co35Cr5Fe25Ni15V20 )之組成及微結構 83 4.2.6 合金6(Co20Cr5Fe5Ni35V35 )之組成及微結構 89 4. 3 合金密度分析 95 4.4 合金硬度分析 97 4.5 合金電化學腐蝕分析 99 4.5.2 極化試驗後合金表面型態分析 102 第五章 結論 105 參考文獻 106

    1. S.L. Chen, S Daniel, F. Zhang, Y.A. Chang, W.A. Oates, R. Schmid-Fetzer, J. Phase Equilib. 22, 373-378 (2001).
    2. J.M. Song, C.F. Huang, H.Y. Chuang, J. Electron. Mater. 35, 2154-2163 (2006).
    3. C.Y. Hsu, J.W. Yeh, S.K. Chen, T.T. Shun, Metall. Mater. Trans. A 35, 1465-1469 (2004).
    4. P.K. Huang, J.W. Yeh, T.T. Shun, S.K. Chen, Adv. Eng. Mater. 6, 74-78 (2004).
    5. J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Adv. Eng. Mater. 6, 299-303 (2004).
    6. T.K. Chen, T.T. Shun, J.W. Yeh, M.S. Wong, Surf. Coat. Technol. 188, 193-200 (2004).
    7. C.J. Tong, Y.L. Chen, J.W. Yeh, S.J. Lin, S.K. Chen, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 36, 881-893 (2005).
    8. B. Cantor, I.T.H. Chang, P. Knight, A.J.B. Vincent, Mater. Sci. Eng. 375, 213-218 (2004).
    9. Y. Zhang, Y.J. Zhou, J.P. Lin, G.L. Chen, P.K. Liaw, Adv. Eng. Mater. 10, 534-538 (2008).
    10. B. Cantor, Entropy 16, 4749-4768 (2014).
    11. K.B. Kim, B. Cantor, P.J. Warren, J. Metastable Nanocryst. Mater. 13, 27-32 (2002).
    12. Y.F. Ye, Q. Wang, J. Lu, C.T. Liu, Y. Yang, Mater. Today 19, 349-362 (2016).
    13. B. Cantor, Ann. chim. (Paris, 1914) 32, 245-256 (2007).
    14. B. Cantor, Entropy 16, 4749-4768 (2014).
    15. J.W. Yeh, JOM 65, 1759-1771 (2013).
    16. J. Dąbrowa, G. Cieślak, M. Stygar, K. Mroczka, K. Berent, T. Kulik, M. Danielewski, Intermetallics 84, 52-61 (2017).
    17. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107-123 (2014).
    18. D.B Miracle, O.N. Senkov, Acta Mater. 122, 448-511 (2017).
    19. W. Zhang, P.K. Liaw, Y. Zhang, Sci. China Mater. 61, 2-22 (2018).
    20. J.W. Yeh, Ann. Chim. – Science des Materiaux 31, 633-648 (2006).
    21. M.H. Tsai, J.W. Yeh, Mater. Res. Lett. 2, 107-123 (2014).
    22. B. E. MacDonald, Z. Fu, B. Zheng, W. Chen, Y. Lin, F. Chen, L. Zhang, J. Ivanisenko, Y. Zhou, H. Hahn, E. J. Lavernia, JOM 69, 2024-2031 (2017).
    23. J.W. Yeh, S.Y. Chang, Y.D. Hong, S.K. Chen, S.J. Lin, Mater. Chem. Phys. 103, 41-46 (2007).
    24. M.H. Tsai, Entropy 15, 5338-5345 (2013).
    25. B.D. Cullity: Elements of X-Ray Diffraction. 2nd ed. (Addison-Wesley, Reading, MA, 1978), pp. 32-58.
    26. P.H. Dederichs, Phys. Rev. B 4, 1041 (1971).
    27. J.L.C. Daams, P. Villars, J.H.N. van Vucht: Atlas of Crystal Structure Types for Intermetallic Phases. (ASM International, Metals Park, OH, 1991).
    28. K. Lonsdale, N.F.M. Henry, International Tables for X-ray Crystallography. (The Kynoch Press, Birmingham, UK, 1968), pp. 45-58.
    29. C. Kittel: Introduction to Solid State Physics. 7th ed. (Wiley, New York, 1996), pp. 3-26.
    30. W.B. Pearson, A Handbook of Lattice Spacing and Structures of Metals and Alloys. (Pergamon Press, New York, 1967).
    31. S.K. Chen, J.W. Yeh, J.Y. Gan, S.J. Lin, T.S. Chin, T.T. Shun, C.H. Tsau, S.Y. Chang, Metall. Mater. Trans. A 35A, 2533-2536 (2004).
    32. K.H. Cheng, C.H. Lai, S.J. Lin, J.W. Yeh, Ann. chim. (Paris, 1914) 31, 723-736 (2006).
    33. K. Y. Tsai, M. H. Tsai, J. W. Yeh, Acta Mater. 61, 4887-4897 (2013).
    34. R.E. Smallman and H.W. Ngan, Physical Metallurgy and Advanced Materials, 7th ed. (Elsiever Ltd., 2007).
    35. B.S. Murty, Jien-Wei Yeh, S. Ranganathan and P. P. Bhattacharjee, High-entropy alloys, 2nd ed. (Elsevier, 2019).
    36. S. Guo, C. T. Liu, Prog. Nat. Sci.: Mater. Int. 21, 433-446 (2011).
    37. S. Guo, C. Ng, J. Lu, C.T. Liu, J. Appl. Phys. 109, 103505 (2011).
    38. X. Yang, Y. Zhang, Mater. Chem. Phys. 132, 233-238 (2012).
    39. A. Takeuchi, A. Inoue, Mater. Sci. Eng. A 304-306, 446-451 (2001).
    40. A. Takeuchi and Akihisa Inoue, Mater. Trans. 46, 2817-2829 (2005).
    41. A. R. Miedema, P. F. de Châtel, F. R. de Boer, Physica B+C 100, 1-28 (1980).
    42. S. Guo, Q. Hu, C. Ng, C. T. Liu, Intermetallics 41, 96-103 (2013).
    43. W.H. Wu, C.C. Yang, J.W. Yeh, Ann. Chim. – Science des Materiaux 31, 737-747 (2006).
    44. H. F. Sheng, M. Gong, L. M. Peng, Mater. Sci. Eng.: A 567, 14-20 (2013).
    45. D. B. Miracle, O. N. Senkov, Acta Mater. 122, 448-511 (2017).
    46. C. Kittel, P. McEuen, P. McEuen, Introduction to solid state physics. (Wiley, New York, 1996).
    47. J.H. Zhu, P.K. Liaw, C.T. Liu, J. Mater. Sci. Eng. A 239, 260-264 (1997).
    48. A. Kroupa, Comput. Mater. Sci. 66, 3-13 (2013).
    49. H. Lukas, S.G. Fries, B. Sundman, Computational thermodynamics: the Calphad method. (Cambridge university press, 2007).
    50. Y.A. Chang, Metall. Mater. Trans. A 37, 273-305 (2006).
    51. S.L. Chen, S. Daniel, F. Zhang, Y.A. Chang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Calphad 26, 175-188 (2002).
    52. M.C. Gao, J.W. Yeh, P.K. Liaw, Y. Zhang, Cham: Springer International Publishing, 2016.
    53. J.J. Van Laar, Zeitschrift für physikalische Chemie 63, 216-253 (1908).
    54. A. Durga, K.C. Hari Kumar, B.S. Murty, Trans. Indian Inst. Met. 65, 375-380 (2012).
    55. R. Raghavan, K.C. Hari Kumar, B.S. Murty, J. Alloys Compd. 544, 152-158 (2012).
    56. C. Zhang, F. Zhang, S.L. Chen, W.S. Cao, JOM 64, 839-845 (2012).
    57. F. Zhang, C. Zhang, S.L. Chen, J. Zhu, W.S. Cao, U.R. Kattner, Calphad 45, 1-10 (2014).
    58. O. N. Senkov, J. D. Miller, D. B. Miracle, C. Woodward, Calphad 50, 32-48 (2015).
    59. S. Gu, F. Pasqualetti, M. Cieslak, Q.K. Telesford, A.B. Yu, A.E. Kahn, J.D. Medaglia, J.M. Vettel, M.B. Miller, S.T. Grafton, D.S. Bassett, Nat. Commun. 6, 8414 (2015).
    60. C.E. Campbell, U.R. Kattner, Z.K. Liu, Integrating Materials and Manufacturing Innovation 3, 158-180 (2014).
    61. W. Cao, S.L. Chen, F. Zhang, K. Wu, Y. Yang, Y.A. Chang, R. Schmid-Fetzer, W. A. Oates, Calphad 33, 328-342 (2009).
    62. S.L. Chen, Y.A. Chang, F. Zhang, X.Y. Yan, F.Y. Xie, R. Schmid-Fetzer, W.A. Oates, Prog. Mater. Sci. 313-345 (2004).
    63. C. Zhang, F. Zhang, H. Diao, M.C. Gao, Z. Tang, J..D. Poplawsky, P.K. Liaw, Mater. Des. 109, 425-433 (2016).
    64. C. Huang, Y. Zhang, J. Shen, R. Vilar, Surf. Coat. Technol. 206, 1389-1395 (2011).
    65. G.H. Johannesson, T. Bligaard, A.V. Ruban, H.L. Skriver, K.W. Jacobsen, J.K. Nørskov, Phys. Rev. Lett. 88, 255506 (2002).
    66. G.B. Olson, Science 288, 993-998 (2002).
    67. G. Ceder, Y.M. Chiang, D.R. Sadoway, M.K. Aydinol, Y.I. Jang, B. Huang, Nature 392, 694-696 (1998).
    68. R.H. Victora, C.F. Brucker, T.K. Hatwar, J.E. Hurst, B. Uryson, D. Karns, J. Appl. Phys. 81, 3833-3837 (1997).
    69. S. Curtarolo, D. Morgan, K. Persson, J. Rodgers, G. Ceder, Phys. Rev. Lett. 91, 135503 (2003).
    70. D.D. Fontaine, H. Enrenreich, D. Seitz Turnbull, 47, 33 (1994).
    71. R.M. Martin, Electronic structure: basic theory and practical methods. (Cambridge university press, 2020).
    72. D. Morgan, G. Ceder, S. Curtarolo, Meas. Sci. Technol. 16, 96 (2004).
    73. S. Curtarolo, G.L.W. Hart, M.B. Nardelli, N. Mingo, S. Sanvito, O. Levy, Nat. Mater. 12, 191-201 (2013).
    74. H. Koinuma, I. Takeuchi, Nat. Mater. 3, 429-438 (2004).
    75. W. Setyawan, S. Curtarolo, Comput. Mater. Sci. 49, 299-312 (2010).
    76. S. Curtarolo, W. Setyawan, S. Wang, J. Xue, K. Yang, R.H. Taylor, L.J. Nelson, G.L.W. Hart, S. Sanvito, Marco Buongiorno-Nardelli, Comput. Mater. Sci. 58, 227-235 (2012).
    77. J.L. Spivack, J.N. Cawse, D.W. Whisenhunt Jr, B.F. Johnson, K.V. Shalyaev, J. Male, E.J. Pressman, J.Y. Ofori, G.L. Soloveichik, B.P. Patel, Appl. Catal., A 254, 5-25 (2003).
    78. S. Wang, Z. Wang, W. Setyawan, N. Mingo, S. Curtarolo, Phys. Rev. X 1, 021012 (2011).
    79. P.K. Sarswat, S. Sarkar, A. Murali, W. Huang, W. Tan, M.L. Free, Appl. Surf. Sci. 476, 242-258 (2019).
    80. D.B. Miracle, Mater. Sci. Technol. 31, 1142-1147 (2015).
    81. D.B. Miracle, J.D. Miller, O.N. Senkov, C. Woodward, M. Uchic, J. Tiley, Entropy 16, 494-525 (2014).
    82. D. Miracle, B. Majumdar, K. Wertz, S. Gorsse, Scr. Mater. 127, 195-200 (2017).
    83. K.Rajan, Annu. Rev. Mater. Res. 38, 299-322 (2008).
    84. R.A. Potyrailo, I. Takeuchi, Meas. Sci. Technol. 16, 1 (2004).
    85. R. Potyrailo, K. Rajan, K. Stoewe, I. Takeuchi, B. Chisholm, Hubert Lam, ACS Comb. Sci. 13, 579-633 (2011).
    86. M.L. Green, I. Takeuchi, J.R Hattrick-Simpers, J. Appl. Phys. 113, 9-1 (2013).
    87. F. R. de Boer, W. C. M. Mattens, R. Boom, A. R. Miedema, A. K. Niessen: Cohesion in metals. (North-Holland, Netherlands, 1988).
    88. A. Guinier: X-ray Diffraction in Crystals, Imperfect Crystals, and Amorphous Bodies. (Dover Publications, 1994).
    89. A. S. T. M. Standard, Standard Test Method for Vickers Hardness of Metallic Materials. (Annual Book of ASTM Standards, Easton, 1996).
    90. O. N. Senkov, G. B. Wilks, D. B. Miracle, C. P. Chuang, P. K. Liaw, Intermetallics 18, 1758-1765, 2010.
    91. D. Choudhuri, B. Gwalani, S. Gorsse, C. V. Mikler, R. V. Ramanujan, M. A. Gibson, R. Banerjee, Scripta Materialia 127, 186-190 (2017).
    92. F. He, Z. Wang, S. Niu, Q. Wu, J. Li, J. Wang, C. T. Liu, Y. Dang, J. Alloys Compd. 667, 53-57 (2016).
    93. J.Y. He, H. Wang, H.L. Huang, X.D. Xu, M.W. Chen, Y. Wu, X.J. Liu, T.G. Nieh, K. An, Z.P. Lu, Acta Mater. 102, 187-196 (2016).
    94. C.M. Lin, C.C. Juan, C.H. Chang, C.W. Tsai, J.W. Yeh, J. Alloys Compd. 624, 100-107 (2015).
    95. C.T. Kwok, F.T. Cheng, H.C. Man, Mater. Sci. Eng. A 290, 145-154 (2000).
    96. G.A. Salishchev, M.A. Tikhonovsky, D.G. Shaysultanov, N.D. Stepanov, A.V. Kuznetsov, I.V. Kolodiy, A.S. Tortika, O.N. Senkov, J. Alloys Compd. 591, 11-21 (2014).

    無法下載圖示 全文公開日期 2026/01/27 (校內網路)
    全文公開日期 2026/01/27 (校外網路)
    全文公開日期 2026/01/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE