簡易檢索 / 詳目顯示

研究生: 潘彥廷
Yen-Ting Pan
論文名稱: 設計與製作低密度分波多工雷射陣列之技術
Design and Fabrication of CWDM Laser Arrays Technology
指導教授: 李三良
San-Liang Lee
口試委員: 黃鶯聲
Ying-Sheng Huang
劉政光
Cheng-Kuang Liu
曹恆偉
Hen-Wai Tsao
林得裕
Der-Yuh Lin
學位類別: 博士
Doctor
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2008
畢業學年度: 97
語文別: 中文
論文頁數: 85
中文關鍵詞: 量子井混合低密度分波多工半導體雷射
外文關鍵詞: Quantum well intermixing, CWDM, Semiconductor Laser
相關次數: 點閱:230下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文之研究重點在於設計製作應用於低密度分波多工系統的多波長雷射陣列技術,研究的方向在於寬增益頻譜材料與新型取樣光柵分佈布拉格反射式雷射之研發。
    在寬增益頻譜的材料技術上,藉由量子井混合與區域選擇性磊晶技術的實作結果,對寬增益頻譜材料的製程條件進行最佳化。就量子井混合技術而言,我們成功以低能量離子佈植輔助量子井混合技術製作出磷砷化鎵銦的多重量子井雷射,在室溫連續電流的操作下,雷射之臨界電流為10.4 mA,輸出功率為13.8 mW,特徵溫度為58.4 K,而在波長位移量可達44 nm,此高效能之特性驗證了量子井混合能實際應用於主動式通訊元件上。另外我們也建立了內部擴散的理論模型,能計算實作元件上受到的電壓對波長位移量造成的影響,其分析結果得到能帶受到正向電壓影響的緣故導致能帶傾斜,使元件之電致發光波長位移量小於光致發光波長,藉由實作的結果更印證理論模型的準確性。就區域選擇性磊晶技術而言,藉由寬間隙區域選擇磊晶技術成長出寬增益頻譜的材料,由此技術我們達成寬達102 nm的增益範圍,可應用於光通訊波段的S頻帶與C頻帶,磊晶成長完後,每個通道的增益峰值誤差均小於5 nm,此製程條件下的材料品質證實可實際應用於在單一晶片上製作多波長雷射陣列。最後在新型取樣光柵分佈布拉格反射式雷射技術上,為實現多波長的目標,我們利用不同厚度的波導於取樣光柵區域以簡化操作機制,並利用此新型取樣光柵設計12組相互間距為10 nm之反射率頻譜,此結果亦可運用於我們成長之S頻帶與C頻帶的區域選擇性磊晶結構,由理論模擬的數據,元件可達10 mW之功率輸出與43.7 dB之最佳旁模抑制比,其結果指出利用新型取樣光柵技術亦可輕易達到高品質之單模輸出特性。


    This thesis focuses on the design and fabrication of wide-band gain material and novel sampled-grating DBR technology for Coarse-WDM multiwavelength laser array sources.
    For wide-band gain material technology, we analyze the experiment results of QWI and SAG technology to optimize the process conditions for realizing the wide-band gain material. For QWI technique, we demonstrate high-performance InGaAsP based MQW lasers fabricated by low-energy ion implantation induced QWI technique. At room temperature, the QWI lasers have CW characteristics of 10.4-mA threshold current, 13.8-mW maximal output power, 58.4 K characteristic temperature and 44-nm wavelength shift which verify that the material quality after intermixing is feasible for fabricating practical devices. A theoretical model for the interdiffusion process has been developed to analysis the effect of forward bias on the wavelength shift caused by the QWI process. Due to the change in band bending caused by the forward-biased, the intermixing induced wavelength shift for the electroluminescence spectrum is less than for the PL spectrum. The experimental data on the wavelength shift from the QWI process match the trend of the theoretical results. For SAG technique, we demonstrate wide-band gain material by Wide-Stripe Selective Area Growth technique. The wavelength shift from material gain peak to peak is 102 nm which cover the S-band and C-band in optical communication system, and the tolerance of wavelength in material gain peak are less than 5-nm. It indicts that the material quality after SAG process is feasible for realizing the multiwavelength laser arrays onto single chip.
    For novel sampled-grating DBR technology, in order to cover different wavelength bands with simple fabrication, we design the grating reflector is formed of two sampling grating subsections on waveguides with different thickness. We demonstrated the power reflectivity of 12 wavelengths in 10-nm wavelength spacing by sampled-grating DBR technique which can be combined with practical SAG technique in S-band and C-band region. The simulation results have characteristics of 10-mW output power and 43.7 dB maximal SMSR. The results indict that high single-mode yield with simple fabrication procedures can be achieved by using the novel sampled-grating technique.

    中文摘要 A Abstract B 誌謝 C 目錄 i 符號索引 I 圖表索引 II 第一章 導論 1 1-1 前言 1 1-2 研究目的與動機 5 1-3 論文架構 6 第二章 材料技術理論與分析 7 2-1 前言 7 2-2 量子井混合技術 8 2-2.1 技術簡介 8 2-2.2 IID技術分析 11 2-2.3 QWI晶片結構設計 13 2-2.4 主動層載子內部擴散效應理論分析 16 2-2.5 離子佈植與高溫回火製程之實作與分析 18 2-3 選擇性區域磊晶技術 23 2-3.1 技術簡介 23 2-3.2 SAG技術之能隙變動分析 27 2-3.3 SAG技術之實作製程條件 29 第三章 多通道單模輸出技術理論與分析 31 3-1 前言 31 3-2 新型取樣光柵技術簡介 32 3-3 新型取樣光柵技術之理論與設計 35 第四章 實作量測與結果分析 42 4-1 前言 42 4-2 量子井混合技術之雷射製作與分析 43 4-2.1 元件結構與量子井混合雷射製作 43 4-2.2 量子井混合雷射輸出特性與討論 45 4-2.3 量子井混合雷射之理論分析 51 4-3 選擇性區域磊晶技術之材料製作與量測 60 4-4 新型取樣光柵技術之實作設計 65 第五章 結論與未來發展 72 5-1 結論 72 5-2 未來發展 76 參考文獻 77 已發表或審稿中的論文與專利 82 作者簡介 85

    [1] S. B. Alexander, R. S. Bondurant, D. Burne, V. W. S. Chan, S. G. Finn, and R. Gallager, "A Precompetitive Consortium on Wide-Band All Optical Networks," IEEE J. Lightwave Technol., vol. 11, no. 6, pp. 714-731, June 1993.
    [2] C. A. Brackett, "Is There an Emerging Consunsus on WDM Networking," IEEE J. Lightwave Technol., vol. 14, no. 6, pp. 936-941, June 1996.
    [3] S. Charbonneau, E. S. Koteles, P. J Poole, J. J. He, G. C. Aers, J. Haysom, M. Buchanan, Y. Feng, A. Delage, F. Yang, M. Davies, R. D. Goldberg, P. G. Piva, and I. V. Mitchell, "Photonic integrated circuits fabricated using ion implantation," IEEE J. Select. Topics in Quantum Electronics, vol. 4, pp. 772-793, July-Aug. 1998.
    [4] E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, "A quantum-well-intermixing process for wavelength-agile photonic integrated circuits," IEEE J. Select. Topics in Quantum Electronics, vol. 8, pp. 863-869, July-Aug. 2002.
    [5] S. Charbonneau, P. Poole, Y. Feng, G. Aers, M. Dion, M. Davies, R. Goldberg, and I. Mitchell, "Band-gap tuning of InGaAs/InGaAsP/InP laser using high energy ion implantation," Appl. Phys. Lett. vol. 67, pp. 2954–2956, Nov. 1995.
    [6] I. Gontijo, T. Krauss, J. H. Marsh, and R. M. De La Rue, "Postgrowth control of GaAs/AlGaAs quantum well shapes by impurity-free vacancy diffusion," IEEE J. Quantum Electronic vol. 30, pp. 1189-1195, May 1994.
    [7] S. Yuan, C. Jagadish, Y. Kim, Y. Chang, H. H. Tan, R. M. Cohen, M. Petravic, L. V. Dao, M. Gal, C. Y. Chan, E. H. Li, J. O, and P. S. Zory, "Anodic-oxide-induced intermixing in GaAs-AlGaAs quantum-well and quantum-wire structures," IEEE J. Select. Topics in Quantum Electronics, vol. 4, pp. 629-635, July-Aug. 1998.
    [8] T. K. Ong, Y. C. Chan, and B. S. Ooi, "Fabrication of multiple-wavelength lasers in InGaAs-InGaAsP structures using direct laser writing," IEEE Photon. Technol. Lett., vol. 13, pp. 1161-1163, Nov. 2001.
    [9] K. Kudo, Y. Furushima, T. Nakazaki, M. Yamaguchi, "Densely arrayed eight-wavelength semiconductor lasers fabricated by microarray selective epitaxy," IEEE J. Select. Topics in Quantum Electronics, vol. 5, issue. 3, pp. 428 -434, May-June 1999.
    [10] K. Kudo, T. Nakazaki, M. Yamaguchi, "Microarray selective epitaxy (MASE) for integrated photonic devices," Conference on Indium Phosphide and Related Materials, 1999 Eleventh International, pp. 543 -546, May 1999.
    [11] M. Takahashi, M. Suzuki, M. Aoki, K. Uomi, T. Kawano, "In-plane quantum energy control of InGaAs/InGaAsP MQW structure by MOCVD selective area growth," Fourth International Conference on Indium Phosphide and Related Materials , pp. 206 -209, April 1992.
    [12] A.S.P. Chang, K.J. Morton, Tan Hua; P.F. Murphy, Wu Wei, S.Y. Chou, "Tunable Liquid Crystal-Resonant Grating Filter Fabricated by Nanoimprint Lithography," IEEE Photon. Technol. Lett., vol. 19, pp. 1457-1459, Oct. 2007.
    [13] T. P. Lee, C. E. Zah, R. Bhat, W. C. Young, B. Pathak, F. Favire, P. S. D. Lin, N. C. Andreadakis, C. C. Caneau, A. W. Rahjel, M. Koza, J. K. GAmelin, L. Curtis, D. D. Mahoney, and A. Lepore, "Multiwavelength DFB Laser Array Transmitters for ONTC Reconfigurable Optical Network Testbed," J. Lightwave Technol., vol. 14, no. 6, pp. 967-974, 1996.
    [14] M. G. Young, U. K.OREN, B. I. Miller, M. A. Newkirk, M. Chien, M. Zirngibl, C. Drsgone, B. Tell, H. M. Presby, and G. Raybon, "A 16x1 Wavelength Division Multiplexer with Integrated Distributed Bragg Reflector Lasers and Electroabsorption Modulators," IEEE Photon. Technol. Lett., vol. 5, no. 8, pp. 908-910, 1993.
    [15] A. J. Ward, D. J. Robbins, G. Busico, E. Barton, L. Ponnampalam, J. P. Duck, N. D. Whitbread, P. J. Williams, D. C. J. Reid, A. C. Carter, and M. J. Wale, "Widely tunable DS-DBR laser with monolithically integrated SOA design and performance," IEEE J. Select. Topics Quantum Electronics, vol. 11, pp. 149-156, 2005.
    [16] Y. A. Akulova, G. A. Fish, P. C. Koh, C. L. Schow, P. Kozodoy, A. P. Dahl, S. Nakagawa, M. C. Larson, M. P. Mack, T. A. Strand, C. W. Coldren, E. Hegblom, S. K. Penniman, T. Wipiejewski, and L. A. Coldren, "Widely tunable electroabsorption-modulated sampled-grating DBR laser transmitter," IEEE J. Select. Topics Quantum Electronics, vol. 8, no. 6, pp. 1349-1357, Dec. 2002.
    [17] V. Jayaraman, Z. M. Chuan, and L. A. Coldren, "Theory, design, and performance of extended tuning range semiconductor lasers with sampled gratings," IEEE J. Quantum Electronics, vol. 29, no. 6, pp. 1824–1834, June 1993.
    [18] E. H. Li, "Advances in intermixed quantum well devices," Electron Devices Meeting, 1998 Proceedings, pp. 60-65 Aug. 1998.
    [19] D. Leong, H. S. Djie, and P. Dowd, "A new quantum well intermixing technique using inductively-coupled Argon plasma on InGaAs/InGaAsP laser structures," Indium Phosphide and Related Materials Conference, 2002 IPRM 14th, pp. 310-322, 12-16 May 2002.
    [20] E. J. Skogen, J. S. Barton, S. P. Denbaars, and L. A. Coldren, “A quantum-well-intermixing process for wavelength-agile photonic integrated circuits,” IEEE J. Select. Topics Quantum Electronics, vol. 8, pp. 863-869, July-Aug 2002.
    [21] 施敏, 半導體物理元件與製作技術(第二版), 國立交通大學出版社, 民國91年.
    [22] E. H. Li, Quantum well intermixing, Gordon and Breach Science Publishers, 2000.
    [23] H. S. Djie, S. L. Ng, O. Gunawan, P. Dowd, V. Aimez, J. Beauvais, and J. Beerens, "Analysis of strain-induced polarisation-insensitive integrated waveguides fabricated using ion-implantation-induced intermixing," Opto- electronics, IEE Proceedings-, vol. 149, issue. 4, pp. 138 -144, Aug 2002.
    [24] E. H. Li, B. L. Weiss, and K. S. Chan, "Eigenstates and absorption spectra of interdiffused AlGaAs-GaAs multiple-quantum-well structures," IEEE J. Quantum Electronics, vol. 32, pp. 1399-1416, Aug. 1996.
    [25] A. K. Dutta, N. K. Dutta, Masahiko Fujiwara, WDM Technologies: Active Optical Components, Academic Press, 2002.
    [26] F. Kano, H. Ishii, Y. Tohmori, Y. Yoshikuni, "Characteristics of super structure grating (SSG) DBR lasers underbroad range wavelength tuning, " IEEE Photon. Technol. Lett., vol. 5, no. 6, pp. 611-613, Jun. 1993.
    [27] A.A. Saavedra, P. J. Rigole, E. Goobar, R. Schatz, S. Nilsson, "Amplitude and frequency modulation characteristics of widelytunable GCSR lasers," IEEE Photon. Technol. Lett., vol. 10, no. 10, pp. 1383-1385, Oct. 1998.
    [28] 張英發, "設計與製作以取樣光柵為基礎之分波多工雷射光源,"博士論文, 台灣科技大學, 民國九十一年.
    [29] S. L. Lee, I. F. Jang, C. Y. Wang, C. T. Pien, and T. T. Shih, "Monolithically Integrated Multiwavelength Sampled Grating DBR Lasers for Dense WDM Applications," IEEE J. Select. Topics Quantum Electronics, vol.6, no.1, pp. 197-206, Feb. 2000.
    [30] S. L. Lee, "Analytical Formula of Wavelength Dependent Transparent Current and its Implications for Designing Wavelength Sensors and WDM Lasers," IEEE J. Select. Topics Quantum Electronics, vol.7, no.2, pp. 201-209, Apr. 2001.
    [31] I. F. Jang and S. L. Lee, "Simple Approaches of Wavelength Registration for Monolithically Integrated DWDM Laser Arrays," IEEE Photon. Technol. Lett., vol.14, no. 12, pp. 1659-1661, Dec. 2002.
    [32] I. F. Jang, S. L. Lee, C. Y. Wang, and Y. H. Jan, "Realization and Performance of As-Fabricated SGDBR Multiwavelength Laser Arrays," IEEE Photon. Technol. Lett., vol.13, no. 9, pp.933-935, Sep. 2001.
    [33] H. G. Bukkems, "New Approaches to Widely Tunable Semiconductor Lasers," Technische Universiteit Eindhoven, 2006.
    [34] J. P. Noël, D. Melville, T. Jones, F. R. Shepherd, C. J. Miner, N. Puetz, K. Fox, P. J. Poole, Y. Feng, E.S. Koteles, S. Charbonneau, R. D. Goldberg, and I. V. Mitchell, "High-reliability blue-shifted InGaAsP/InP lasers," Appl. Phys. Lett., vol. 69, pp. 3516–3518, Dec. 1996.
    [35] T. K. Sudoh, M. Kumano, Y. Nakano, and K. Tada, "Wavelength trimming by photoabsorption-included disordering for multiple-wavelength distributed- feedback laser arrays," IEEE Photon. Technol. Lett., vol. 9, pp. 887-888, July 1997.
    [36] M. Paquette, V. Aimez, J. Beauvais, J. Beerens, P. J. Poole, S. Charbonneau, and A. P. Roth, "Blueshifting of InGaAsP-InP laser diodes using a low-energy ion-implantation technique: comparsion between strain and lattice-matched quantum-well structures," IEEE J. Select. Topics Quantum Electronics, vol. 4, pp. 741-745, July-Aug. 1998.
    [37] Liu, X.F. Liu, B.C. Qiu, M.L. Ke, A.C. Bryce,; J.H. Marsh, "The application of a novel intermixing technique for multi-bandgapintegration of InGaAs/AlInGaAs," IEEE LEOS 2000. 13th Annual Meeting, vol.2, pp. 846-847, 2000.
    [38] H. S. Lim, V. Aimez, B. S. Ooi, J. Beauvais, and J. Beerens, "A novel fabrication technique for multiple-wavelength photonic-integrated devices in InGaAs- InGaAsP laser heterostructures," IEEE Photon. Technol. Lett., vol. 14, pp. 594-596, May 2002.
    [39] C. E. Zah, R. Bhat, B. N. Pathak, F. Favire, W. Lin, M. C. Wang, N. C. Andreadakis, D. M. Hwang, M. A. Koza, Tien-Pei Lee, Z. Wang, D. Darby, D. Flanders, J. J. Hsieh, "High-Performance Uncooled 1.3-m AlxGayIn1-x-yAs/InP Strained-Layer Quantum-Well Lasers for Subscriber Loop Applications," IEEE J. Quantum Electronics, vol, 30, no.6, Feb. 1994.
    [40] N. Hwang, G. C. Joo, S. H. Lee, S. S. Park, H. S. Cho, M. K. Song, and K. E. Pyun, "Structure-Dependent Reliability Assessment of 1.3 m InGaAsP/InP Uncooled Laser Diodes by Accelerated Aging Test," Electronic Components and Technology Conference, pp. 1308-1311, May 1996.
    [41] A.B. Massara, K.A. Williams, I.H. White, R.V. Penty, A. Galbraith, P. Crump and P. Harper, "Ridge waveguide InGaAsP lasers with uncooled 10Gbit/s operation at 70°C," Electronics Lett., vol. 35, pp. 1646-1647, Sep. 1999.
    [42] D. Bang, J. Shim, J. Kang, M. Um, S. Park, S. Lee, D. Jang, and Y. Eo, "High-Temperature and High-Speed Operation of a 1.3-m Uncooled InGaAsP–InP DFB Laser, " IEEE Photon. Technol. Lett., vol. 14, pp. 1240-1242, Sep. 2002.
    [43] C. W. Hu, F. M. Lee, T. C. Peng, T. M. Ou, M. C. Wu, and Y. H. Huang, "High-Speed and Uncooled Operation of 1.3-m InGaAsP Strain- Compensated MQW BH Lasers Fabricated on Patterned InP Substrates," J. Lightwave Technol., vol. 24, pp. 2906-2911, July 2006.
    [44] Y. Suzuki, H. Iwamura, T. Miyazawa, A. Wakatsuki, and O. Mikami, “Polarization-dependent refractive-index change induced by superlattice disordering,” IEEE J. Quantum Electronics, vol. 32, no. 11, pp. 1922-1931, Nov 1996.
    [45] W. C. H. Choy, and E. H. Li, "Interdiffused AlGaAs–GaAs Quantum Well for Improved Electro- absorptive Modulation," IEEE J. Quantum Electronic, vol. 34, pp. 1162-1169, 1998.
    [46] W. C. H. Choy, E. H. Li, and C. Y. Chan, "Interdiffusion-Induced Polarization-Independent Optical Gain of an InGaAs-InP Quantum-Well with Carrier Effects," IEEE J. Quantum Electronic, vol. 35, pp. 913-921, 1999.
    [47] E. H. Li, and W. C. H. Choy, "Electro-absorptive Properties of Interdiffused InGaAsP/InP Quantum Wells," J. Appl. Phys., vol. 82, pp. 3861-3869, 1997.

    QR CODE