簡易檢索 / 詳目顯示

研究生: 黃義仁
Yi-Jen Huang
論文名稱: 分子束磊晶系統成長三五族氮化物奈米結構於光電化學產氫之研究
Photoelectrochemical properties of III-V Nitride Based Semiconductors grown by plasma-assisted molecular beam epitaxy system
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 86
中文關鍵詞: 電漿輔助式分子束磊晶氮化鎵氮化銦鎵太陽能產氫
外文關鍵詞: PA-MBE, GaN, InGaN, Solar hydrogen applications
相關次數: 點閱:294下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用電漿輔助式分子束磊晶系統在矽基板上成長氮化鎵奈米柱及氮化銦鎵薄膜結構,並將其運用在光電化學產氫的研究上。首先在氮化鎵奈米柱部份,成長不同長度的奈米柱(長度大約在120~720nm、直徑大約在30~50nm),並且將其運用到光電化學產氫的實驗上,從實驗中發現,隨著長度增加至720nm時,經由吸收光譜的量測中接近UV範圍(250~360nm) 的吸收值可達到98%,並且在入射光轉換電流效率的量測更可達到近60%的轉換效率。而在光電化學產氫的量測中,其兩極式零偏壓下的光電流可達到0.73mA/cm2,比起商業用之氮化鎵薄膜更增加了3~4倍之多。最後在氮化銦鎵薄膜部份,經由光電化學產氫的量測發現,隨著銦含量增加(20%~50%),由於吸收更多的可見光而達到更高的光電轉換效率,尤其當銦含量為34%時之氮化銦鎵薄膜,最高的飽和光電流可成功提升至1.5 mA/cm2。實驗結果我們可以知道,氮化鎵奈米柱和氮化銦鎵薄膜具有良好的光電化學產氫特性,在未來將會是氫能源的研究方向之一。


    Hydrogen production from solar energy is a promising technology as a future renewable energy source. In this study, we performed high performance photoelectrochemical (PEC) hydrogen generation by using catalyst-free GaN nanorod arrays (GaN NRs). The directly grown, vertical aligned GaN NRs on Si(111) substrates was synthesized by plasma-assisted molecular beam epitaxy. The geometry of GaN NRs with rod diameter and lengths measuring 30~50 nm and 120~720 nm, respectively, were controlled by various growth times. The optical properties of GaN NRs (Eg of GaN = ~3.4 eV) with length = 720 nm exhibited high light absorption of up to ~98% covering all UV region from 250 to 360 nm without any need of anti-reflection coating. From the PEC results, longer GaN NRs exhibited a photocurrent density of 0.73 mA/cm2 at VCE = 0 V (VCE is the applied external bias versus the platinum counter electrode) in 1M HCl solution under irradiation by Xenon lamp and showed an incident photon conversion efficiency (IPCE %) of about 60% at VCE = 0 V in the ultraviolet light region. This result was higher than traditional GaN thin film. We also investigated the different In composition (from 20% to 50%) of InGaN films for solar hydrogen production. InGaN shows higher saturation current density of 1.5 mA/cm2 than traditional GaN thin film. This work showed that GaN NRs and InGaN TFs can be the good candidates as the photoanode for photoelectrochemical hydrogen generation application due to high light trapping efficiency and photocatalytic activity.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 第一章 緒論 1 1.1 半導體的分類及介紹 4 1.2 光伏特系統 6 1.3 光化學產氫系統 8 1.4 實驗研究與目的 9 第二章 光電化學電池之原理與文獻回顧 10 2.1 光電化學電池(Photoelectrochemical cell, PEC) 10 2.1.1 工作電極(Working electrode, WE) 11 2.1.2 反電極(Counter electrode, CE) 12 2.1.3參考電極(Reference electrode, RE) 12 2.2光電化學電池之水分解反應與原理 13 2.3光電化學量測(Photoelectrochemical measurement) 21 2.4入射光電轉換率量測(Incident Photo to Current Conversion Efficiency, IPCE) 23 第三章 實驗方法與儀器設備 24 3.1電極的製備(PA-MBE系統成長GaNNRs 和 InGaN TFs) 24 3.2 接觸金屬的製作 26 3.3 工作電極封裝 28 3.4儀器設備介紹 30 3.4.1電漿輔助式分子束磊晶(Plasma-assisted Molecular Beam Epitaxy) 30 3.4.2 電子束金屬鍍膜機(E-beam metal evaporator) 32 3.4.3 場發射掃描電子顯微鏡 (SEM) 33 3.4.4 X射線繞射(X-ray diffraction, XRD) 34 3.4.5光致螢光光譜(Photoluminescence, PL) 35 3.4.6 UV-VIS-NIR光譜儀 36 3.4.7 接觸角量測(Contact angle) 37 第四章 實驗結果分析 39 4.1 光電化學量測系統簡介 39 4.2利用電漿輔助式分子束磊晶成長氮化鎵化合物 40 4.3氮化鎵成長分佈圖 42 4.4氮化鎵奈米柱之表面接觸角特性分析 45 4.5接觸金屬電極位置對光電化學產氫的影響 48 4.6 UV-VIS光學吸收量測及光電化學產氫測試 52 4.7氮化鎵奈米柱之光電化學產氫特性分析 55 4.8氮化銦鎵薄膜之材料成長與特性分析 58 4.9氮化銦鎵薄膜之光電化學產氫特性分析 61 第五章 結果與討論 64 第六章 未來展望 71 參考文獻 72

    [1]. 莊浩宇、陳東煌,科學發展, 437, 58-63 (2009).
    [2]. 張正華、李陵嵐、葉楚平、楊平華,有機與塑膠太陽能電池,五 南書局 (2007).
    [3]. http://www.ecofriend.com/entry/drawing-from-the-power-of-the-elements-solar-hydrogen-energy/.
    [4]. S. M. Sze, K. K. Ng, Physics of Semiconductor Devices, Third edition, Wiley (2007).
    [5]. D. A. Neamen, Semiconductor Physics And Devices, Fourth edition, The McGraw–Hill companies (2011).
    [6]. B. T, N. J, R. M, and S. C. C, International Journal of Hydrogen Energy, 27, 991–1022 (2002).
    [7]. J. Nowotny, C.C. Sorrell, L.R. Sheppard, and T. Bak, International Journal of Hydrogen Energy, 30, 521–544 (2005).
    [8]. J. Nowotny, T. Bak, M.K. Nowotny, L.R. Sheppard, International Journal of Hydrogen Energy, 32, 2609–2629 (2007).
    [9]. A. Fujishima, and K. honda, Nature, 238, 37–38 (1972).
    [10]. G. Wang, H. Wang, Y. Ling, Y. Tang, X. Yang, R. C. Fitzmorris, C.Wang,J. Zhang, and Y. Li, Nano Lett., 11, 3026–3033 (2011).
    [11]. H. Gao, C. Liu, H. Eui Jeong, and P. Yang, ACS Nano, 6 , 234–240 (2012).
    [12]. G. Wang, X. Yang, F. Qian, J. Z. Zhang, and Y. Li, Nano Lett., 10, 1088–1092 (2010).
    [13]. J. Su, X. Feng, J. D. Sloppy, L. Guo, and C. A. Grimes, Nano Lett., 11, 203–208 (2011).
    [14]. T. Nann, S. K. Ibrahim, P. M. Woi, S. Xu, J. Ziegler, and C. J. Pickett, Angewandte Chemie International Edition, 49, 1574–1577 (2010).
    [15]. Y. Iwaki, M. Ono, K. Yamaguchi, K. Kusakabe, K. Fujii, and K. Ohkawa, Phys. stat. sol. (c), 5, 2349–2351 (2008).
    [16]. J. Li, J. Y. Lin, and H. X. Jiang, Appl. Phys. Lett., 93, 162107-1–162107-3, (2008).
    [17]. S. W. Boettcher, E. L. Warren, M. C. Putnam, E. A. Santori, D. T. Evans, M. D. Kelzenberg, M. G. Walter, J. R. McKone, B. S. Brunschwig, H. A. Atwater, and N. S. Lewis, J. Am. Chem. Soc., 133, 1216–1219 (2011).
    [18]. Y. J. Hwang, A. Boukai, and P. Yang, Nano Lett., 9, 410–415 (2009).
    [19]. H. M. Chen, C. K. Chen, C. C. Lin, R. S. Liu, H. Yang, W. S. Chang,
    K. H. Chen, T. S. Chan, J. F. Lee, and D. P. Tsai, J. Phys. Chem. C, 115 , 21971–21980 (2011).
    [20]. A. M. Basilio, Y. K. Hsu, W. H. Tu, C. H. Yen, G. M. Hsu, O. Chyan, Y. Chyan, J. S. Hwang, Y. T. Chen, L. C. Chen and K. H. Chen, J. Mater. Chem., 20, 8118–8125 (2010).
    [21]. T. Sondergaard, J. Gadegaard, P. K. Kristensen, T. K. Jensen, T. G. Pedersen, and K. Pedersen, Optics Express, 18, 26245–26258, (2010).
    [22]. Y. Li and J. Z. Zhang, Laser Photonics Rev, 4, 517–528 (2010).
    [23]. O. Khaselev, and J. A. Turner, Science, 280, 425–427 (1998).
    [24]. K. Fujii, and K. Ohkawa, Japanese Journal of Applied Physics, 44, 909–911 (2005).
    [25]. K. Fujii, T. Karasawa, and K. Ohkawa, Japanese Journal of Applied Physics, 44, 543–545 (2005).
    [26]. K. Fujii, and K. Ohkawa, Journal of The Electrochemical Society, 153, 468–471. (2006).
    [27]. K. Fujii, and K. Ohkawa, Physica status solidi (c), 3, 2270–2273 (2006).
    [28]. K. Fujii, T. Ito, M. Ono, Y. Iwaki, T. Yao, and K. Ohkawa, Physica status solidi (c), 4, 2650–2653 (2007).
    [29]. K. Fujii, Y. Iwaki, H. Masui, T. J. Baker, M. Iza, H. Sato, J. Kaeding, T. Yao, J. S. Speck, S. P. Denbaars, S. Nakamura, and K. Ohkawa, Japanese Journal of Applied Physics, 46, 6573–6578 (2007).
    [30]. K. Fujii, H. Nakayama, K. Sato, T. Kato, M. W. Cho, and T. Yao, Physica status solidi (c), 6, 2333–2335 (2008).
    [31]. Y. Iwaki, M. Ono, K. Yamaguchi, K. Kusakabe, K. Fujii, and K. Ohkawa, Physica status solidi (c), 6, 2349–2351 (2008).
    [32]. K. Sato, K. Fujii, K. Koike, T. Goto, and T. Yao, Physica status solidi (c), 6, 635–638 (2009).
    [33]. K. Fujii, K. Sato, T. Kato, K. Koike, and T. Yao, Physica status solidi (c), 6, 627–630 (2009).
    [34]. K. Fujii ,T. Kato1, K. Sato, I. Im, J. Chang, and T. Yao, Physica. status solidi (c), 7, 2218–2220 (2010).
    [35]. M. Ono, K. Fujii, T. Ito, Y. Iwaki, A. Hirako, and K. Ohkawa, J. Chem. Phys., 126, 054708-1–054708-7 (2007).
    [36]. I. Waki, D. Cohen, R. Lal, U. Mishra, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett., 91, 093519-1–093519-3 (2007).
    [37]. M. Li, W. Luo, B. Liu, X. Zhao, Z. Li, D. Chen, T. Yu, Z. Xie, R. Zhang, and Z. Zou , Appl. Phys. Lett., 99, 112108-1–112108-3 (2011).
    [38]. P. G. Moses, M. Miao, Q. Yan, and C. G. V. Walle, J. Chem. Phys., 134, 084703-1–084703-11 (2011).
    [39]. K. Fujii, K. Kusakabe and K. Ohkawa, Japanese Journal of Applied Physics, 44, 7433–7435 (2005).
    [40]. M. Gratzel, Nature, 414, 15 (2001).
    [41]. C. G. Zoski, HandBook of ElectroChemistry, Elsevier, Amsterdam, (2007).
    [42]. T. Bak, J. Nowotny, M. Rekas, and C.C. Sorrell, International Journal of Hydrogen Energy, 27, 991–1022 (2002).
    [43]. R. Songmuang, O. Landré and B. Daudin, Appl. Phys. Lett., 91, 251902-1–251902-3 (2007).
    [44]. K. Y. Hsu, C. Y. Wang, and C. P. Liu, Journal of The Electrochemical Society, 157, 109–112 (2010).
    [45]. Y. I. Nam and B. T. Lee, Semicond. Sci. Technol., 26, 085014-1–085014-5 (2011).
    [46]. L. Dobosa, B. Pe, L. To, Z. J. Horva, Z. E. Horva, B. Beaumontb, and Z. Bougriouac, Vacuum 82, 794–798 (2008).
    [47]. L. Dobosa, B. Pe, L. To, Zs. J. Horva, Z. E. Horva, A. To, E. Horva, B. Beaumont, and Z. Bougrioua, Applied Surface Science 253, 655–661 (2006).
    [48]. Z. X. Qin, Z. Z. Chen, Y. Z. Tong, X. M. Ding, X. D. Hu, T. J. Yu, and G. Y. Zhang, Appl. Phys. A, 78, 729–731 (2004).
    [49]. S. S. Levanona and A. Marmur, Journal of Colloid and Interface Science, 262, 489–499 (2003).
    [50]. R. K. Debnath, R. Meijers, T. Richter, T. Stoica, R. Calarco,and H. Lüth, Appl. Phys. Lett., 90, 123117-1–123117-3 (2007).
    [51]. R. Meijers, T. Richter, R. Calarco, T. Stoica, H. P. Bochem, M. Marso, and H. Luth, Journal of Crystal Growth, 289, 381–386 (2006).
    [52]. D. V. Dinh, S. M. Kang, J. H. Yang, S. W. Kim, and D. H. Yoon, Journal of Crystal Growth, 311, 495–499 (2009).
    [53]. M. G. Walter, E. L. Warren, J. R. McKone, S. W. Boettcher, Q. Mi, E. A. Santori, and N. S. Lewis, Chem. Rev., 110, 6446–6473 (2010).

    QR CODE