簡易檢索 / 詳目顯示

研究生: 余孟純
Meng-chun Yu
論文名稱: 氮化鎵垂直共振腔面射型光源之製造與特性量測
Fabrication and characterization of GaN-based vertical-cavity surface-emitting diodes
指導教授: 葉秉慧
Ping-hui Yeh
口試委員: 郭浩中
Hao-chung Kuo
盧廷昌
Tien-chang Lu
李三良
San-Liang Lee
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 73
中文關鍵詞: 氮化鎵垂直共振腔面射型雷射擴散
外文關鍵詞: GaN, VCSEL, diffusion
相關次數: 點閱:234下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 由於氮化鎵藍紫光垂直共振腔面射型雷射之晶圓片製作不易,容易造成低增益及高損耗的現象,因此本實驗採用不同於常見的氧化物侷限結構,利用矽擴散反轉p-GaN為n-GaN製作出擴散型侷限結構,藉此定義出電流侷限範圍,期望能更有效的將電流集中提高增益並且降低閥值電流。
    本實驗結果顯示擴散型侷限結構確實能有效的將電流侷限,並且提高增益,增加受激放射(stimulated emission)。由發光頻譜來看,製程所形成的共振腔結構確實已能將發光頻譜主峰的半高寬收窄至2nm,但峰值波長幾乎都落在磊晶式DBR禁止帶的邊緣處,存在二或三個波峰在競爭,主峰與次峰的峰值比(side mode suppression ratio)最高達到約5倍,但在元件產生熱衰竭效應前皆無觀察到雷射現象。
    雖然並無產生雷射,但透過變角度電致發光量測的遠場光分佈圖結果得知元件指向性確實較一般無共振腔元件來的良好,遠場光分佈圖的半功率角(half power angle)為30°左右,且峰值波長隨著量測角度增大而有明顯規律的藍移的現象,顯示共振腔仍有發揮一定作用。


    It is difficult to grow high-quality epitaxial DBRs for GaN-based vertical-cavity surface-emitting lasers (VCSELs) resulting in VCSEL materials of low gain and high loss. Therefore we replaced the general silicon-oxide/silicon-nitride insulating layers with Si diffusion-defined confinement structure to enhance the current confinement. Si diffusion in p-GaN was used to convert p-GaN into n-GaN that formed a 3D current-blocking structure. Hopefully the VCSELs with this structure will have good performance in terms of threshold current and optical output power.

    The experimental results demonstrated that Si diffusion-defined confinement structure effectively confined the current path to increase the gain of the diode and the probability of stimulated emission. From the emission spectra at various current levels, we observed the full width at half maximum (FWHM) of the primary emission peak was reduced to below 2nm, and there were two or three resonant-cavity modes competing for the gain. The largest side mode suppression ratio obtained was 5. And we found almost all the primary peak wavelengths were located at the edge of the stop band of the bottom DBR.

    Unfortunately we didn’t observe lasing while operating diodes up to 20mA in current. But the far-field pattern exhibited a half power angle of about 30°, which was much smaller than the 60° of the Lambertian radiation pattern observed in LEDs. Moreover, from angle-resolved emission spectra, we observed off-axial resonant modes of which the peak wavelengths blue-shifted regularly with increasing angle. These characteristics indicated these devices have strong resonant cavity effect.

    摘要 ABSTRACT 致謝 目錄 圖片目錄 表格目錄 第一章 導論 1.1 研究動機 1.2 氮化鎵材料之簡介 1.3 氮化鎵垂直共振腔面射型雷射文獻回顧 第二章 垂直共振腔面射型雷射原理 2.1 半導體雷射基本操作原理 2.2 垂直共振腔面射型雷射 2.2.1 布拉格反射鏡 2.2.2 VCSEL布拉格反射鏡結構介紹 2.2.3 VCSEL侷限結構 第三章 元件製程與儀器介紹 3.1 垂直共振腔面射型雷射元件製程 3.2 製程儀器介紹 3.2.1 感應耦合電漿式離子蝕刻機(ICP-RIE) 3.2.2 電子束蒸鍍機(E-beam evaporator) 3.2.3 射頻濺鍍機(RF sputter) 3.2.4 電子槍介電質蒸鍍系統 (E-gun dielectric evaporator system) 3.3 量測系統介紹 3.3.1 光激發螢光(Photoluminescence,PL)量測系統 3.3.2 L-I與I-V量測系統 3.3.3 低溫L-I量測系統 3.3.4 變角度電致發光(electroluminescence, EL)量測系統 第四章 實驗結果與討論 4.1 元件I-V與L-I量測結果 4.1.1 透明導電層完成後量測 4.1.2 P型電極完成後量測 4.1.3 介電質布拉格反射鏡完成後量測 4.2 低溫L-I量測結果 4.3 變角度電致發光(EL)量測結果 第五章結論與未來展望 參考文獻

    [1]G. Bhuiyan, K. Sugita, K. Kasashima, A. Hashimoto, A. Yamamoto, and V. Y. Davydov, " Single-crystalline InN films with an absorption edge between 0.7 and 2 eV grown using different techniques and evidence of the actual band gap energy," Applied Physics Letters, vol. 84, pp. 452, 2004.
    [2]E. Fred. Schubert, "Light emitting diode," Cambridge University Press, New York, 2006.
    [3]H. Amano, M. Kito, K. Hiramatsu, and I. Akasaki, "P-Type Conduction in Mg-Doped GaN Treated with Low-Energy Electron Beam Irradiation (LEEBI)," Japanese Journal of Applied Physics, vol. 28, pp. L2112-L2114, 1989.
    [4]I. Akasaki, H.Amano, K. Koide, and K. Manabe, "GaN based UV/blue light-emitting devices," Inst. Phys. Conf. Ser., vol.129, pp.851-856, 1992.
    [5]S. Nakamura, T. Mukai, M. Senoh, and N. Iwasa, "Thermal Annealing Effects on P-Type Mg-Doped GaN Films," Japanese Journal of Applied Physics, vol. 31, pp. L139-L142, 1992.
    [6]S. Nakamura, M. Senoh, and T. Mukai, "High‐power InGaN/GaN double‐heterostructure violet light emitting diodes," Applied Physics Letters, vol. 62, pp. 2390-2392, 1993.
    [7]S. Nakamura, M. Senoh, S.-i. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, et al., "Violet InGaN/GaN/AlGaN-Based Laser Diodes with an Output Power of 420 mW," Japanese Journal of Applied Physics, vol. 37, pp. L627-L629, 1998.
    [8]H. M. Ng, T. D. Moustakas, and S. N. G. Chu, "High reflectivity and broad bandwidth AlN/GaN distributed Bragg reflectors grown by molecular-beam epitaxy," Applied Physics Letters, vol. 76, pp. 2818-2820, 2000.
    [9]G. S. Huang, T. C. Lu, H. H. Yao, H. C. Kuo, S. C. Wang, C.-W. Lin, et al., "Crack-free GaN/AlN distributed Bragg reflectors incorporated with GaN/AlN superlattices grown by metalorganic chemical vapor deposition," Applied Physics Letters, vol. 88, pp. 061904-061904-3, 2006.
    [10]T. Someya and Y. Arakawa, "Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition," Applied Physics Letters, vol. 73, pp. 3653-3655, 1998.
    [11]K. E. Waldrip, J. Han, J. J. Figiel, H. Zhou, E. Makarona, and A. V. Nurmikko, "Stress engineering during metalorganic chemical vapor deposition of AlGaN/GaN distributed Bragg reflectors," Applied Physics Letters, vol. 78, pp. 3205-3207, 2001.
    [12]J. F. Carlin and M. Ilegems, "High-quality AlInN for high index contrast Bragg mirrors lattice matched to GaN," Applied Physics Letters, vol. 83, pp. 668-670, 2003.
    [13]E. Feltin, J. F. Carlin, J. Dorsaz, G. Christmann, R. Butte, M. Laugt, et al., "Crack-free highly reflective AlInN/AlGaN Bragg mirrors for UV applications," Applied Physics Letters, vol. 88, pp. 051108-051108-3, 2006.
    [14]J. M. Redwing, D. A. S. Loeber, N. G. Anderson, M. A. Tischler, and J. S. Flynn, "An optically pumped GaN–AlGaN vertical cavity surface emitting laser," Applied Physics Letters, vol. 69, pp. 1-3, 1996.
    [15]C.-C. Kao, Y. C. Peng, H. H. Yao, J. Y. Tsai, Y. H. Chang, J. T. Chu, et al., "Fabrication and performance of blue GaN-based vertical-cavity surface emitting laser employing AlN/GaN and Ta2O5/SiO2 distributed Bragg reflector," Applied Physics Letters, vol. 87, pp.081105-081105-3, 2005.
    [16]J.-T. Chu, T.-C. Lu, M. You, B.-J. Su, C.-C. Kao, H.-C. Kuo, and S. C. Wang, "Emission characteristics of optically pumped GaN-based vertical-cavity surface-emitting lasers," Applied Physics Letters, vol. 89, pp.121112-121112-3, 2006.
    [17]T.-C. Lu, C.-C. Kao,H.-C. Kuo, G.-S. Huang, and S.-C. Wang, "CW lasing of current injection blue GaN-based vertical cavity surface emitting laser," Applied Physics Letters, vol. 92, pp. 141102-141102-3, 2008.
    [18]T.-C. Lu, S.-W. Chen, T.-T. Wu, P.-M. Tu, C.-K. Chen, C.-H. Chen, et al., "Continuous wave operation of current injected GaN vertical cavity surface emitting lasers at room temperature," Applied Physics Letters, vol. 97, pp. 071114-071114-3, 2010.
    [19]Y. Higuchi, K. Omae, H. Matsumura, and T. Mukai, "Room-Temperature CW Lasing of a GaN-Based Vertical-Cavity Surface-Emitting Laser by Current Injection," Applied Physics Express, vol. 1, p. 121102, 2008.
    [20]K. Omae, Y. Higuchi, K. Nakagawa, H. Matsumura, and T. Mukai, "Improvement in Lasing Characteristics of GaN-based Vertical-Cavity Surface-Emitting Lasers Fabricated Using a GaN Substrate," Applied Physics Express, vol. 2, p. 052101, 2009.
    [21]D. Kasahara, D. Morita, T. Kosugi, K. Nakagawa, J. Kawamata, Y. Higuchi, et al., "Demonstration of Blue and Green GaN-Based Vertical-Cavity Surface-Emitting Lasers by Current Injection at Room Temperature," Applied Physics Express, vol. 4, p. 072103, 2011.
    [22]T. Onishi, O. Imafuji, K. Nagamatsu, M. Kawaguchi, K. Yamanaka, and S. Takigawa, "Continuous Wave Operation of GaN Vertical Cavity Surface Emitting Lasers at Room Temperature," Quantum Electronics, IEEE Journal of, vol. 48, pp. 1107-1112, 2012.
    [23]M. Ogura, W. Hsin, M. C. Wu, S. Wang, J. R. Whinnery, S. C. Wang, et al., "Surface‐emitting laser diode with vertical GaAs/GaAlAs quarter‐wavelength multilayers and lateral buried heterostructure," Applied Physics Letters, vol. 51, pp. 1655-1657, 1987.
    [24]D. I. Babic and S. W. Corzine, "Analytic expressions for the reflection delay, penetration depth, and absorptance of quarter-wave dielectric mirrors," Quantum Electronics, IEEE Journal of, vol. 28, pp. 514-524, 1992.
    [25]Y.-K. Song, H. Zhou, M. Diagne, I. Ozden, A. Vertikov, A. V. Nurmikko, et al., "A vertical cavity light emitting InGaN quantum well heterostructure," Applied Physics Letters, vol. 74, pp. 3441-3443, 1999.
    [26]Takao Someya,Koichi Tachibana,Jungkeun Lee,Takeshi Kamiya,and Yasuhiko Arakawa, "Lasing Emission from an In0.1Ga0.9N Vertical Cavity Surface Emitting Laser," Japanese Journal of Applied Physics, vol. 37, pp. L1424-L1426, 1998.
    [27]T. Someya, R. Werner, A. Forchel, M. Catalano, R. Cingolani, and Y. Arakawa, "Room Temperature Lasing at Blue Wavelengths in Gallium Nitride Microcavities," Science, vol. 285, pp. 1905-1906, 1999.
    [28]盧廷昌、王興宗,半導體雷射技術,五南圖書,台北,2010。
    [29]廖彥超,「有無電流阻擋層與不同透明導電層材料與厚度對氮化鎵發光二極體電流分佈的影響」,國立台灣科技大學電子工程所碩士學位論文,台北,2011。
    [30]林家煥,「研製擴散型侷限結構之氮化鎵垂直共振腔面射型光源」,國立台灣科技大學電子工程所碩士學位論文,台北,2013。
    [31]A. Motayed, R. Bathe, M. C. Wood, O. S. Diouf, R. D. Vispute, and S. N. Mohammad, "Electrical, thermal, and microstructural characteristics of Ti/Al/Ti/Au multilayer Ohmic contacts to n-type GaN," Journal of Applied Physics, vol. 93, pp. 1087-1094, 2003.
    [32]Z. Z. Chen, Z. X. Qin, C. Y. Hu, X. D. Hu, T. J. Yu, Y. Z. Tong, et al., "Ohmic contact formation of Ti/Al/Ni/Au to n-GaN by two-step annealing method," Materials Science and Engineering: B, vol. 111, pp. 36-39, 2004.
    [33]甯榮椿,「使用感應耦合店將反應式離子蝕刻系統蝕刻氮化矽與氮化鈦:選擇比研究SC1溶液對氮化鈦濕蝕刻速率研究」,國立清華大學材料科學與工程學系碩士學位論文,新竹,2010。
    [34]T. Mattila and R. M. Nieminen, "Point-defect complexes and broadband luminescence in GaN and AlN," Physical Review B, vol. 55, pp. 9571-9576, 1997.
    [35]林晏聖,「以側鍍方法提升四價摻鉻晶體光纖螢光強度之研究」,國立中山大學光電工程研究所碩士論文,高雄,2004。
    [36]李正中,薄膜光學與鍍膜技術,第七版,藝軒出版社,2012。

    QR CODE