簡易檢索 / 詳目顯示

研究生: 李成哲
Cheng-che Li
論文名稱: 反應式濺鍍法製備氮化鎵為主之III族氮化物薄膜及其鎂摻雜之特性探討
Processing and Property Characterization of Undoped and Mg-doped GaN-based III-nitride Thin Films Prepared by Reactive Sputtering
指導教授: 郭東昊
Dong-hau Kuo
口試委員: 周賢鎧
Shyankay Jou
朱瑾
Jinn P. Chu
薛人愷
Ren-kae Shiue
溫政彥
Cheng-yen Wen
學位類別: 博士
Doctor
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 中文
論文頁數: 143
中文關鍵詞: 氮化鎵濺鍍氮化銦鎵鎂摻雜氮化鎵薄膜電特性
外文關鍵詞: GaN, sputtering, InGaN, Mg-doped GaN, thin films, electrical property.
相關次數: 點閱:364下載:23
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究成功的以RF反應式濺鍍法來製備III族氮化物薄膜,如GaN與InGaN等薄膜,濺鍍所需要的靶材則是將不同比例的金屬In、Ga與GaN陶瓷粉末混合後熱壓而成的陶金靶,靶材中的Ga含量需小於GaN含量,避免在熱壓及濺鍍時造成Ga溢流出靶材。除此之外我們將不同含量的金屬Mg粉摻雜進入GaN靶材中,製備出p型的GaN薄膜,最後再將GaN薄膜與摻雜Mg的GaN薄膜堆疊製作成GaN二極體觀察其電特性。於本研究中我們利用EDS、SEM、AFM、XRD、霍爾效應量測儀、UV與PL等儀器來分析薄膜特性,所以本論文的研究主要可以分成四個部分。
    第一部分為利用RF反應式濺鍍法在Si基板上製備GaN薄膜,使用的靶材為Ga + GaN陶金靶,沉積溫度為100 – 400 oC,XRD分析顯示薄膜沿著(10-10)結晶平面成長,屬於纖維鋅礦結構。從霍爾效應量測結果可以得知GaN薄膜的電子濃度為9.61 x 1018 – 1.04 x 1018 cm-3。從UV吸收光譜計算GaN的能隙約為3.0 eV,小於典型GaN的能隙3.4 eV。同時我們也將此薄膜在氮氣氣氛下以900 oC退火1小時,退火後的GaN薄膜特性並無太大改變,證明本研究的GaN薄膜具有良好的熱穩定性。
    第二部分為利用RF反應式濺鍍法在SiO2/Si基板上製備InxGa1-xN薄膜(x = 0.25與0.5),使用靶材為In + Ga + GaN陶金靶,沉積溫度為100 – 400 oC,XRD分析顯示薄膜沿著(10-10)結晶平面成長,屬於纖維鋅礦結構,此繞射峰會隨著薄膜內In含量增加而往低角度偏移。從霍爾效應量測結果可以得知InxGa1-xN薄膜的電子濃度皆在1019 cm-3以上,其電子遷移率從12.1 cm2∙V-1∙s-1下降至5.9 cm2∙V-1∙s-1。而從PL分析中可以得知In0.25Ga0.75N的發光波段為藍光,In0.5Ga0.5N發光波段為綠光,顯示InN與GaN完全固溶形成InGaN三元合金系統。
    第三部分為利用RF反應式濺鍍法在Si基板上製備Mg-x GaN薄膜(x = 0.05、0.1與0.5),使用靶材為Mg + Ga + GaN陶金靶,沉積溫度為400 oC,並在濺鍍時固定氬氣與改變氮氣的流量,觀察改變氮氣流量對薄膜造成的影響,從霍爾效應量測結果可以得知當x = 0.1時,薄膜不需要經過退火程序即可從n型轉變為p型半導體薄膜,電洞濃度為9.37 x 1016 cm-3,遷移率為345 cm2∙V-1∙s-1,導電率為3.23 S∙cm-1。從UV吸收光譜計算Mg-x GaN的能隙約為3.06 – 2.93 eV。
    第四部份則是利用RF反應式濺鍍法將GaN與Mg-GaN薄膜在Pt/Si基板上製備成GaN二極體,同時我們將此二極體在500 oC與氮氣氣氛下退火1小時,並在室溫下量測其電壓-電流曲線,退火前後的二極體都具有良好的整流作用,即使逆向偏壓增加至20 V仍沒有崩潰現象出現,此GaN二極體的理想因子在退火前後其值分別為5.0與4.9,而能障高在退火前後其值分別為0.62與0.64 eV,證明此二極體的性質相當優良。


    In this research, we successfully deposited GaN and InGaN films by RF sputtering with single cermet targets. The targets were made by hot pressing the powder mixture of metallic Ga and In and ceramic GaN. The Ga content in targets was less than the GaN content to avoid the outflow of viscous Ga during hot pressing and sputtering. In addition, we had doped Mg into the GaN cermet target and successfully deposited p-type GaN films by RF sputtering. All the thin films were analysised by EDS, SEM, AFM, XRD, Hall Effect measurement, UV and PL. This study was divided into four parts.
    The first part is about GaN films. The GaN films were deposited on Si substrate by RF sputtering with single (Ga + GaN) cermet target. The deposition temperature was 100 – 400 oC. The XRD results indicated that the GaN films had a wurtzite crystalline structure and grew preferentially with the (10-10) crystal plane. The carrier concentration of GaN films were 9.61 x 1018 – 1.04 x 1018 cm-3. The energy bandgap of GaN films was ~3.0 eV which small than 3.4 eV for the typical GaN. After 900 oC annealing in N2 atmophsere, the GaN films still exhibited excellect thermal stability.
    The second part is about InxGa1-xN films (x = 0.25 and 0.5). The InxGa1-xN films were deposited on SiO2/Si substrate by RF sputtering with single (In + Ga + GaN) cermet target. The deposition temperature was 100 – 400 oC. The XRD results indicated that the InxGa1-xN films films had a wurtzite crystalline structure and grew preferentially with the (10-10) crystal plane. With increasing In content, the 2 peak position gradually shifted to lower angle. All the InxGa1-xN films had a high carrier concentration above 1019 cm-3. The mobility of InxGa1-xN films were decreased from 12.1 to 5.9 cm2∙V-1∙s-1. The PL showed that InxGa1-xN had blue and green light-emitting capabilities.
    The third part is about Mg-x GaN films (x = 0.05, 0.1 and 0.15). The Mg-x GaN films were deposited on Si substrate by RF sputtering with single (Mg + Ga + GaN) cermet target. The deposition temperature was 400 oC. We also changed the Ar/N2 flex during the sputtering to investigate the properties of Mg-GaN films. As x = 0.1, the film has transformed into p-type conductivity and has the carrier concentration of 9.37 x 1016 cm-3, the highest mobility of 344.6 cm2∙V-1∙s-1, and the highest conductivity of 3.23 S∙cm-1. The energy bandgap of Mg-GaN films were 3.06 – 2.93 eV.
    The final part is about GaN p-n diode. The p-n diode was made on Pt/Si substrate by RF sputtering. The p-n diode was annealed at 500 oC in N2 atmophsere for 1 hr. The current-voltage (I-V) curves of the as-grown and 500 oC-annealed p-n diode tested at room temperature. The I-V curve exhibited exllent rectifying behavior. There were no irreversible breakdowns occurred, though the reverse voltage has increased to 20 V. The ideality factors of the as-grown and 500 oC-annealed diodes were 5.0 and 4.9, respectively. The barrier heights of the as-grown and annealed diodes were 0.62 eV and 0.64 eV, respectively.

    摘要 I Abstract IV 誌謝 VI 目錄 VIII 圖目錄 XI 表目錄 XVII 第一章 緒論 1.1前言 1.2 研究動機與目的 第二章 文獻回顧與原理 2.1 氮化鎵 (Gallium nitride, GaN)介紹 2.2 氮化銦與氮化銦鎵 (Indium nitride, InN, and Indium gallium nitride, InGaN)介紹 2.3 摻雜鎂之氮化鎵 (Magnesium doped gallium nitride, Mg-doped GaN)介紹 2.4 薄膜成長理論簡介 第三章 實驗方法與步驟 3.1 實驗材料及規格 3.2 實驗儀器說明 3.2.1 高溫真空管型爐系統 3.2.2 真空熱壓機 3.2.3 超音波震盪機 3.2.4 RF反應式濺鍍系統 3.3 實驗步驟 3.3.1 靶材粉末配置 3.3.2 熱壓靶材 3.3.3 基板裁切與清洗 3.3.4 薄膜濺鍍 3.3.5 製備元件 3.3.6 試片、元件退火 3.3.7 薄膜特性量測 3.4 分析儀器介紹及量測參數 3.4.1 高功率X光繞射儀 (High Power X-Ray Diffractometer, XRD) 3.4.2 高解析度場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FESEM) 3.4.3 原子力顯微鏡 (Atomic Force Microscope, AFM) 3.4.4 霍爾效應量測系統 (Hall Effect Measurement System) 3.4.5 紫外光、可見光/近紅外光分析儀(UV-Vis/NIR spectrophotometer, UV) 3.4.6 光致螢光光譜儀 (Photoluminescence, PL) 3.4.7 半導體裝置分析儀 (Semiconductor Device Parameter Analyzer) 第四章 結果與討論 4.1 GaN薄膜特性分析及探討 4.1.1 GaN薄膜成分分析 4.1.2 GaN薄膜表面與橫截面之SEM分析 4.1.3 GaN薄膜之AFM分析 4.1.4 GaN薄膜之XRD分析 4.1.5 GaN薄膜之霍爾效應電性量測 4.1.6 GaN薄膜之光學性質分析 4.2 InGaN薄膜特性分析及探討 4.2.1 InGaN薄膜成分分析 4.2.2 InGaN薄膜SEM分析 4.2.3 InGaN薄膜AFM分析 4.2.4 InGaN薄膜XRD分析 4.2.5 InGaN薄膜之霍爾效應電性量測 4.2.6 InGaN薄膜之光學性質分析 4.3摻雜Mg之GaN薄膜特性分析及探討 4.3.1摻雜Mg之GaN薄膜成分分析 4.3.2 摻雜Mg之GaN薄膜SEM分析 4.3.3 摻雜Mg之GaN薄膜AFM分析 4.3.4 摻雜Mg之GaN薄膜XRD分析 4.3.5 摻雜Mg之GaN薄膜之霍爾效應電性量測 4.3.6 摻雜Mg之GaN薄膜光學性質分析 4.4 GaN二極體電性分析及探討 第五章 結論 參考文獻

    [1] Nick Holonyak Jr., S. F. Bevacqua, Appl. Phys. Lett. 1 (1962) 82–83.
    [2] S. Nakamura, T. Mukai, M. Senoh, N. Iwasa, Jpn. J. Appl. Phys. 31 (1992) 139–142.
    [3] S. Nakamura, M. Senoh, S. Nagahama, N. Iwasa, T. Yamada, T. Matsushita, H. Kiyoku,Y. Sugimoto, Jpn. J. Appl. Phys. 35 (1996) 74–76.
    [4] 郭浩中、賴芳儀、郭守義著,【LED原理與應用】,五南圖書出版公司,2009年。
    [5] S. C. Jain, M. Willander, J. Narayan, R. Van Overstraeten, J. Appl. Phys. 87 (2000) 965–1006.
    [6] I. Daumiller, C. Kirchner, M. Kamp, K. J. Ebeling, E. Kohn, IEEE Electron Dev. Lett. 20 (1999) 448–450.
    [7] S. C. Binari, K. Doverspike, G. Kelner, H. B. Dietrich, A. E. Wickenden, Solid-State Electron. 41 (1997) 177–180.
    [8] H. Morkoc, A. D. Carlo, and R. Cingolani, Solid-State Electron. 46 (2002) 157–202.
    [9] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, F. Karouta, J. Cryst. Growth 241 (2002) 15–18.
    [10] P. M. Asbeck, E. T. Yu, S. S. Lau, W. Sun, X. Dang, C. Shi, Solid-State Electron. 44 (2000) 211–219.
    [11] B. F. Chu-Kung, M. Feng, G. Walter, N. Holonyak Jr., T. Chung, J. H. Ryou, J. Limb, D. Yoo, S. C. Shen, R. D. Dupuis, D. Keogh, P. M. Asbeck, Appl. Phys. Lett. 89 (2006) 082108.
    [12] J. T. Torvik, J. I. Pankove, B. Van Zeghbroeck, Solid-State Electron. 44 (2000) 1229–1233.
    [13] K. Kumakura, T. Makimoto, Appl. Phys. Lett. 92 (2008) 093504.
    [14] U. K. Mishra, P. Parikh, Y. F. Wu, Proc. IEEE 90 (2002) 1022–1031.
    [15] X. L. Wang, C. M. Wang, G. X. Hu, J. X. Wang, T. S. Chen, G. Jiao, J. P. Li, Y. P. Zeng, J. M. Li, Solid-State Electron. 49 (2005) 1387–1390.
    [16] M. Kanamura, T. Ohki, T. Kikkawa, K. Imanishi, T. Imada, A. Yamada, N. Hara, IEEE Electron Dev. Lett. 31 (2010) 189–191.
    [17] C. S. Gallinat, G. Koblmuller, J. S. Brown, S. Bernardis, J. S. Speck, G. D. Chern, E. D. Readinger, H. Shen, M. Wraback, Appl. Phys. Lett. 89 (2006) 032109.
    [18] T. Inushima, M. Higashiwaki, T. Matsui, Phys. Rev. B 68 (2003) 235204.
    [19] G. Shikata, S. Hirano, T. Inoue, M. Orihara, Y. Hijikata, H. Yaguchi, S. Yoshida, J. Cryst. Growth 301–302 (2007) 517–520.
    [20] H. Yamashita, K. Fukui, S. Misawa, S. Yoshida, J. Appl. Phys. 50 (1979) 896–898.
    [21] W. M. Yim, E. J. Stofko, P. J. Zanzucchi, J. I. Pankove, M. Ettenberg, S. L. Gilbert, J. Appl. Phys. 44 (1973) 292–296.
    [22] 呂彥興,【氧化鋅鎵薄膜成長在氮化鎵發光二極體上之應用】,國立成功大學碩士論文,民國96年7月。
    [23] H. Amano, N. Sawaki, I. Akasaki, Y. Toyoda, Appl. Phys. Lett. 48 (1986) 353–355.
    [24] S. Nakamura, Jpn. J. Appl. Phys. 30 (1991) 1705–1707.
    [25] M. E. Lin, S. Strite, A. Agarwal, A. Salvador, G. L. Zhou, N. Teraguchi, A. Rockett, H. Morkoc, J. Appl. Phys. 62 (1993) 702–704.
    [26] W. C. Johnson, J. B. Parson, M. C. Crew, J. Phys. Chem. 36 (1932) 2651–2654.
    [27] H. P. Maruska, J. J. Tietjen, Appl. Phys. Lett. 15 (1969) 327–329.
    [28] Rudiger Quay, Gallium Nitride Electronics, Springer (2008) pp. 4.
    [29] S. Yoshida, S. Misawa, S. Gonda, Appl. Phys. Lett. 42 (1983) 427–429.
    [30] Q. Sun, J. Han, Proc. SPIE 7617 (2010) 761717.
    [31] 蔡妙嬋,【氮化銦鎵藍光發光二極體極化效應之研究】,國立彰化師範大學碩士論文,民國97年6月。
    [32] T. Takayama, M. Yuri, K. Itoh, J. S. Harris, Jr., Appl. Phus. Lett. 90 (2001) 2358–2369.
    [33] 賴彥霖,【氮化銦鎵(類量子點)/氮化鎵多重量子井之微結構與光學性質之研究】,國立成功大學博士論文,民國95年12月。
    [34] M. Razeghi, M. Henini, Optoelectronic Devices: III-Nitrides, Kidlington, Oxford: Elsevier Ltd (2004) pp. 3.
    [35] J. Piprek, Nitride Semiconductor Devices: Principles and Simulation, Weinheim: WILEY-VCH Verlag GmbH & Co. KGaA (2007) pp. 7.
    [36] I. Vurgaftman, J. R. Meyer, J. Appl. Phys. 94 (2003) 3675–3696.
    [37] M. Higashiwaki, T. Matsui, J. Cryst. Growth 269 (2004) 162–166.
    [38] Z. X. Zhang, X. J. Pan, T. Wang, E. Q. Xie, L. Jia, J. Alloys Compd. 467 (2009) 61–64.
    [39] H. W. Kim, N. H. Kim, Appl. Surf. Sci. 236 (2004) 192–197.
    [40] H. Shinoda , N. Mutsukura, Thin Solid Films 516 (2008) 2837–2842.
    [41] M. Junaid, C. L. Hsiao, J. Palisaitis, J. Jensen, P. O. A. Persson, L. Hultman, J. Birch, Appl. Phys. Lett. 98 (2011) 141915.
    [42] 唐慈淯,【鎂摻雜氮化銦鎵之成長及特性】,私立長庚大學碩士論文,民國95年7月。
    [43] R. Juza, H. Hahn, Z. Anorg. Allg. Chem. 239 (1938) 282–287.
    [44] S. P. Fu, Y. F. Chen, Appl. Phys. Lett. 85 (2004) 1523 –1525.
    [45] W. Lanford, V. Kumar, R. Schwindt, A. Kuliev, I. Adesida, A. M. Dabiran, A. M. Wowchak, P. P. Chow, J.-W. Lee, Electron. Lett. 40 (2004) 771–772.
    [46] N. Okamoto, K. Hoshino, N. Hara, M. Takikawa,Y. Arakaw, J. Cryst. Growth 272 (2004) 278–284.
    [47] V. W. L. Chin, T. L. Tansley, T. Osotchan, J. Appl. Phys. 75 (1994) 7365–7372.
    [48] N. Saitoa, Y. Igasaki, Appl. Surf. Sci. 169–170 (2001) 349–352.
    [49] T. L. Tansley, C. P. Foley, Electron. Lett. 20 (1984) 1066–1068.
    [50] D. H. Kuo, C. H. Shih, Appl. Phys. Lett. 93 (2008) 164105.
    [51] S. Inoue, T. Namazu, T. Suda, K. Koterazawa, Vacuum 74 (2004) 443–448.
    [52] R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phus. Lett. 94 (2009) 063505.
    [53] R. Singh, D. Doppalapudi, T. D. Moustakas, L. T. Romano, Appl. Phys. Lett. 70 (1997) 1089–1091.
    [54] W. C. Tsai, H. Lin, W. C. Ke, W. H. Chang, W. C. Chou, W. K. Chen, M. C. Lee, Phys. Stat. Sol. C 5 (2008) 1702–1705.
    [55] B. Liu, W. Luo, R. Zhang, Z. Zou, Z. Xie, Z. Li, D. Chen, X. Xiu, P. Han, Y. Zheng, Phys. Stat. Sol. C 7 (2010) 1817 – 1820.
    [56] Q. Guo, Y. Kusunoki, Y. Ding, T. Tanaka, M. Nishio, Jpn. J. Appl. Phys. 49 (2010) 081203.
    [57] 田民波、呂輝宗、溫坤禮著,【白光LED照明技術】,五南圖書出版公司,2011年。
    [58] H. Amano, M. Kito, K. Hiramatsu, I. Akasaki, Jpn. J. Appl. Phys. 28 (1989) 2112–2114.
    [59] Y. Chen, H. Wu, G. Yue, Z. Chen, Z. Zheng, Z. Wu, G. Wang, H. Jiang, Appl. Phys. Express 6 (2013) 041001.
    [60] G. Kipshidze, V. Kuryatkov, B. Borisov, Y. Kudryavtsev, R. Asomoza, S. Nikishin, H. Temkin, Appl. Phys. Lett. 80 (2002) 2910–2912.
    [61] X. Zhang, S. J. Chua, P. Li, K. B. Chong, W. Wang, Appl. Phys. Lett. 73 (1998) 1772–1774.
    [62] S. N. Lee, T. Sakong, W. Lee, H. Paek, J. Son, E. Yoon, O. Nam, Y. Park, J. Cryst. Growth 261 (2004) 249–252.
    [63] I. P. Smorchkova, E. Haus, B. Heying, P. Kozodoy, P. Fini, J. P. Ibbetson, S. Keller, S. P. DenBaars, J. S. Speck, U. K. Mishra, Appl. Phys. Lett. 76 (2000) 718–720.
    [64] X. Yanhui, H. Jun, L. Jianping, N. Nanhui, D. Jun, Litong, S. Guangdi, Vacuum 82 (2008) 1–4.
    [65] 陳靜怡,【氧化鋅中介層對ITO透明導電膜性質之影響】,國立成功大學碩士論文,民國91年6月。
    [66] J. A. Venables, G. D. Spiller, M. Hanbucken, Rep. Prog. Phys. 47 (1984) 399–459.
    [67] S. Suwanboon, P. Amornpitoksuk, A. Haidoux, J. C. Tedenac, J. Alloys Compd. 462 (2008) 335–339.
    [68] S. Muthukumaran, R. Gopalakrishnan, Opt. Mater. 34 (2012) 1946–1953.
    [69] S. Strite, H. Morkoc, J. Vac. Sci. Technol. B 10 (1992) 1237–1266.
    [70] J. Y. Huang, H. Zheng, S. X. Mao, Q. Li, G. T. Wang, Nano Lett. 11 (2011) 1618–1622.
    [71] B. Heying, E. J. Tarsa, C. R. Elsass, P. Fini, S. P. DenBaars, J. S. Speck, J. Appl. Phys. 85 (1999) 6470–6476.
    [72] I. Chyr, B. Lee, L. C. Chao, A. J. Steckl, J. Vac. Sci. Technol. B 17 (1999) 3063–3067.
    [73] J. E. Northrupa, L. T. Romano, J. Neugebauer, Appl. Phys. Lett. 74 (1999) 2319–2321.
    [74] T. Mattila, R. M. Nieminen, Phys. Rev. B 54 (1996) 16676–16681.
    [75] E. C. Knox-Davies, S. J. Henley, J. M. Shannon, S. R. P. Silva, J. Appl. Phys. 99 (2006) 036108.
    [76] M. G. Ganchenkova, R. M. Nieminen, Phys. Rev. Lett. 96 (2006) 196402.
    [77] P. Perlin, T. Suski, H. Teisseyre, M. Leszcznski, I. Grzegory, J. Jun, S. Porowski, P. Bogusławski, J. Bernholc, J. C. Chervin, A. Polian, T. D. Moustakas, Phys. Rev. Lett. 75 (1995) 296–299.
    [78] P. Bogusławski, E. L. Briggs, J. Bernholc, Phys. Rev. B 51 (1995) 17255–17258.
    [79] I. Gorczyca, A. Svane, N. E. Christensen, Solid State Commun. 101 (1997) 747–752.
    [80] E. Oh, H. Park, Y. Park, Appl. Phys. Lett. 72 (1998) 1848–1850.
    [81] M. A. Reshchikov, G. C. Yi, B. W. Wessels, Phys. Rev. B 59 (1999) 13176–13183.
    [82] H. K. Cho, J. Y. Lee, K. S. Kim, G. M. Yang, J. Cryst. Growth 220 (2000) 197–203.
    [83] Y. Z. Tong, F. Li, G. Y. Zhang, Z. J. Yang, S. X. Jin, X. M. Ding, Z. Z. Gan, Solid State Commun. 109 (1999) 173–176.
    [84] Y. Huang, A. Melton, B. Jampana, M. Jamil, J. H. Ryou, R. D. Dupuis, I. T. Ferguson, J. Photon. Energy 2 (2012) 028501.
    [85] B. N. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lette. 93 (2008) 182107.
    [86] S. R. Jian, J. S. C. Jang, Y. S. Lai, P. F. Yang, C. S. Yang, H. C. Wen, C. H. Tsai, Mater. Chem. Phys. 109 (2008) 360–364.
    [87] Y. K. Kuo, B. T. Liou, S. H. Yen, H. Y.Chu, Opt. Commun. 237 (2004) 363–369.
    [88] I. Ho, G. B. Stringfellow, Appl. Phys. Lett. 69 (1996) 2701–2703.
    [89] R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 94 (2009) 063505.
    [90] W. M. Linhart, O. Tuna, T. D. Veal, J. J. Mudd, C. Giesen, M. Heuken, C. F. McConville, Phys. Stat. Sol. C 9 (2012) 662–665.
    [91] L. Hsu, R. E. Jones, S. X. Li, K. M. Yu, W. Walukiewicz, J. Appl. Phys. 102 (2007) 073705.
    [92] K. S. A. Butcher, H. Hirshy, R. M. Perks, M. Wintrebert-Fouquet, P. P-T. Chen, Phys. Stat. Sol. A 203 (2006) 66–74.
    [93] W. C. Ke, S. R. Jian, I. C. Chen, J. S. C. Jang, W. K. Chen, J. Y. Juang, Mater. Chem. Phys. 136 (2012) 796–801.
    [94] C. R. Lee, J. Y. Leem, S. K. Noh, S. E. Park, J. I. Lee, C. S. Kim, S. J. Son, K. Y. Leem, J. Cryst. Growth 193 (1998) 300–304.
    [95] M. Lachab, D. H. Youn, R. S. Qhalid Fareed, T. Wang, S. Sakai, Solid-State Electron. 44 (2000) 1669–1677.
    [96] K. S. Kim, G. M. Yang, H. J. Lee, Solid-State Electron. 43 (1999) 1807–1812.
    [97] U. Kaufmann, M. Kunzer, M. Maier, H. Obloh, A. Ramakrishnan, B. Santic, P. Schlotter, Appl. Phys. Lett. 72 (1998) 1326–1328.
    [98] 江博仁,【矽離子佈植於p 型氮化鎵之特性研究】,國立中央大學碩士論文,民國91年6月。
    [99] P. H. Lim, B. Schineller, O. SchoKn, K. Heime, M. Heuken, J. Cryst. Growth 205 (1999) 1–10.
    [100] R. K. Gupta, F. Yakuphanoglu, K. Ghosh, P. K. Kahol, Microelectron. Eng. 88 (2011) 3067–3069.
    [101] C. K. Ramesh, V. R. Reddy, C. J. Choi, Mater. Sci. Eng., B 112 (2004) 30–33.
    [102] Y. J. Liu, D. F. Guo, K. Y. Chu, S. Y. Cheng, J. K. Liou, L. Y. Chen, T. H. Tsai, C. C. Huang, T. Y. Chen, C. S. Hsu, T. Y. Tsai, W. C. Liu, Display 32 (2011) 330–333.
    [103] M. L. Lee, J. K. Sheu, L. S. Yeh, M. S. Tsai, C. J. Kao, C. J. Tun, S. J. Chang, G. C. Chi, Solid-State Electron. 46 (2002) 2179–2183.

    QR CODE