簡易檢索 / 詳目顯示

研究生: 林羿君
Yi-Chun Lin
論文名稱: 銀改質光觸媒薄膜及其光催化活性與親水性機制之探討
Study on Photocatalytic Activity and Hydrophilic Mechanism of Silver-modified Titania Thin Film
指導教授: 曾堯宣
Yao-Hsuan Tseng
口試委員: 顧洋
Young Ku
胡啟章
Chi-Chang Hu
謝育民
Yu-Ming Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 143
中文關鍵詞: 銀改質二氧化鈦薄膜浸鍍法親水性親水機制自我潔淨
外文關鍵詞: silver-modified, titania film, dip-coating, hydrophilicity, hydrophilic mechanism, self-cleaning
相關次數: 點閱:354下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究係以浸鍍法製備銀改質二氧化鈦薄膜,期望以簡易的方式製備出具有光誘導親水性的光觸媒薄膜,藉由參數的調整,找出最適當的銀摻雜量,並進一步探討光觸媒薄膜之親水機制及自我潔淨之應用。
    實驗中先找出二氧化鈦溶膠濃度及薄膜鍛燒溫度之最佳參數,再進行製備不同銀含量之二氧化鈦薄膜,進一步進行物性分析及光催化活性與光誘導親水性測試,找出其物性與光催化活性及親水性之相關性。物性分析中以XRD、Raman、UV-Vis、SEM、AFM、XPS、FTIR等儀器進行檢測,分析光觸媒薄膜其結晶性、穿透度、表面形貌結構、以及表面官能基對光催化活性及光誘導親水性之影響,並藉由物性分析探討其親水機制。光催化活性中則分為液相及氣相光催化進行測試,其中液相係為於紫外光激發下測試其對亞甲基藍的降解效率,而氣相則為於紫外光激發下探討其對於氮氧化物氧化的效率。另外,將光觸媒薄膜鍍上油性汙染物確認其自我潔淨能力以及放置不同黑暗環境下其親水性之維持時間。
    實驗結果顯示當二氧化鈦溶膠濃度為10 wt%以及鍛燒溫度為300℃為最佳之製備參數,隨後摻入適量(0.5 wt%)的銀改質二氧化鈦能有效提升光催化活性。由物性分析結果可知,適當的銀離子能夠有效地抑制電子與電洞對再結合,使得光催化活性提升。在光誘導親水性實驗中得知銀含量於1.0 wt%時,光觸媒薄膜在不需紫外光誘導下即有親水特性,且持續的照射紫外光,可維持其親水狀態。由FTIR物性分析可知,適量的銀摻入能有助於光觸媒試片吸附水之能力,於光觸媒表面形成水膜,使得表面達親水性。在紫外光誘導下,光觸媒薄膜表面產生更多OH基,進而吸附更多水分子,使其快速地達成超親水狀態。自我潔淨實驗結果顯示,銀改質二氧化鈦薄膜,因表面水膜之效應能有效抑制油性汙染物附著,且再經由紫外光照射及水洗步驟後,能有效移除油性物染物。在高濕度環境下,銀改質二氧化鈦薄膜能維
    持其親水狀態,主要係因為薄膜表面之水膜維持性最佳,能抑制空氣中之氧氣或水氣取代表面之OH基,使光觸媒表面能長期維持親水狀,而提升其實用性。


    In the study, the silver-modified titania film was easily prepared by dip-coating method with using a silver nitrate-containing TiO2 sol. The Ag-TiO2 film, which was calcined at 300 oC with using 10 wt% TiO2 sol containing 0.5-1.0 wt% of silver nitrate, exhibited highly photocatalytic activity for the degradation of gaseous NOx and decolorization of aqueous methylene blue, and photo-induced hydrophilicity under UV illumination. The effects of concentration of TiO2 sol, calcination temperature, concentration of silver nitrate on photoactivity, photo-induced hydrophilicity, and physical property were investigated in detail for the clarification of photocatalytic activity and hydrophilic mechanism.
    Physical properties of the film were determined by X-ray diffractometer (XRD), Raman spectroscopy, ultraviolet-visible absorption spectrometry (UV-Vis)、scanning electron microscope (SEM), atomic force microscopy (AFM), X-ray photoelectron spectroscopy (XPS), and Fourier transform infrared spectrometry (FTIR), respectively. These results indicated the differences among prepared films in the crystal structure, surface morphology, functional group, and light absorption. In addition, the oil pollutant was applied to investigate self-cleaning property and the sustainability of hydrophilicity in different dark conditions.
    The results indicated the titania film with 1.0 wt% of silver has best wettability without UV illumination and also can reduce the adhesion between oil pollutant and film. The oil on the surface was further degraded and removed by UV illumination and washing with water. Silver ions herein retarded the electrons-hole recombination rate and enhance the adsorption of water molecule on the titania surface, resulting in the excellent wettability. The mechanism of photo-induced hydrophilicity is that plenty OH groups is formed under illumination and they can adsorb water molecules to form water film. The silver-modified titania film already had the water film without UV illumination due to its surface functional groups, so the adhesion of oil pollutant to film was restrained. Silver-modification can keep the titania film hydrophlic for a long time in a humid dark environment. The OH groups on silver-modified titania film had more resistance to oxygen and water molecules in air, resulting in the increase in its practicability.

    摘要 I Abstract III 目錄 V 圖目錄 X 表目錄 XVII 第一章 前言 1 1.1 二氧化鈦簡介 1 1.2 二氧化鈦薄膜簡介 4 1.3 光催化原理 7 1.4 光觸媒親水性原理 8 1.5 研究動機 9 第二章 文獻回顧 11 2.1 二氧化鈦薄膜之親水機制文獻回顧 11 2.2 銀改質二氧化鈦薄膜之親水機制文獻回顧 38 第三章 研究方法 45 3.1 實驗規劃 45 3.2 實驗藥品 46 3.3 實驗儀器設備 47 3.4 實驗藥品製備 51 3.5 光催化反應測試 52 3.5.1 亞甲基藍脫色實驗 52 3.5.2 氮氧化物光催化降解實驗 53 3.6 自我潔淨反應測試 55 3.6.1 光誘導性接觸角測試 55 3.6.2 不同環境之暗處接觸角維持 56 3.6.3 油汙分解及水洗移除測試 56 第四章 結果與討論 58 4.1 二氧化鈦溶膠濃度之影響 58 4.1.1 光催化特性分析 58 [A] 光催化降解亞甲基藍脫色實驗 58 [B] 光催化降解氮氧化物實驗 60 [C] 光誘導親水性實驗 63 4.1.2 表面結構分析 66 [A] X光繞射分析 66 [B] 拉曼光譜分析 68 [C] 高解析度場發射掃描式電子顯微鏡 69 [D] 原子力顯微鏡 71 4.1.3 官能基與光學特性分析 73 [A] X光線光電子能譜儀 73 [B] 光激發螢光 75 [C] 傅立葉轉換紅外線光譜儀 76 [D] 紫外-可見光光譜儀 79 4.2 鍛燒溫度之影響 81 4.2.1 光催化特性分析 81 [A] 光催化降解亞甲基藍脫色實驗 81 [B] 光催化降解氮氧化物實驗 83 [C] 光誘導親水性實驗 85 4.2.2 表面結構分析 88 [A] X光繞射分析 88 [B] 拉曼光譜分析 89 [C] 高解析度場發射掃描式電子顯微鏡 91 [D] 原子力顯微鏡 93 4.2.3 官能基與光學特性分析 96 [A] 紫外-可見光光譜儀 96 [B] X光線光電子能譜儀 97 [C] 傅立葉轉換紅外線光譜儀 99 4.3 硝酸銀含量之影響 100 4.3.1 金屬擔載量 100 4.3.2 光催化特性分析 101 [A] 光催化降解亞甲基藍脫色實驗 101 [B] 光催化降解氮氧化物實驗 102 [C] 光誘導親水性實驗 104 4.3.3 表面結構分析 106 [A] X光繞射分析 106 [B] 拉曼光譜分析 108 [C] 高解析度場發射掃描式電子顯微鏡 108 [D] 原子力顯微鏡 111 4.3.4 官能基與光學特性分析 114 [A] 紫外-可見光光譜儀 114 [B] X光線光電子能譜儀 116 [C] 傅立葉轉換紅外線光譜儀 117 4.4 光觸媒薄膜之親水機制及自我潔淨效果 120 4.4.1 光誘導親水機制分析 120 4.4.2 光強度對光誘導親水性的影響 123 4.4.3 H2O2處理對光誘導親水性的影響 125 4.4.4 油汙分解實驗 128 4.4.5 水洗移除測試實驗 131 4.4.6 不同環境之親水性維持 131 第五章 結論與未來展望 133 5.1 結論 133 5.1.1 二氧化鈦溶膠濃度之影響 133 5.1.2 鍛燒溫度之影響 133 5.1.3 硝酸銀含量之影響 134 5.1.4 光觸媒薄膜之親水機制及自我潔淨 134 5.2 未來展望 135 第六章 參考文獻 138  

    [1] S.H. Nam, S.J. Cho, C.K. Jung, J.H. Boo, J. Šicha, D. Heřman, J. Musil, J. Vlček, “Comparison of hydrophilic properties of TiO2 thin films prepared by sol–gel method and reactive magnetron sputtering system”, Thin Solid Films 519, pp. 6944 – 6950 (2011)
    [2] M.H. Chan, W.Y. Ho, D.Y. Wang, F.H. Lu, “Characterization of Cr-doped TiO2 thin films prepared by cathodic arc plasma deposition”, Surface & Coatings Technology 202, pp. 962 – 966 (2007)
    [3] E. Aubry, V. Demange, A. Billard, “Effect of the internal stress relaxation during the post-annealing on the photo-induced properties of TiO2 coatings reactively sputtered”, Surface & Coatings Technology 202, pp. 6120 – 6126 (2008)
    [4] S.D. Sharma, D. Singh, K.K. Saini, C. Kant, V. Sharma, S.C. Jain, C.P. Sharma, “Sol–gel-derived super-hydrophilic nickel doped TiO2 film as active photo-catalyst”, Applied Catalysis A: General 314, pp. 40 – 46 (2006)
    [5] M. Houmard, G. Berthome, J.C. Joud, M. Langlet, “Enhanced cleanability of super-hydrophilic TiO2–SiO2 composite surfaces prepared via a sol–gel route”, Surface Science 605, pp. 456 – 462 (2011)
    [6] Q. Ye, P.Y. Liu, Z.F. Tang, L. Zhai, “Hydrophilic properties of nano-TiO2 thin films deposited by RF magnetron sputtering”, Vacuum 81, pp. 627 – 631 (2007)
    [7] M. Kazemi, M.R. Mohammadizadeh, “Superhydrophilicity and photocatalytic activity of sol–gel deposited nanosized titania thin films”, Thin Solid Films 519, pp. 6432 – 6437 (2011)
    [8] M. Takeuchi, K. Sakamoto, G. Martra, S. Coluccia, M. Anpo, “Mechanism of photoinduced superhydrophilicity on the TiO2 photocatalyst surface”, The Journal of Physical Chemistry B 109, pp. 15422 – 15428 (2005)
    [9] A.I. Kontos, A.G. Kontos, D.S. Tsoukleris, G.D. Vlachos, P. Falaras, “Superhydrophilicity and photocatalytic property of nanocrystalline titania sol–gel films”, Thin Solid Films 515, pp. 7370 – 7375 (2007)
    [10] A. Borra’s, C. Lo’pez, V. Rico, F. Gracia, A. R. Gonza’lez-Elipe, E. Richter, G. Battiston, R. Gerbasi, N. McSporran, G. Sauthier, E. Gyo1rgy, A. Figueras, “Effect of visible and uv illumination on the water contact angle of TiO2 thin films with incorporated nitrogen”, The Journal of Physical Chemistry C 111, pp. 1801 – 1808 (2007)
    [11] R. Wang, N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, “Studies of surface wettability conversion on TiO2 single-crystal Surfaces”, The Journal of Physical Chemistry B 103, pp. 2188 – 2194 (1999)
    [12] R. Jribi, E. Barthel, H. Bluhm, M. Grunze, P. Koelsch, D. Verreault, E. Sondergard, “Ultraviolet irradiation suppresses adhesion on TiO2”, The Journal of Physical Chemistry C 113, pp. 8273 – 8277 (2009)
    [13] M. Miyauchi, N. Kieda, S. Hishita, T. Mitsuhashi, A. Nakajima, T. Watanabe, K. Hashimoto, “Reversible wettability control of TiO2 surface by light irradiation”, Surface Science 511, pp. 401 – 407 (2002)
    [14] H. Choi, E. Stathatos, D.D. Dionysiou, “Synthesis of nanocrystalline photocatalytic TiO2 thin films and particles using sol–gel method modified with nonionic surfactants”, Thin Solid Films 510, pp. 107 – 114 (2006)
    [15] J.C. Yu, J. Yu, W. Ho, J. Zhao, “Light-induced super-hydrophilicity and photocatalytic activity of mesoporous TiO2 thin films”, Journal of Photochemistry and Photobiology A: Chemistry 148 , pp. 331 –339 (2002)
    [16] H.Y. Lee, Y.H. Park, K.H. Ko, “Correlation between Surface Morphology and Hydrophilic/Hydrophobic Conversion of MOCVD-TiO2 Films”, Langmuir 16, pp. 7289 – 7293 (2000)
    [17] E. Quagliarini, F. Bondioli, G.B. Goffredo, A. Licciulli, P. Munaf, “Self-cleaning materials on architectural heritage: compatibility of photo-induced hydrophilicity of TiO2 coatings on stone surfaces”, Journal of Cultural Heritage 14 , pp. 1 – 7 (2012)
    [18] B. Liu, L. Wen, X. Zhao, “The surface change of TiO2 film induced by UV illumination and the effects on UV–vis transmission spectra”, Applied Surface Science 255, pp. 2752 – 2758 (2008)
    [19] Z.W. Zhao, B.K. Tay, “Study of nanocrystal TiO2 thin films by thermal annealing” , J Electroceram 16, pp. 489 – 493 (2006)
    [20] R. Mechiakh, N.B. Sedrine, J.B. Naceur, R. Chtourou, “Elaboration and characterization of nanocrystalline TiO2 thin films prepared by sol–gel dip-coating”, Surface & Coatings Technology 206, pp. 243 –249 (2011)
    [21] F. Meng, Z. Sun, “A mechanism for enhanced hydrophilicity of silver nanoparticles modified TiO2 thin films deposited by RF magnetron sputtering”, Applied Surface Science 255, pp. 6715 –6720 (2009)
    [22] M. Piispanen, L. Hupa, “Comparison of self-cleaning properties of three titania coatings on float glass”, Applied Surface Science 258, pp. 1126 – 1131 (2011)
    [23] X. Wang, X. Hou, W. Luan, D. Li, K. Yao, “The antibacterial and hydrophilic properties of silver-doped TiO2 thin films using sol–gel method”, Applied Surface Science 258, pp. 8241 – 8246 (2012)
    [24] A.A. Ismail, “Facile synthesis of mesoporous Ag-loaded TiO2 thin film and its photocatalytic properties”, Microporous and Mesoporous Materials 149, pp. 69 – 75 (2012)
    [25] C. Srisitthiratkul, V. Pongsorrarith, N. Intasanta, “The potential use of nanosilver-decorated titanium dioxide nanofibers for toxin decomposition with antimicrobial and self-cleaning properties”, Applied Surface Science 257, pp. 8850 – 8856 (2011)
    [26] B. Tryba, M. Piszcz, A.W. Morawski, “Photocatalytic and self-cleaning properties of Ag-doped TiO2”, The Open Materials Science Journal 4, pp. 5 – 8 (2010)
    [27] N. Sakai, A. Fujishima, T. Watanabe, K. Hashimoto, “Quantitative evaluation of the photoinduced hydrophilic conversion properties of TiO2 thin film surfaces by the reciprocal of contact angle”, The Journal of Physical Chemistry B 107, pp. 1028 – 1035 (2003)
    [28] T. Hirakawa, Y. Nosaka, “Properties of O2.- and OH. formed in TiO2 aqueous suspensions by photocatalytic reaction and the influence of H2O2 and some ions”, Langmuir 18, pp.3247 – 3254 (2002)
    [29] H.W.P. Carvalhoa, A.P.L. Batista, P. Hammer, T.C. Ramalho, “Photocatalytic degradation of methylene blue by TiO2–Cu thin films: theoretical and experimental study”, Journal of Hazardous Materials 184, pp. 273 – 280 (2010)
    [30] T. Hirakawa, K. Yawata, Y. Nosaka, “Photocatalytic reactivity for O2.- and OH. radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition”, Applied Catalysis A: General 325, pp. 105 – 111 (2007)
    [31] 陳永芳,以四異丙醇鈦為前驅物利用化學氣相沉積法和水解法製備二氧化鈦,國立交通大學應用化學系博士論文,(2003)
    [32] M. Lazzeri, A. Vittadini, A. Selloni, “Structure and energetics of stoichiometric TiO2 anatase surfaces”, Physical Review B 63, (2001)
    [33] 陳富亮,最新奈米光觸媒應用技術,普林斯頓國際有限公司出版,(2003)
    [34] Y.H. Tseng, S.L. Liu, C.S. Kuo, C.H. Huang, Y.L. Huang, Y.Y. Li, T. Sano, N. Negishi, S. Matsuzawa, “Preparation of nano-sized TiO2 sol and its visible-light-responsive photocatalysis in aquatic state”, Micro & Nano Letters, Volume 1, Issue 2, pp. 116 – 119 (2006)
    [35] 藤嶋昭,橋本和仁,渡部俊也,吳紀聖,圖解光觸媒,世茂出有限公司,pp. 74 – 124 (2006)
    [36] Anonymous in phase diagrams for ceramists figure, The American Ceramic Society Inc.76, pp. 4150 (1975)
    [37] 鍍膜技術簡介,億達薄膜股份有限公司,(http://www.etafilm.com.tw/Thin_Films_Introduction_ch.html)
    [38] 陳家富,真空鍍膜基礎(二)
    [39] W.Y. Ho, H.H. Hsueh, D.Y. Wang, W.Y. Ho, “Structures and properties of AlTiON coatings synthesized by cathodic arc deposition process”, 屏東教育大學學報-理工類第三十期, pp. 1 -16 (2009)
    [40] 蕭宇呈,碳改質二氧化鈦薄膜及其可見光催化活性之研究,碩士論文,國立台灣科技大學化學工程系,2011
    [41] A.L. Linsebigler, G. Lu, J.T. Yates, “Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results”, Chemical Reviews 95, pp. 735 - 758 (1995)
    [42] 林有銘,無所不在的環境清潔工-奈米光觸媒,科學發展月刊,pp. 24 - 31 (2006)
    [43] 黃嘉宏,二氧化矽/二氧化鈦中性水溶膠之製備與光催化活性研究,博士論文,國立交通大學環境工程研究所,2012
    [44] T. Bezrodna, G. Puchkovska, V. Shymanovska, J. Baranb, H. Ratajczak, “IR-analysis of H-bonded H2O on the pure TiO2 surface”, Journal of Molecular Structure 700 , pp. 175 – 181 (2004)
    [45] J.C.S. Wu, Y.T. Cheng, “In situ FTIR study of photocatalytic NO reaction on photocatalysts under UV irradiation”, Journal of Catalysis 237, pp. 393 – 404 (2006)
    [46] L.Ren, Y.P. Zeng, D. Jiang, “Preparation, characterization and photocatalytic activities of Ag-deposited porous TiO2 sheets”, Catalysis Communications 10, pp. 645 – 649(2009)

    無法下載圖示 全文公開日期 2018/07/25 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE