簡易檢索 / 詳目顯示

研究生: Phan Van Hoang Khang
Phan Van Hoang Khang
論文名稱: 含高乙交酯含量的聚乳酸甘醇酸的開環聚合合成和結構表徵及其熱性能、形態和親水性
Synthesis and Structural Characterisations of Poly(L-lactide-co-glycolide) Containing High Glycolide Contents by Ring-Opening Polymerisation, and their Thermal Properties, Morphologies and Hydrophilicity
指導教授: 游進陽
Chin-Yang Yu
口試委員: 游進陽
Chin-Yang Yu
王丞浩
Chen-Hao Wang
施劭儒
Shao-Ju Shih
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 111
語文別: 英文
論文頁數: 84
外文關鍵詞: Block copoymers, Ring-opening polymerisation, Composition ratio, Well-organised microstructure, Degree of crystallinity, Spherical particles
相關次數: 點閱:135下載:4
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • Ring-opening polymerisation has been utilised to synthesise the samples. For
    block copolymers, poly(L-lactide) has been used as a macroinitiator for
    polymerisation of glycolide in the presence of stannous octoate. For random
    copolymers, it has been synthesised by copolymerisation of L-lactide and glycolide
    using stannous octoate and 1-dodecanol as catalyst and initiator, respectively. The
    percentage between glycolide and L-lactide is 90 and 10%, respectively. For block
    copolymers, very few hetero-sequences are detected compared to that of random
    copolymers. Block copolymers have smaller intrinsic viscosity compared to that of
    random copolymers. Due to ill-organised microstructures, thermal stability of random
    copolymers is relatively lower than that of the block copolymers. In addition, the
    enthalpy of fusion and degree of crystallinity of random copolymers are also
    relatively lower than those of the block copolymers. Block copolymers tend to
    aggregate with micro-phase separation due to unique self-assembly behaviours. The
    average diameter of block copolymers is about 200 nm, which is relatively smaller
    than the average diameter of random copolymers (about 1000 nm). Finally, the
    hydrophilicity of random copolymers is relatively higher than the hydrophilicity of
    block copolymers.

    Abstract ........................................i Chapter 1 Introduction and Aims............................................1 Introduction ............................................................2 1.1.1 Biodegradable polymer..............................................2 1.1.2 Copolymer .........................................................5 1.1.2.1 Random copolymer................................................................6 1.1.2.2 Alternating copolymer .........................................6 1.1.2.3 Graft copolymer..................................................6 1.1.2.4 Block copolymer.................................................7 1.1.3 Poly(lactide-co-glycolide) ........................................8 1.1.3.1 Development and commercialisation of poly(lactide-coglycolide) ........................................................................8 1.1.3.2 Precursors for synthesis of poly(lactide-co-glycolide) .........10 a. Lactide.........................................................10 b. Glycolide.....................................................11 1.1.3.3 Synthesis of poly(lactide-co-glycolide)................................13 a. Direct polycondensation .............................................13 b. Ring-opening polymerisation ..............................................14 1.1.3.4 Block copolymers of polylactide and polyglycolide ............19 1.1.3.5 Properties of poly(lactide-co-glycolide) ...............................21 a. Influences of composition ratio on properties of poly(lactide-coglycolide) .............................................................................21 b. Influences of microstructure on properties of poly(lactide-coglycolide) .........................................................................25 1.1.3.6 Applications of poly(lactide-co-glycolide)...........................28 a. Agricultural and aquaculture applications ................................28 b. Antimicrobial packaging....................................................29 c. Biomedical applications...............................................31 Aims of study ..............................................................33 Chapter 2 Results and Discussion .........................................34 Ring opening polymerisation of homopolymer PLA, block copolymers P1b-P3b and random copolymers P1r-P3r......................35 Composition ratio analysis of block copolymers P1b-P3b and random copolymers P1r-P3r ................................................37 Chain microstructure analysis of block copolymers P1b-P3b and random copolymers P1r-P3r ................................................41 End-group analysis of block copolymers P1b-P3b and random copolymers P1r-P3r ......................................................45 Functional groups of homopolymer PLA, block copolymers P1bP3b, and random copolymers P1r-P3r.............................48 Intrinsic viscosity and viscosity average molecular weight of homopolymer PLA, block copolymers P1b-P3b and random copolymers P1r-P3r .....................................49 Thermal properties of homopolymer PLA, block copolymers P1bP3b and random copolymers P1r-P3r..................................................................51 Morphologies of homopolymer PLA, block copolymers P1b-P3b and random copolymers P1r-P3r ...........................................56 Hydrophilicity of homopolymer PLA, block copolymers P1b-P3b and random copolymers P1r-P3r ...........................................59 Chapter 3 Conclusion .................................................................62 Chapter 4 Experimental Section..............................................63 Materials, instrumentation and characterisation..............................64 Synthesis of polymers ............................................65 4.2.1 Synthesis of homopolymer, poly(L-lactide) (PLA).....................65 4.2.2 Synthesis of block copolymer, poly(L-lactide-b-glycolide) (P1b).. ........................................................................66 4.2.3 Synthesis of block copolymer, poly(L-lactide-b-glycolide) (P2b).. .........................................................................67 4.2.4 Synthesis of block copolymer, poly(L-lactide-b-glycolide) (P3b).......................................................... 68 4.2.5 Synthesis of random copolymer, poly(L-lactide-r-glycolide) (P1r) ................................................................ 69 4.2.6 Synthesis of random copolymer, poly(L-lactide-r-glycolide) (P2r) ............................................................... 70 4.2.7 Synthesis of random copolymer, poly(L-lactide-r-glycolide) (P3r) ............................................................... 71 References .................................................... 72 Appendix ...................................................... A1

    [1] M. Bergmann, F. Collard, J. Fabres, G. W. Gabrielsen, J. F. Provencher, C. M.
    Rochman, E. V. Sebille, M. B. Tekman, Nat. Rev. Earth Environ. 2022, 3, 323.
    [2] R. Chandra, R. Rustgu, Prog. Polym. Sci. 1998, 23, 1273.
    [3] G. X. Wang, D. Huang, J. H. Ji, C. Völker, F. R. Wurm, Adv. Sci. 2021, 8, 2001121.
    [4] A. P. Gupta, V. Kumar, Eur. Polym. J. 2007, 43, 4053.
    [5] S. Karlsson, A. C. Albertsson, Polym. Eng. Sci. 1998, 38, 1251.
    [6] B. Imre, B. Pukanszky, Eur. Polym. J. 2013, 49, 1215.
    [7] L. Averous, E. Pollet, Biodegradable polymers, in Environmental silicate nanobiocomposites (Editors: L. Averous, E. Pollet), in Green energy and technology (Editor:Anthony Doyle), Springer, Hiedelberg, 2012, p.13-39.
    [8] I. Vroman, L. Tighzert, Materials 2009, 2, 307.
    [9] M. Mitrus, A. Wojtowicz, L. Moscicki, Biodegradable polymers and their practical
    unity, in Thermoplastic starch (Editors: P. B. M. Leon, Janssen, L. Moscick),
    Wiley, Weinheim, 2010, p. 1-33.
    [10] V. Isabelle, T. Lan, Materials 2009, 2, 307.
    [11] A. Leitgeb, J. Wappel, C. Slugovc, Polymer 2010, 51, 2927.
    [12] F. W. Harris, J. Chem. Educ. 1981, 58, 837.
    [13] B. W. Swift, M. O. D. L. Cruz, J. Chem. Phys. 1994, 100, 7744.
    [14] L. Li, K. Raghupathi, C. Song, P. Prasad, S. Thayumanavan, Chem. Commun. 2014,
    14, 13417.
    [15] A. Little, A. M. Wemyss, D. M. Haddleton, B. Tan, Z. Y. Sun, Y. Ji, C. Y. Wan
    Polymers 2021, 13, 2458.
    [16] J. Huang, S. R. Turner, Polymer 2017, 116, 572.
    [17] K. M. Huh, Y. H. Bae, Polymer 1999, 40, 6147.
    [18] S. Sharma, A. Dua, A. Malik, Eur. Polym. J. 2014, 59, 363.
    [19] N. E. Suyatma, A. Copinet, E. L. Copinet, F. Fricoteaux, V. Coma, J. Polym.
    Environ. 2011, 19, 166.
    [20] A. V. Ruzette, L. Leibler, Nat. Mater. 2005, 4, 19.
    [21] A. Meduri, T. Fuoco, M. Lamberti, C. Pellecchia, D. Pappalardo, Macromolecules
    2014, 47, 534.
    [22] D. Wasserman, C. Versfelt (Ethicon Inc.), US3839297A, 1972.
    [23] D. Gilding, A. Reed, Polymer 1979, 20, 1459.
    [24] C. M. Dong, K. Y. Qiu, Z. W. Gu, X. D. Feng, J. Polym. Sci., Part A: Polym. Chem.
    2000, 38, 4179.
    [25] V. Nandakumar, G. Suresh, S. Chittaranjan, M. Doble, Ind. Eng. Chem. Res. 2013,
    52, 751.
    [26] X. Sun, C. Xu, G. Wu, Q. S. Ye, C. N. Wang, Polymers 2017, 9, 189.
    [27] T. Tsukegi, T. Motoyama, Y. Sgirai, H. Nishida, T. Endo, Polym. Degrad. Stab.
    2007, 92, 552.
    [28] L. T. Sin, A. R. Rahmat, W. A. Rahman, Overview of poly(lactic acid), in
    Polylactic acid: PLA biopolymer technology and application (Editors: L. T. Sin, A. R.
    Rahmat, W. A. Rahman), Elsevier, London, 2012, p. 1-70.
    [29] M. Hirata, Y. Kimura, Structure and properties of stereocomplex-type poly(lactic
    acid), in Polylactic acid: Synthesis, structure, properties, processing and applications
    (Editors: R. Auras, L. T. Lim, S. E. M. Selke, H. Tsuji), Wiley, New Jersey, 2010, p. 59-65.
    [30] K. Yamane, Y. Kawakami (Kureha Corp.), US7235673B2, 2002.
    [31] K. Budak, O. Sogut, U. A. Sezer, J. Polym. Res. 2020, 27, 208.
    [32] S. A. Ashter, Types of biodegradable polymers, in Introduction to Bioplastics
    Engineering (Editor: S. A. Ashter), Elsevier, Amsterdam, 2016, p. 81-151.
    [33] K. Avgoustakis, Poly(lactic-co-glycolic acid), in Encyclopedia of Biomaterials and
    Biomedical Engineering (Editors: G. Wnek, G. Bowlin), CRC Press, New York, 2005,
    p. 2259-2270.
    [34] D. L. Wise, T. D. Fellman, J. E. Sanderson, R. L. Wentworth, Lactic/glycolic acid
    polymers, in Drug carriers in biology and medicine (Editor: G. Gregoriadis), Academic
    Press, New York, 1979, p. 237-270.
    [35] M. Ajioka, H. Suizu, C. Higuchi, T. Kashima, Polym. Degrad. Stab. 1998, 15, 137.
    [36] K. Takahashi, I. Taniguchi, M. Miyamoto, Y. Kimura, Polymer 2000, 41, 137.
    [37] F. Chabot, M. Vert, S. Chapelle, P. Granger, Polymer 1983, 24, 53.
    [38] W. Dittrich, R. C. Schulz, Angew. Macromol. Chem. 1971, 15, 109.
    [39] A. Kowalski, A. Duda, S. Penczek, Macromolecules 2000, 33, 7359.
    [40] T. Mirakabad, F. S. Akbarzadeh, A. Milani, N. Zarghami, M. T. Anganeh, V.
    Zeighamaian, F. Badrzadeh, M. R. Yamchi, Artif. Cells Nanomed. Biotechnol. 2016, 44,
    423.
    [41] K. Avgoustakis, J. Nixon, J. Int. J. Pharm. 1991, 70, 77.
    [42] S. H. Hyon, K. Jamshidi, Y. Ikada, Biomaterials 1997, 18, 1503.
    [43] D. E. Perrin, J. P. English, Polyglycolide and polylactide. in Handbook of
    biodegradable polymers (Editors: A. J. Domb, J. Kost, D. M. Wiseman), in Drug
    targeting and delivery (Editors: Florence, A. T. Gregoriadis, G. Series), Harwood
    Academic, Amsterdam, 1997, p. 3–27.
    [44] P. K. Samantaray, A. Little, D. Haddleton, T. McNally, B. Tan, Z. Sun, W. Huang,
    Y. Ji, C. Wan, Green Chem. 2020, 22, 4055.
    [45] M. L. Adams, A. Lavasanifar, G.S. Kwon, J. Pharm. Sci. 2003, 92, 1343.
    [46] R. M. Stayshich, T. Y. Meyer, J. Am. Chem. Soc. 2010, 132, 10920.
    [47] K. Hamad K, M. Kaseem, M. Ayyoob, F. Deri, Prog. Polym. Sci. 2018, 85, 83.
    [48] Z. W. Gu, W. P. Ye, J. Y. Yang, Y. X. Li, X. L. Chen, G. W. Zhong, X. De. Feng, J.
    Control. Release 1992, 22, 3.
    [49] R. D. Rittinghaus, J. Zenner, A. Pich, M. Kol, S. H. Pawlis, Angew. Chem. Int. Ed.
    2022, 61, e202112853.
    [50] W. Z. Yuan, J. Y. Yuan, X. B. Huang, X. Z. Tang, J. Appl. Polym. Sci. 2007, 104,
    2310.
    [51] H. H. Yin, R. Wang, H. Ge, X. Q. Zhang, Z. G. Zhu, J. Appl. Polym. Sci. 2015,
    132, 41566.
    [52] M. Ayyoob, S. M. Lee, Y. J. Kim, J. Polym. Res. 2020, 27, 109.
    [53] M. A. Murcia Valderrama, R. J. van Putten, G. J. M. Gruter, ACS Appl. Polym.
    Mater. 2020, 2, 2706.
    [54] I. Bakarat, P. Dubois, C. Grandfils, R. Jerome, J. Poym. Sci. Part A: Polym. Chem.
    2001, 39, 294-306.
    [55] Y. Mai, A. Eisenberg, Chem. Soc. Rev. 2012, 41, 5969.
    [56] S. Shakiba, C. E. Astete, S. Paudel, C. M. Sabliov, D. F. Rodrigues, S. M. Louie,
    Enviro. Sci.: Nano 2020, 7, 37.
    [57] N. Mlalila, A. Hilonga, H. Swai, F. Devlieghere, P. Ragaert, Trends Food Sci.
    Technol. 2018, 78, 1.
    [58] E. Fortunati, S. Mattioli et al., Biomacromolecules 2013, 14, 626.
    [59] A. Gora, M. P. Prabhakaran, G. T. L. Eunice, R. L. Akshminarayanan, S.
    Ramakrishna, J. Appli. Polym. Sci. 2015, 132, 42686.
    [60] S. Magdalena, I. Bracko, M. Milenkvic, N. Filipovic, J. Nunic, M. Filipic, D. P.
    Uskokovic, Acta Biomater. 2014, 10, 151.
    [61] M. Stevanović, V. Uskokovic, M. Filipovic, S. D. Skapin, D. Uskokovic, ACS Appl.
    Mater. Interfaces 2013, 5, 9034.
    [62] M. E. Manesh, J. Pharm. Res. 2003, 7, 290.
    [63] C. Gomes, R. G. Moreira, E. C. Perez, J. Food Sci. 2011, 76, 16.
    [64] L. E. Hill, T. M. Taylor, C. Gomez, J. Food Sci. 2013, 78, 626.
    [65] H. M. Lee, S. I. Mo, H. W. Cho, S. J. Lee, B. G. Jun, K. W. Kim, J. Y. Kim, Y. I.
    Kim, S. S. Nah, J. Rheum. Dis. 2013, 20, 40.
    [66] C. P. Marina, L. E. Hill, R. C. Zambiazi, S. M. Talcott, S. Talcott, C. L. Gomes,
    LWT 2015, 63, 100.
    [67] M. S. Larissa, E. H. Laura, F. Evania, L. G. Carmen, Food Chem. 2014, 165, 362.
    [68] A. Kolate, P. Lesimple, D. Baradia, S. Patil, J. W. Hanrahan, A. Misra, J.
    Microencapsul. 2015, 32, 61.
    [69] R. C. Correia, A. F. Jozala, K. F. Martins, T. C. V. Penna, E. A. D. R. Duek, C. D.O. R. Yagui, A. M. Lopes, World J. Microbiol. Biotechnol. 2015, 31, 649.
    [70] G. L. Racey, W. R. Wallace, J. Cavalaris, J. V. Marguard, J. Oral. Surg. 1978, 36,
    766.
    [71] J. Tiainen, Y. Soini, P. Tormala, T. Waris, N. Ashammakhi, J. Biomed. Mater. Res.
    B Appl. Biomater. 2004, 70, 49.
    [72] P. Rokkanen, O. Bostman, E. Hirvensalo, E. K. Partio, E. A. Makela, H. Patiala,
    K. Vihtonen, Curr. Orthop. 1999, 13, 223.
    [73] J. C. Middleton, A. J. Tipton, Biomaterials 2000, 21, 2335.
    [74] P. Johansen, Y. Men, H. P. Merckle, B. Gander, Eur. J. Pharm. Biopharm. 2000,
    50, 129.
    [75] J. Panyam, V. Labhasetwar, Adv. Drug Deliv. Rev. 2003, 55, 329.
    [76] R. Jain, N. H. Shah, A. W. Malick, C. T. Rhodes, Drug Dev. Ind. Pharm. 1998, 24,
    703.
    [77] K. Jamshidi, S. H. Hyon, Y. Ikada, Polymer 1988, 29, 1.
    [78] P. Dobrzynski, J. Kasperczyk, H. Janeczek, M. Bero, Macromolecules 2001, 34,
    5090.
    [79] P. Dobrzynski, J. Kasperczyk, H. Janeczek, M. Bero, Polymer 2002, 43, 2595.
    [80] O. F. Solomon, I. Z. Ciuta, J. Appl. Polym. Sci. 1962, 6, 683.
    [81] A. K. Richard, O. L. Maryann, T. R. Mahoney, M. S. Lynda, Macromolecules 1987,
    20, 2398.
    [82] I. G. I. Athanasoulia, M. N. Christoforidis, D. M. Korres, P. A. Tarantili, Pure Appl.
    Chem. 2017, 89, 125.
    [83] E. Altay, Y. J. Jang, X. Q. Kua, M. A. Hillmyer, Biomacromolecules 2021, 22, 2532.
    [84] Y. H. Na, Y. He, X. T. Shuai, Y. Kikkawa, Y. Doi, Y. Inoue, Biomacromolecules
    2002, 3, 1179.
    [85] A. Kozbial, Z. Li, C. Conaway, R. McGinley, S. Dhingra, V. Vahdat, F. Zhou, B.
    D'Urso, H. T. Liu, L. Li, Langmuir 2014, 30, 8598

    QR CODE