簡易檢索 / 詳目顯示

研究生: 林士捷
Shih Chieh, Lin
論文名稱: 掃描穿透式電子顯微學於高熵氧化物薄膜 (Cr, Mn, Fe, Co, Ni)3O4之研究
Study of High-Entropy-Oxide (Cr, Mn, Fe, Co, Ni)3O4 Grown on MgO and MgAl2O4 by Scanning Transmission Electron Microscopy
指導教授: 郭俞麟
Yu-Lin Kuo
朱明文
Ming-Wen Chu
口試委員: 郭俞麟
Yu-Lin Kuo
朱明文
Ming-Wen Chu
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 47
中文關鍵詞: 穿透式電子顯微鏡掃描穿透式電子顯微鏡薄膜高熵氧化物尖晶石結構氧化物異質介面氧化鎂鎂鋁尖晶石聚焦離子束電子損失能譜儀四面體八面體交互擴散電子結構
外文關鍵詞: transmission electron microscopy, scanning transmission electron microscopy, thin film, high-entropy oxides, spinel structure, oxide heterostructure interface, magnesium oxide, magnesium aluminate spinel, focused ion beam, electron-energy loss spectroscopy, tetrahedral, octahedral, inter-diffusion, electronic structures
相關次數: 點閱:205下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用穿透式電子顯微鏡與掃描穿透式電子顯微鏡技術,分析薄膜高熵氧化物異質介面系統分析。
    一種基於尖晶石結構的高熵氧化物,成長在兩種不同的氧化物基板上,並使用聚焦離子束製備試片。在高解析穿透式電子顯微鏡中,我們驗證high-entropy oxide (HEO) /MgO與high-entropy oxide (HEO) /MgAl2O4的介面型態皆為不連貫介面。
    我們發現經由FIB所製備的樣品,即便存在些許的汙染物與厚度梯度的問題,還是可以進行掃描穿透式電子顯微鏡與電子損失能譜儀結合Smart Align軟體的原子能譜分析,並在此研究中達到原子級解析,使我們以直觀的方式理解此材料的晶體結構、化學組成分佈、四面體與八面體格隙分佈、介面交互擴散以及半定量電子結構。


    In this study, we utilized transmission electron microscopy (TEM) and scanning transmission electron microscopy (STEM) techniques to characterize thin film high-entropy oxides (HEO) heterostructure interfaces. The high-entropy oxides based on a spinel structure was grown on two different oxide substrates and we used a focused ion beam (FIB) prepared sample. In high-resolution TEM, we confirmed that the interfacial coherence of HEO/MgO and HEO/MgAl2O4 was an incoherent interface. We found that even with some contaminations and thickness gradients, FIB-prepared samples can be characterized using scanning transmission electron microscopy and electron-energy loss spectroscopy combined with the Smart Align software, achieving an atomic resolution in this study. This allowed us to understand the crystal structures, chemical composition distributions, tetrahedral and octahedral site distributions, interface inter-diffusion, and semi-quantitative electronic structures of the material in an intuitive way.

    誌謝 I 摘要 VII ABSTRACT VIII 圖表索引 XII 第一章 緒論 22 1.1 簡介 (Introduction) 22 1.2 研究動機 (Motivation) 23 第二章 文獻回顧 24 2.1 高熵合金 (High-Entropy Alloys) 24 2.2 高熵氧化物 (High-Entropy Oxides) 24 2.3 尖晶石與磁鐵礦 (Spinel and Magnetite, AB2O4) 25 2.3.1 Verwey 相變化 (Verwey Transition) 26 2.3.2 楊-泰勒效應 (Jahn-Taller Effect) 26 2.3.3 離子半徑 (Shannon Radii) 27 2.3.4 蒲松氏比 (Poisson’s Ratio) 27 2.3.5 介面連貫性 (Interfacial Coherence) 28 2.3.6 交互擴散 (Inter-diffusion) 28 2.4 高熵氧化物異質介面 (High-Entropy-Oxide Interfaces) 29 2.4.1 結構與晶格常數 (Structure and Lattice Parameter) 29 2.4.2 樣品成長條件 (Crystal Growth Conditions) 30 2.4.3 TEM 實驗參數 (TEM Conditions) 32 2.4.4 STEM-EELS 實驗參數 (STEM-EELS Conditions) 32 第三章 實驗技術與原理 34 3.1 試片製備 (Specimen Preparation) 34 3.1.1 手工研磨 (Hand Polish) 34 3.1.2 聚焦離子束 (Focused Ion Beam, FIB) 34 3.2 穿透式電子顯微鏡 (Transmission Electron Microscopy, TEM) 35 3.2.1 TEM 影像與繞射圖譜 (TEM Image and Diffraction Pattern) 35 3.2.2 電子聚束繞射圖譜 (Convergent Beam Electron Diffraction Patterns, CBED) 37 3.2.3 高解析穿透式電子顯微鏡影像 (High-Resolution TEM Image) 38 3.3 掃描穿透式電子顯微鏡 (Scanning Transmission Electron Microscopy, STEM) 39 3.3.1 原子序對比成像 (Z-Contrast Image) 40 3.4 電子能量損失能譜儀 (Electron-Energy Loss Spectrometer, EELS) 41 3.4.1 電子能量損失能譜 (Electron-Energy Loss Spectrometer Spectrum, EELS Spectrum) 41 3.4.2 原子解析能譜影像 (Atomic-Resolution Spectrum Imaging) 42 3.5 原子智能校正軟體 (SmartAlign, SA) 43 第四章 結果與討論 (Result and Discussion) 45 4.1 高解析TEM影像與繞射圖譜 (HRTEM Image and Diffraction Patterns) 45 4.2 HAADF STEM 影像 (HAADF STEM Image) 47 4.3 STEM-EELS 原子能譜影像 (STEM-EELS Mapping) 48 4.4 交互擴散 (Inter-diffusion) 52 4.5 討論 (Discussion) 53 4.5.1 晶格應變 54 4.5.2 FIB樣品品質 54 4.5.3 HAADF STEM Image 54 4.5.4 STEM-EELS能譜 55 4.5.5 電子價數的分佈 55 4.5.6 八面體與四面體格隙位置的分佈 56 4.5.7 交互擴散 56 第五章 總結與未來展望 57 5.1 總結 57 5.2 未來展望 57 參考文獻 58

    1 Jung Wen Yeh, S.‐K. Chen, S.‐J. Lin, J.‐Y. Gan, T. S. Chin, Tao-Tsung Shun, C. H. Tsau, and Sung Yun Chang, Advanced Engineering Materials 6 (2004).
    2 Christina M. Rost, Edward Sachet, Trent Borman, Ali Moballegh, Elizabeth C. Dickey, Dong Hou, Jacob L. Jones, Stefano Curtarolo, and Jon-Paul Maria, Nature Communications 6 (1), 8485 (2015).
    3 Takamitsu Yamanaka and Yoshio Takéuchi, Zeitschrift Fur Kristallographie 165, 65 (1983).
    4 Juliusz Dąbrowa, Mirosław Stygar, Andrzej Mikuła, Arkadiusz Knapik, Krzysztof Mroczka, Waldemar Tejchman, Marek Danielewski, and Manfred Martin, Materials Letters 216, 32 (2018).
    5 E. J. W. Verwey, Nature 144 (3642), 327 (1939).
    6 Jisoo Lee, Soon Gu Kwon, Je-Geun Park, and Taeghwan Hyeon, Nano Letters 15 (7), 4337 (2015).
    7 H. A. Jahn, E. Teller, and Frederick George Donnan, Proceedings of the Royal Society of London. Series A - Mathematical and Physical Sciences 161 (905), 220 (1937).
    8 R. D. Shannon, Acta Crystallographica Section A 32 (5), 751 (1976).
    9 Easterling, Kenneth E. Porter, David A. Sherif, and Mohamed, Phase Transformations in Metals and Alloys, Third Edition. (CRC Press, 2009).
    10 K. Reichelt, Vacuum 38 (12), 1083 (1988).
    11 Joy Mittra, Geogy Jiju Abraham, Manoj Kesaria, Sumit Bahl, Aman Gupta, Sonnada M. Shivaprasad, Chebolu Subrahmanya Viswanadham, Ulhas Digambar Kulkarni, and Gautam Kumar Dey, Materials Science Forum 710, 757 (2012).
    12 Department of Materials Science and Engineering. National Taiwan University., (2012).
    13 Yuren Wen, Tongtong Shang, and Lin Gu, Microscopy 66 (1), 25 (2016).
    14 GATAN Company (https://www.gatan.com/).
    15 Lewys Jones, Aakash Varambhia, Richard Beanland, Demie Kepaptsoglou, Ian Griffiths, Akimitsu Ishizuka, Feridoon Azough, Robert Freer, Kazuo Ishizuka, David Cherns, Quentin M Ramasse, Sergio Lozano-Perez, and Peter D Nellist, Microscopy 67 (suppl_1), i98 (2018).

    無法下載圖示
    全文公開日期 2025/06/28 (校外網路)
    全文公開日期 2025/06/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE