簡易檢索 / 詳目顯示

研究生: 蘇怡方
Yi-Fang Su
論文名稱: 聚三苯胺共軛高分子衍生物纏繞奈米碳管製成無色透明有機薄膜電晶體之研究
Study of Polytriarylamine Copolymer Wrapping Carbon Nanotube for Transparent Organic Thin Film Transistors
指導教授: 戴 龑
Yian Tai
口試委員: 陳志堅
Jyh-Chien Chen
王澤元
none
陳銘崇
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 122
中文關鍵詞: 聚三苯胺共軛高分子奈米碳管無色透明有機薄膜電晶體
外文關鍵詞: PTAA, Transparent Organic Thin Film Transistors
相關次數: 點閱:332下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  •   本研究論文成功製作出無色透明有機薄膜電晶體,並利用纏繞微量奈米碳管,以有效提升聚三苯胺共軛高分子衍生物(Polytriarylamine,PTAA)製成薄膜電晶體的電性;並探討纏繞不同含量的奈米碳管及不同側鏈長度的聚三苯胺共軛高分子對薄膜電晶體的影響。
      在研究中,利用了原子力顯微鏡(AFM)、掃描式電子顯微鏡(SEM),分析聚三苯胺共軛高分子纏繞奈米碳管前後造成薄膜表面的差異。也利用紫外光/可見光分光光譜儀(UV-vis)、光激發螢光光譜儀(PL),分析聚三苯胺共軛高分子纏繞不同含量的奈米碳管其光學及電性影響。
      而在製成薄膜電晶體方面,利用不同側鏈長度的聚三苯胺共軛高分子,探討側鏈長短對薄膜電晶體電性影響。再繼續探討不同側鏈長度纏繞不同含量的奈米碳管對薄膜電晶體電性影響。最後,期望更換介電材料以再提升電晶體電性,及用透光度高的氧化銦錫(ITO)取代鋁閘極以再提升透光區域。


      In this research, we demonstrated the colorless and transparent organic thin film transistors, and utilized small amount carbon nanotubes which wrapped on PTAA to improve the performance of PTAA-based TFT. The effects of carbon nanotube content and length of side chains of the PTAA on the thin-film transistor were investigated.
      We analyzed the difference of PTAA film morphology with and without wrapping carbon nanotubes by Atomic Force Microscope (AFM) and Scanning Electron Microscope (SEM). Moreover, we used Ultraviolet / Visible spectrophotometer (UV-Vis) and Photo-Luminescence Spectrometry (PL) for studying the optical and electrical effect of wrapping different contents of carbon nanotubes on PTAA conjugated polymer.
      Regarding the construction of the film transistor, the influence of the lengths of the side chains of PTAA on the mobility of the film transistor was investigated, followed by an evaluation of the effect of the contents of the carbon nanotubes on the mobility of the film transistor. In the future, we expect that dielectric material can be replaced by higher dielectric constant material to improve the performance of OTFT and the aluminum gate could be substituted with a high-transmittance ITO in order to further enhance the aperture ratio.

    摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 IX 表目錄 XIV 第一章 緒論 1 1-1無機/有機半導體發展 1 1-2聚三苯胺共軛高分子應用相關文獻 8 1-2-1共軛導電高分子介紹 8 1-2-2聚三苯胺共軛高分子簡介 10 1-3奈米碳管簡介 12 1-3-1奈米碳管的特性 12 1-3-2奈米碳管合成方法 13 1-4透明有機薄膜電晶體之文獻 14 1-5研究動機 15 第二章 薄膜電晶體基本原理 17 2-1無機/有機半導體材料傳輸機制 17 2-1-1無機半導體傳輸機制 17 2-1-2有機半導體傳輸機制 19 2-2 有機薄膜電晶體之結構與操作模型 21 2-3有機薄膜電晶體重要參數 24 2-3-1載子遷移率 ( Mobility ) 24 2-3-2開/關電流比 ( On/off current ratio ) 25 2-3-3臨界電壓 ( Threshold voltage ) 25 2-3-4次臨界電壓 ( Sub-Threshold voltage ) 27 第三章 實驗方法與步驟 28 3-1實驗藥品 28 3-2實驗儀器 30 3-3有機薄膜電晶體元件設備 31 3-3-1基板之圖樣化與清洗程序 31 3-3-2 PTAA主動層纏繞奈米碳管溶液製程 36 3-3-3元件製備流程 36 3-3-3-1主動層(PTAA)之塗佈 37 3-3-3-2介電層(PMMA)之塗佈 38 3-3-3-3閘極(Gate, Al)之蒸鍍 39 3-3-3-4元件之量測 40 3-4樣品分析量測儀器簡介 41 3-4-1半導體量測儀器(Semiconductor Device Parameter Analyzer) 41 3-4-2原子力顯微鏡(Atomic Force Microscope, AFM) 42 3-4-3場發射掃描式電子顯微鏡(Field-Emission Scanning Electron Microscope, FE-SEM) 44 3-4-4紫外光/可見光分光光譜儀 ( Ultraviolet / Visible Spectrophotometer , UV / Vis) 46 3-4-5光激發螢光光譜儀 ( Photo-Luminescence, PL) 47 第四章 實驗結果與分析 48 4-1 PTAA側鏈長度之研究 48 4-1-1溫度對於PTAA薄膜之型態分析 50 4-1-1-1不同退火溫度對PTAA薄膜之影響 50 4-1-1-2調整PTAA薄膜退火溫度應用於有機電晶體 54 4-1-2濃度對於PTAA薄膜之型態分析 58 4-1-2-1不同濃度對PTAA薄膜之影響 58 4-1-2-2調整PTAA薄膜濃度應用於有機電晶體 67 4-1-3 PTAA側鏈長度之電性分析 71 4-2 PTAA纏繞不同濃度奈米碳管之研究 74 4-2-1纏繞特性及纏繞光學定量分析 74 4-2-2溫度對於PTAA纏繞之薄膜光學分析 76 4-2-2-1不同退火溫度對PTAA纏繞之薄膜影響 76 4-2-2-2調整PTAA纏繞之薄膜退火溫度應用於有機電晶體 80 4-2-3纏繞不同濃度奈米碳管對PTAA薄膜型態與光學分析 85 4-2-3-1不同纏繞濃度對PTAA薄膜之影響 85 4-2-3-2調整纏繞濃度應用於有機電晶體 95 4-2-4 PTAA纏繞不同濃度奈米碳管之電性分析 99 第五章 結論與未來展望 101 參考文獻 103

    [1]J. Bardeen and W. Brattain, "The Transistor, A Semi-Conductor Triode", Phys. Rev., vol. 74, no. 2, p. 230-231, 1948.
    [2]W. Shockley, "The Theory of p-n Junctions in Semiconductors and p-n Junction Transistors", Bell System Technical Journal, vol. 28, no. 3, p. 435-489, 1949.
    [3]J. Kilby, "First Integrated Circuit", Ti.com, 2016. [Online]. Available: http://www.ti.com/corp/graphics/press/image/on_line/co1034.jpg.
    [4]W. Shockley, Transistor technology evokes new physics. Stockholm, 1957.
    [5]M. Pope, H. Kallmann and P. Magnante, "Electroluminescence in Organic Crystals", J. Chem. Phys., vol. 38, no. 8, p. 2042, 1963.
    [6]C. Chiang, C. Fincher, Y. Park, A. Heeger, H. Shirakawa, E. Louis, S. Gau and A. MacDiarmid, "Electrical Conductivity in Doped Polyacetylene.", Phys. Rev. Lett., vol. 40, no. 22, p. 1472-1472, 1978.
    [7]A. Tsumura, H. Koezuka and T. Ando, "Macromolecular electronic device: Field-effect transistor with a polythiophene thin film", Appl. Phys. Lett., vol. 49, no. 18, p. 1210, 1986.
    [8]C. Tang and S. VanSlyke, "Organic electroluminescent diodes", Appl. Phys. Lett., vol. 51, no. 12, p. 913, 1987.
    [9]S. DiBenedetto, A. Facchetti, M. Ratner and T. Marks, "Molecular Self-Assembled Monolayers and Multilayers for Organic and Unconventional Inorganic Thin-Film Transistor Applications", Adv. Mater., vol. 21, no. 14-15, p. 1407-1433, 2009.
    [10]J. Burroughes, D. Bradley, A. Brown, R. Marks, K. Mackay, R. Friend, P. Burns and A. Holmes, "Light-emitting diodes based on conjugated polymers", Nature, vol. 347, no. 6293, p. 539-541, 1990.
    [11]B. Wessling, "Dispersion hypothesis and non-equilibrium thermodynamics: key elements for a materials science of conductive polymers", Synth. Met. , vol. 45, no. 2, p. 119-149, 1991.
    [12]P. Hourquebie and L. Olmedo, "Influence of structural parameters of conducting polymers on their microwave properties", Synth. Met., vol. 65, no. 1, p. 19-26, 1994.
    [13]G. Harsányi, Polymer films in sensor applications. Lancaster, Pa.: Technomic Pub. Co., 1995.
    [14]J. Heo, S. Im, J. Noh, T. Mandal, C. Lim, J. Chang, Y. Lee, H. Kim, A. Sarkar, M. Nazeeruddin, M. Grätzel and S. Seok, "Efficient inorganic–organic hybrid heterojunction solar cells containing perovskite compound and polymeric hole conductors", Nature Photon. , vol. 7, no. 6, p. 486-491, 2013.
    [15]J. Noh, S. Im, J. Heo, T. Mandal and S. Seok, "Chemical Management for Colorful, Efficient, and Stable Inorganic–Organic Hybrid Nanostructured Solar Cells", Nano Lett., vol. 13, no. 4, p. 1764-1769, 2013.
    [16]B. Souharce, Triphenylamine and carbazole based hole transporting materials. .
    [17]M. Dresselhaus, G. Dresselhaus and P. Eklund, Science of fullerenes and carbon nanotubes. San Diego: Academic Press, 1996.
    [18]S. Iijima and T. Ichihashi, "Single-shell carbon nanotubes of 1-nm diameter", Nature, vol. 363, no. 6430, p. 603-605, 1993.
    [19]M. Bronikowski, P. Willis, D. Colbert, K. Smith and R. Smalley, "Gas-phase production of carbon single-walled nanotubes from carbon monoxide via the HiPco process: A parametric study", J. Vac. Sci. Technol., A, vol. 19, no. 4, p. 1800, 2001.
    [20]S. Bachilo, L. Balzano, J. Herrera, F. Pompeo, D. Resasco and R. Weisman, "Narrow ( n , m )-Distribution of Single-Walled Carbon Nanotubes Grown Using a Solid Supported Catalyst", J. Am. Chem. Soc., vol. 125, no. 37, p. 11186-11187, 2003.
    [21]T. Guo, M. Diener, Y. Chai, M. Alford, R. Haufler, S. McClure, T. Ohno, J. Weaver, G. Scuseria and R. Smalley, "Uranium Stabilization of C28: A Tetravalent Fullerene", Science, vol. 257, no. 5077, p. 1661-1664, 1992.
    [22]S. Iijima, "Helical microtubules of graphitic carbon", Nature, vol. 354, no. 6348, p. 56-58, 1991.
    [23]B. Yang, "A Transparent Logic Circuit for RFID Tag in a-IGZO TFT Technology", ETRI J, vol. 35, no. 4, p. 610-616, 2013.
    [24]Y. Kuo, Thin film transistor technologies (TFTT VII). Pennington, NJ: Electrochemical Society, 2005.
    [25]B. Crone, A. Dodabalapur, Y. Lin, R. Filas, Z. Bao, A. LaDuca, R. Sarpeshkar, H. Katz and W. Li, "Large-scale complementary integrated circuits based on organic transistors", Nat. Commun. , vol. 403, no. 6769, p. 521-523, 2000.
    [26]P. Lin and F. Yan, "Organic Thin-Film Transistors for Chemical and Biological Sensing", Adv. Mater., vol. 24, no. 1, p. 34-51, 2011.
    [27]Y. Yuan, G. Giri, A. Ayzner, A. Zoombelt, S. Mannsfeld, J. Chen, D. Nordlund, M. Toney, J. Huang and Z. Bao, "Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method", Nat. Commun. , vol. 5, 2014.
    [28]C. Lee, " Electro-Optical Principles of Organic Light-Emitting Devices ", 2015.
    [29]H. Wang, G. Koleilat, P. Liu, G. Jiménez-Osés, Y. Lai, M. Vosgueritchian, Y. Fang, S. Park, K. Houk and Z. Bao, "High-Yield Sorting of Small-Diameter Carbon Nanotubes for Solar Cells and Transistors", ACS Nano, vol. 8, no. 3, p. 2609-2617, 2014.
    [30]H. Bässler and A. Köhler, "Charge Transport in Organic Semiconductors", Unimolecular and Supramolecular Electronics I, p. 1-65, 2011.
    [31]A. Brown, C. Jarrett, D. de Leeuw and M. Matters, "Field-effect transistors made from solution-processed organic semiconductors", Synth. Met., vol. 88, no. 1, p. 37-55, 1997.
    [32]P. Le Comber and W. Spear, "Electronic Transport in Amorphous Silicon Films", Phys. Rev. Lett., vol. 25, no. 8, p. 509-511, 1970.
    [33]G. Horowitz and P. Delannoy, "An analytical model for organic-based thin-film transistors", J. Appl. Phys., vol. 70, no. 1, p. 469, 1991.
    [34]G. Horowitz, R. Hajlaoui and P. Delannoy, "Temperature Dependence of the Field-Effect Mobility of Sexithiophene. Determination of the Density of Traps", J. Phys. III France, vol. 5, no. 4, p. 355-371, 1995.
    [35]A. Brown, D. de Leeuw, E. Lous and E. Havinga, "Organic n-type field-effect transistor", Synth. Met. , vol. 66, no. 3, p. 257-261, 1994.
    [36]M. Vissenberg and M. Matters, "Theory of the field-effect mobility in amorphous organic transistors", Phys. Rev. B, vol. 57, no. 20, p. 12964-12967, 1998.
    [37]J. Noolandi, "Multiple-trapping model of anomalous transit-time dispersion in a − S e", Phys. Rev. B, vol. 16, no. 10, p. 4466-4473, 1977.
    [38]H. Klauk, "Organic thin-film transistors", Chem. Soc. Rev. , vol. 39, no. 7, p. 2643, 2010.
    [39]H. Klauk, Organic electronics. Weinheim: Wiley-VCH, 2006.
    [40]I. Katsouras, D. Zhao, M. Spijkman, M. Li, P. Blom, D. Leeuw and K. Asadi, "Controlling the on/off current ratio of ferroelectric field-effect transistors", Sci. Rep., vol. 5, p. 12094, 2015.
    [41]S. Brotherton, Introduction to thin film transistors. Cham: Springer, 2013.
    [42]R. Harrison, "The MOS Transistor in Weak Inversion", 2010.
    [43]T. Jung, B. Yoo, L. Wang, A. Dodabalapur, B. Jones, A. Facchetti, M. Wasielewski and T. Marks, "Nanoscale n-channel and ambipolar organic field-effect transistors", Appl. Phys. Lett., vol. 88, no. 18, p. 183102, 2006.
    [44]H. Wang, J. Wang, X. Yan, J. Shi, H. Tian, Y. Geng and D. Yan, "Ambipolar organic field-effect transistors with air stability, high mobility, and balanced transport", Appl. Phys. Lett., vol. 88, no. 13, p. 133508, 2006.
    [45]H. Tsao and K. Müllen, "Improving polymer transistor performance via morphology control", Chem. Soc. Rev. , vol. 39, no. 7, p. 2372, 2010.
    [46]B. Qian, G. Xu and F. Yu, Gao ju wu de zhuan bian yu song chi. Beijing: Ke xue chu ban she, 1986.
    [47]K. Akagi and H. Shirakawa, "Morphological alignment of liquid crystalline conducting polyacetylene derivatives", Macromol. Symp. , vol. 104, no. 1, p. 137-158, 1996.
    [48]C. Klinke, J. Chen, A. Afzali and P. Avouris, "Charge Transfer Induced Polarity Switching in Carbon Nanotube Transistors", Nano Lett., vol. 5, no. 3, p. 555-558, 2005.

    QR CODE