簡易檢索 / 詳目顯示

研究生: 林科任
Ke-Jen Lin
論文名稱: GaN製程之低功耗震盪器與 CMOS製程之除二和除三注入鎖定除頻器
A Low Power GaN HEMT Oscillator and Divide-by 2 / by 3 Injection-Locked Frequency Dividers in CMOS
指導教授: 張勝良
Sheng–Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
黃進芳
Jhin-Fang Huang
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 106
語文別: 中文
論文頁數: 155
中文關鍵詞: 氮化鎵低功耗震盪器除二除三注入鎖定除頻器
外文關鍵詞: GaN, low power consumption, oscillator, divide-by 2, divide-by 3, Injection-Locked Frequency Dividers
相關次數: 點閱:390下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,PLL的特性非常重要,PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),除頻器追求低功耗,低相位雜訊,與較寬的除頻範圍。在PLL元件中又以壓控振盪器和注入鎖定除頻器特性最重要,而本論文以這兩項為主。
    首先,一個低供應電壓壓控震盪器,此震盪器使用穩懋氮化鎵0.25 μm製程,晶片面積為2 × 1 mm2。利用兩個高電子遷移率電晶體 (High electron mobility transistor, HEMT) 與電容做為交叉藕合對,最佳操作電壓在0.4伏特,整體功耗2.669毫瓦,震盪頻率為4.7 GHz。在1MHz偏移頻率相位雜訊為-121.77 dBc/Hz。
    其次,一個利用第二偕波輸出兩倍頻之震盪器,採用穩懋氮化鎵0.25 μm製程,晶片面積為2 × 1 mm2。同樣使用兩個HEMT與電容做為交叉藕合對,操作電壓為1.0伏特,整體功耗46.98毫瓦,震盪頻率為9.3 GHz。在1MHz偏移頻率相位雜訊為-116.58 dBc/Hz。
    且此晶片也做為除二注入鎖定除頻器,由兩倍頻之端口注入訊號。操作電壓0.6伏特時,在注入強度為0 dBm時,除頻範圍可從9.51 GHz ~ 9.63 GHz,輸出功率為4.51 dBm。
    接著,一個寬頻除二注入鎖定除頻器,採用台積電0.18 μm CMOS製程,晶片面積為1.004 × 0.582 mm2。此除頻器使用兩個nMOS與電容組成交叉藕合對,和四組互感電感以達到寬頻。操作電壓0.9伏特時,在注入強度為0 dBm時,除頻範圍可從2.01 GHz ~ 7.95 GHz,總除頻百比例為119.3 %。
    最後,一個寬頻除三注入鎖定除頻器,採用台積電0.18 μm SiGe BiCMOS製程,晶片面積為1.1 × 0.84 mm2。此除頻器使用兩個nMOS組成交叉藕合對,並以多組共振腔產生多頻段,在各頻段之除頻範圍皆重疊到來達到寬頻。操作電壓0.9伏特時,在注入強度為0 dBm時,除頻範圍可從6.69 GHz ~ 12.01 GHz,總除頻百比例為56.9 %。


    In the RF transceiver, PLLs are very important, PLL characteristics include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF), Voltage Controlled Oscillator (VCO), and Frequency Divider (FD). Low-power, low phase noise are the most important characteristics of performance are VCO and Divider. This thesis presents the design of Voltage Controlled Oscillator (VCO), and Injection-Locked Frequency Dividers (ILFDs).
    Firstly, a GaN HEMT oscillator implemented with the WIN 0.25 μm GaN HEMT technology is designed. The oscillator consists of two HEMT amplifiers with cross-coupled feedback topology. With the supply voltage of VDD=0.4V, the GaN VCO current and power consumption of the oscillator are 6.673 mA and 2.669 mW, respectively. The oscillator can generate differential signal at 4.7 GHz and it also supplies output power -5.3 dBm. At 1 MHz frequency offset from the carrier the phase noise is -121.77 dBc/Hz. The die area of the GaN HEMT oscillator is 2×1 mm2.
    Secondly, this thesis studies a push-push GaN HEMT oscillator. The proposed oscillators have been implemented with the WIN 0.25 μm GaN HEMT technology. The oscillator consists of a capacitive cross-coupled HEMT pairs and an LC-tank. With the supply voltage of VDD=1.0V, the GaN VCO current and power consumption of the oscillator are 46.98 mA and 46.98 mW, respectively. The oscillator can generate single-ended signal at 9.3 GHz and it also supplies output power -10.72 dBm. At 1 MHz frequency offset from the carrier the phase noise is -116.58 dBc/Hz. The die area of the push-push GaN HEMT oscillator is 2×1 mm2.
    Thirdly, this thesis studies a GaN HEMT divide-by-2 injection-locked frequency divider (ILFD) with the tail injection method. The proposed ILFD has been implemented with the WIN 0.25 μm GaN HEMT technology. The ILFD consists of a capacitive cross-coupled HEMT pair and an LC-tank. The free-running oscillation of the ILFD is around 4.9 GHz. At the ILFD-core supply 0.6 V, the locking range is 0.12 GHz from a locking range 0.12 GHz from 9.51 GHz to 9.63 GHz, the output power from the ILFD core is 4.51 dBm. The die area of the push-push GaN HEMT oscillator is 2×1 mm2.
    Fourthly, a divide-by-2 injection-locked frequency divider (ILFD), using the transformer-coupled line as resonator, is proposed and was implemented in the TSMC 0.18 μm CMOS process. Conventional divide-by-2 ILFD uses transmission (T-) line planar inductor, and this thesis shows a wide locking range divide-by-2 ILFD designed with four mutual-coupled inductors as a T-Line to create a wide locking range. The die area is 1.004 ×0.582 mm2. At the drain-source bias of 0.9 V, the core power consumption is 4.932 mW. At the incident power of 0 dBm, the locking range of the divide-by-2 ILFD is 5.94 GHz, from the incident frequency 2.01 GHz to 7.95 GHz, the percentage is 119.3 %.
    And finally, previous art about divide-by-3 LC injection-locked frequency dividers (ILFDs) uses single-resonance, dual resonance and three-resonance (TR) resonator to get wider locking with increasing order of resonator. The previous TR ILFD using two tuning voltages increases the complexity of application; the present divide-by-3 TR ILFD obtains a three-band overlapped locking ranges by single varactor control, this simplifies the design and application. The ILFD in 0.18 μm SiGe BiCMOS process employs one direct cross-coupled n-type FET pair, one injection FET pair and two pairs of varactors with only one varactor control. The divide-by-3 ILFD has two oscillation frequency bands, and may have single-band locking range, two overlapped locking ranges and three-overlapped locking ranges. The overlapped wide locking range is 5.32 GHz (56.89 %) from 6.69 to 12.01 GHz which is obtained at the power consumption 7 mW and the input power of 0 dBm. The ILFD occupies an area of 1.1×0.84 mm2.

    Table of Contents 中文摘要 I ABSTRACT II TABLE OF CONTENTS VI LIST OF FIGURES VIII LIST OF TABLES XIII CHAPTER 1 INTRODUCTION 1 1.1 MOTIVATION AND BACKGROUND 1 1.2 THESIS ORGANIZATION 5 CHAPTER 2 PRINCIPLES AND DESIGN CONCEPTS OF VOLTAGE CONTROLLED OSCILLATORS 8 2.1 INTRODUCTION 8 2.2 BASIC THEORY OF OSCILLATORS 9 2.2.1. One-Port (Negative Resistance) View 10 2.2.2. Two-Port (Feedback) View 12 2.3 ELEMENTS OF SEMICONDUCTOR PROCESS 15 2.3.1. Resistor 15 2.3.2. Inductor 16 2.3.3. Transformer 24 2.3.4. Capacitor 28 2.3.5. Varactor Design 30 2.4 THE CLASSIFICATION OF OSCILLATORS 35 2.4.1. Ring Oscillator 36 2.4.2. LC-Tank Oscillator 38 2.4.3. Research of RLC Tank 42 2.4.4. Type of LC Oscillator 45 2.5 DESIGN PARAMETER OF VOLTAGE-CONTROLLED OSCILLATOR 61 2.6 SIGNIFICANT ISSUE OF VOLTAGE-CONTROLLED OSCILLATOR 63 2.6.1. Definition of Phase Noise 64 2.6.2. Linear Time-Invariant (LTI) Phase Noise Model 65 2.6.3. Linear Time-Variant Phase Noise Model 68 2.6.4. Classification of Noise 71 CHAPTER 3 DESIGN OF INJECTION LOCKED FREQUENCY DIVIDER 77 3.1 PRINCIPLE OF INJECTION LOCKED FREQUENCY DIVIDER 78 3.2 LOCKING RANGE 80 CHAPTER 4 A 4.7 GHZ LOW POWER CROSS-COUPLED GAN HEMT OSCILLATOR 83 4.1 INTRODUCTION 83 4.2 CIRCUIT DESIGN 85 4.3 MEASUREMENT AND DISCUSSION 87 CHAPTER 5 A CAPACITIVE CROSS-COUPLED PUSH-PUSH GAN HEMT OSCILLATOR 91 5.1 INTRODUCTION 91 5.2 CIRCUIT DESIGN 93 5.3 MEASUREMENT RESULTS 94 CHAPTER 6 A CAPACITIVE CROSS-COUPLED GAN HEMT INJECTION-LOCKED FREQUENCY DIVIDER 98 6.1 INTRODUCTION 98 6.2 CIRCUIT DESIGN 99 6.3 MEASUREMENT RESULTS 100 CHAPTER 7 AN INJECTION-LOCKED FREQUENCY DIVIDER USING TRANSFORMER-COUPLED TRANSMISSION-LINE 107 7.1 INTRODUCTION 107 7.2 CIRCUIT DESIGN 109 7.3 MEASUREMENT RESULTS 110 CHAPTER 8 6.7 GHZ TO 12 GHZ LOCKING RANGE SINGLY-CONTROLLED DIVIDE-BY-3 INJECTION-LOCKED FREQUENCY DIVIDER 121 8.1 INTRODUCTION 121 8.2 CIRCUIT DESIGN 122 8.3 MEASUREMENT RESULTS 124 CHAPTER 9 CONCLUSIONS 129 REFERENCES 132

    [1] B. Razavi, RF Microelectronics, Prentice Hall PTR, 1998.
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] S. Smith, “Microelectronic Circuit 4th edition”, Oxford University Press 1998.
    [4] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [5] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [6] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [7] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [8] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall, 2001.
    [9] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [10] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [11] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [13] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [14] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [15] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [16] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [17] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [18] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [19] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [20] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [21] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [22] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [23] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [24] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [25] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [26] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [27] Z. Q. Cheng, Y. Cai, J. Liu, Y.-G. Zhou, K. M. Lau, and K. J. Chen, “A low phase-noise X-Band MMIC VCO using high-linearity and low-noise composite-channel Al0.3Ga0.7N/ Al0.05Ga0.95N/GaN HEMTs,” IEEE Trans. Microwave Theory & Tech. vol. 55, issue 1, pp. 23-29,2007.
    [28] R. Weber, D. Schwantuschke, P. Bruckner, R. Quay, M. Mikulla, O. Ambacher and I. Kallfass, "A 67 GHz GaN voltage controlled oscillator MMIC with high output power," IEEE Microw. Wireless Compon. Lett., vol. 23, pp. 374–376, Jul. 2013.
    [29] Rainer Weber, Dirk Schwantuschke, Peter Bruckner, Rudiger Quay, Friedbert van Raay, and Oliver Ambache, " A 92 GHz GaN HEMT voltage-controlled oscillator MMIC," 2014 IEEE MTT-S International Microwave Symposium (IMS2014).
    [30] V. S. Kaper, V. Tilak, H. Kim, A. V. Vertiatchikh, R. M. Thompson, T. R. Prunty, L. F. Eastman, and J. R. Shealy, "High-power monolithic AlGaN/GaN HEMT oscillator, " IEEE J. Solid-State Circuits, vol. 38, no. 9, pp. 1457–1461, Sep. 2003.
    [31] X. Lan, M. Wojtowicz, I. Smorchkova, R. Coffie, R. Tsai, B. Heying, M. Truong, F. Fong, M. Kintis, C. Namba, A. Oki and T. Wong, "A Q-band low phase noise monolithic AlGaN/GaN HEMT VCO," IEEE Microw. Wireless Compon. Lett., vol. 16, pp. 425–427, Jul. 2006.
    [32] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 407–409, Jun. 2008.
    [33] H. Chen, X. Wang, X. Chen, L. Pang, W. Luo, B. Li, and X. Liu, "A high power C-band AlGaN/GaN HEMT MMIC VCO," 2013 Int. Workshop on Microwave and Millimeter Wave Circuits and System Technology (MMWCST).
    [34] V. Kaper, R. Thompson, T. Prunty, and J. R. Shealy, "X-band AlGaN/GaN HEMT MMIC voltage-controlled oscillator," 11th GAAS Symposium - Munich 2003.
    [35] Hang Liu, Xi Zhu, Chirn Chye Boon, Xiang Yi, Mengda Mao, and Wanlan Yang, "Design of ultra-low phase noise and high power integrated oscillator in 0.25µm GaN-on-SiC HEMT technology," IEEE Microw. Wireless Compon. Lett., vol. 24, pp. 120–122, 2014.
    [36] C. Sanabria, H. Xu, S. Heikman, U. K. Mishra, and R. A. York, "A GaN differential oscillator with improved harmonic performance," IEEE Microw. Wireless Compon. Lett., vol. 15, pp. 463–465, Jul. 2005.
    [37] T. Ngoc Thi Do, S. Lai, M. Hörberg, H. Zirath, and D. Kuylenstierna, "A MMIC GaN HEMT voltage-controlled-oscillator with high tuning linearity and low phase noise," 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS).
    [38] S. Lai, D. Kuylenstierna, M. Hörberg, N. Rorsman, I. Angelov, K. Andersson, H. Zirath, "Accurate phase noise prediction for a balanced Colpitts GaN HEMT MMIC oscillator," IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3916-3926, Nov., 2013
    [39] S. Lai, D. Kuylenstierna, M. Ozen, M. Horberg, N. Rorsman, I. Angelov, and H. Zirath, "Low phase noise GaN HEMT oscillators with excellent figures of merit," IEEE Microw. Wireless Compon. Lett., vol. PP, pp. 1, Apr. 2014. .
    [40] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, "AlGaN/GaN HEMT development targeted for X band applications," 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [41] Bing-Jie Wang, CIC, GaN25-106A-E0023.
    [42] S.-L. Jang and Y.–C. Lin, "Low power three-path inductor Class-C VCO without any dynamic bias circuit," Electronics Letters, 2017.
    [43] C. Kong, H. Li, X. Chen, S. Jiang, J. Zhou, C. Chen, “A Monolithic AlGaN/GaN HEMT VCO Using BST ThinFilm Varactor,” IEEE Trans. Microwave Theory & Tech., vol. 60, no. 11, pp. 3413-3419, 2012.
    [44] X. Yang, X. Xu, and T. Yoshimasu, “An ultra-low-voltage Class-C PMOS VCO IC with PVT compensation in 180-nm CMOS,” SiRF, pp.107-109, 2016.
    [45] P.-Yi Wang, T.-L. Wu, M.-Y. Chen, Y.-C. Shen, Y.-C. Chang, D.-C. Chang, and S. S. H. Hsu, “A low phase-noise class-C VCO using novel 8-shaped transformer,” ISCAS, pp.886-889, 2015.
    [46] Sheng-Lyang Jang, and Sanjeev Jain, “Dual C- and S-Band CMOS VCO Using the Shunt Varactor Switch,” IEEE TRANSACTIONS ON VERY LARGE SCALE INTEGRATION (VLSI) SYSTEMS, Vol. 23, No. 9, pp. 1808 - 1813, Sep. 2015.
    [47] Wen-Cheng Lai, Sheng-Lyang Jang, You-Liang Ciou, Ho-Chang Lee, Yen-Jung Su, “Low Power Transformer Coupled VCO for Wearable Sensor Applications,” 2017 6th International Symposium on Next Generation Electronics (ISNE).
    [48] K. Kobayashi, A. Oki, L. Tran, J. Cowles, A. Gutierrez-Aitken, F. Yamada, T. Block, and D. Streit, "A 108-GHz InP-HBT monolithic push push VCO with low phase noise and wide tuning bandwidth," IEEE J. Solid-State Circuits, vol. 34, pp. 1225–1232, Sept. 1999.
    [49] F. X. Sinnesbichler and B. Hautz and G. R. Olbrich, "A Si/SiGe HBT dielectric resonator push-push oscillator at 58 GHz," IEEE Microwave and Guided Wave Letters, vol. 10, pp. 145–147, April 2000.
    [50] R. Wanner, H. Schäfer, R. Lachner, G. R. Olbrich, and P. Russer, "A fully integrated SiGe low phase noise push-push VCO for 82 GHz," in European Gallium Arsenide and other Compound Semiconductors Application Symp., Paris, France, 3.-7.10.2005, pp. 249–252, oct 2005.
    [51] X S. Lai, D. Kuylenstierna, M. Hörberg, N. Rorsman, I. Angelov, K. Andersson, H. Zirath, "Accurate phase noise prediction for a balanced Colpitts GaN HEMT MMIC oscillator," IEEE Trans. Microwave Theory & Tech., vol. 61, no. 11, pp. 3916-3926, Nov., 2013.
    [52] Z. Herbert, S. Lai, K. Dan, F. Jonathan, A. Kristoffer and R. Niklas, " An X-band low phase noise AlGaN-GaN-HEMT MMIC push-push oscillator," in Proc. IEEE Compound Semicond. Integr. Circuit Symp. (CSICS), Oct. 16–19, 2011, pp. 1–4.
    [53] X. Lan, M. Wojtowicz, M. Truong, F. Fong, M. Kintis, B. Heying, I. Smorchkova and Y. C. Chen, "A V-band monolithic AlGaN/GaN VCO," IEEE Microw. Wireless Compon. Lett., vol. 18, pp. 407–409, Jun. 2008.
    [54] W. Wohlmuth, M.-H. Weng, C.-K. Lin, J.-H. Du, S.-Y. Ho, T.-Y. Chou, S. M. Li, C. Huang, W.-C. Wang, and W.-K. Wang, "AlGaN/GaN HEMT development targeted for X band applications," 2013 IEEE Int. Conf. Microwaves, Communications, Antennas and Electronic Systems pp.1-4.
    [55] W. Curtice, "GaAs MESFET modeling and nonlinear CAD," IEEE Trans Microwave Theory Tech 36 (1988), 220–230.
    [56] K.-C. Peng and C.-H. Lee, “5 GHz CMOS quadrature VCO with precise quadrature phase,” Microwave Conference Proceedings (APMC), 2012 Asia-Pacific, pp. 1211–1213, Dec. 2012.
    [57] Y.-J. Moon, Y.-S. Roh, C.-Y. Jeong, and C. Yoo, “A 4.39–5.26 GHz LC-tank CMOS voltage-controlled oscillator with small VCO-gain variation,” IEEE Microw. Wireless Compon. Lett., vol. 19, no. 8, pp. 524–526, Aug. 2009.
    [58] E. Reese, D. Allen, C. Lee and T. Nguyen, "Wideband power amplifier MMICs utilizing GaN on SiC," in Digest of IEEE International Microwave Symposium, pp. 1230 – 1233, 2010.
    [59] J. Gassmann, P. Watson, L. Kehias, and G. Henry, "Wideband, high efficiency GaN power amplifiers utilizing a non-uniform distributed topology," in IEEE MTT-S Int. Microw. Symp. Dig., Jun. 2007, pp. 615–618.
    [60] S. Masuda, M. Yamada, Y. Kamada, T. Ohki, K. Makiyama, N. Okamoto, K. Imanishi, T. Kikkawa, and H. Shigematsu, "GaN singlechip transceiver frontend MMIC for X-band applications," in IEEE International Microwave Symposium Digest, Jun. 2012, pp. 1 –3.
    [61] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, "A wide locking range and low voltage CMOS direct injection locked frequency divider," IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [62] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee, and M.-H. Juang, "A wide locking range and low voltage CMOS direct injectionlocked frequency divider," IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299–301, May 2006.
    [63] H. R. Rategh and T. H. Lee, "Superharmonic injection-locked frequency dividers," IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, Jun. 1999.
    [64] D. Melendy, P. Francis, C. Pichler, Hwang Kyuwoon, G. Srinivasan, and A. Weisshaar, "Wide-band compact modeling of spiral inductors in RFICs," Digest of Microwave Symposium, Pages 717–720, June 2002.
    [65] S.-L. Jang, C.-C. Shih, C.-C. Liu, and M.-H. Juang, "CMOS injection-locked frequency divider with two series-LC resonators," Microw. Opt. Technol. Lett., pp.290-293, Feb., 2011.
    [66] S.-L. Jang, and C.-Y. Lin, "A wide-locking range Class-C injection-locked frequency divider," Electronics Letters., vol. 50, 23, pp.1710-1712, 2014.
    [67] N. Mahalingam, K. Ma, K. S. Yeo, and W. M. Lim, "Coupled dual LC tanks based ILFD with low injection power and compact size," IEEE Microw. Wireless Compon. Lett., vol. 24, no. 2, pp. 105-107, Feb 2014.
    [68] S.-L. Jang, F.-B. Lin, and J.-F. Huang, "Wide-band divide-by-2 injection-locked frequency divider using MOSFET mixers DC-biased in subthreshold region," Int. J. Circ Theor App, 43, 2081-2088, 2015.
    [69] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang," Injection-locked frequency divider using injection mixer DC-biased in sub-threshold," IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [70] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, "A wide locking range and low voltage CMOS direct injection-locked frequency divider," IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp. 299-301, May 2006
    [71] S.-L. Jang, S.-S. Huang, J.-F. Lee and M.-H. Juang, " LC-tank Colpitts injection-locked frequency divider with record locking range," IEEE Microw. Wireless Compon. Lett., pp.560-562, Aug. 2008.
    [72] S.-L. Jang "Divide-by-3 injection-locked frequency dividers using dual-resonance resonator," Analog Integr Circ Sig Process., Vol. 85, Issue 2,pp 335-341, Nov., 2015.
    [73] S.-L. Jang, C.-C. Liu,and J.-F. Huang, "Divide-by-3 injection-locked frequency divider using two linear mixers," IEICE Trans. Electron., Vol.E93-C,No.1,pp. 136-139, Jan. 2010.
    [74] S.-L. Jang, and C.-W. Chang, "A 90nm CMOS LC-tank divide-by-3 injection-locked frequency divider with record locking range," IEEE Microw. Wireless Compon. Lett., vol. 20, pp.229-231, April, 2010.
    [75] H. R. Rategh and T. H. Lee, "Superharmonic injection-locked frequency dividers," IEEE J. Solid-State Circuits, vol. 34, no. 6, pp. 813–821, June 1999.
    [76] Y.-T. Chen., M.-W. Li, H.-C. Kuo, T.-H. Huang, and Chuang H.-R., "Low-voltage K-band divide-by-3 injection-locked frequency divider with floating-source differential injector," IEEE Trans. Microw. Theory Tech., vol. 60, no. 1, pp. 160–67, 2012.
    [77] H. Wu and L. Zhang, "A 16-to-18GHz 0.18μm epi-CMOS divide-by-3 injection-locked frequency divider," in IEEE ISSCC Dig. Tech. Papers, Feb. 2006, pp.27–29.
    [78] J.-W. Wu, C.-C. Chen, H.-W. Kao, J.-K. Chen, and M.-C. Tu, "Divide-by-three injection-locked frequency divider combined with divide-by-two locking," IEEE Microw. Wireless Compon. Lett., pp. 590-592, Nov.,2013.
    [79] K.-H. Chien, J. Y. Chenand H. K. Chiou, "Designs of K-band divide-by-2 and divide-by-3 injection-locked frequency divider with Darlington topology," IEEE Trans. Microw. Theory Tech., vol. 99, 2015.
    [80] S.-L. Jang and J.-H Hsieh, "A wide-locking range ÷3 injection-locked frequency divider using concurrent injection mechanisms," Analog Integr Circ Sig Process., Vol. 77, pp 593-598 2013.
    [81] S.-L. Jang, Y.-S.Chen, C.-W. Chang, and C.-C.Liu, "A wide-locking range ÷3 injection-locked frequency divider using linear mixer," IEEE Microw. Wireless Compon. Lett., vol. 20, pp.390-392, July, 2010.
    [82] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, "Wide-locking range divide-by-3 injection-locked frequency divider using 6th-order RLC resonator," IEEE Trans. VLSI Syst., vol. 24, no. 7, pp.2598-2602,2016.
    [83] Meng-Yan Fang, CIC, SiGe18-104D-E0014.
    [84] S.-L.Jang and C.-Y. Chuang, "Wide-locking range ÷3 series-tuned injection-locked frequency divider," Analog Integr Circ Sig Process, Vol. 76, 1, pp.111-116., Jan. 2013.
    [85] S.-L. Jang, C.-Y. Lin, and M.-H. Juang, "Enhanced locking range technique for a divide-by-3 differential injection-locked Frequency divider," Electron.Lett.,vol. 51, 19, pp. 456 – 458, 2015.
    [86] S.-L. Jang, and C.-Y. Lin, "A wide-locking range Class-C injection-locked frequency divider," Electron.Lett., vol. 50, 23, pp.1710-1712, 2014.

    無法下載圖示 全文公開日期 2022/12/18 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE