簡易檢索 / 詳目顯示

研究生: 黃奕儒
Yi-Ru - Huang
論文名稱: 寬頻帶除二注入鎖定除頻器與無變容二極體除二注入鎖定除頻器電壓調動與鎖頻範圍之研究
Wide-Band ÷2 Capacitive Cross-Coupled Injection-Locked Frequency Divider and Tuning and Locking Range of Varactor-less ÷2 Injection-Locked Frequency Divider
指導教授: 張勝良
Sheng–Lyang Jang
口試委員: 徐敬文
Ching-Wen Hsue
莊敏宏
Miin-Horng Juang
黃進芳
Jhin-Fang Huang 
賴文政
Wen-Cheng Lai
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 英文
論文頁數: 97
中文關鍵詞: 注入鎖定除頻器遲滯現象
外文關鍵詞: Injection-Locked Frequency Divider tuning hyster
相關次數: 點閱:174下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在RF射頻收發機中,PLL的特性非常重要,PLL內部包含了相位偵測器(PFD)、充電幫浦(CP)、迴路濾波器(LF)、壓控振盪器(VCO)、除頻器(FD),而為了追求低功耗,低相位雜訊,與較寬的除頻範圍,在這其中又以壓控振盪器和注入鎖定除頻器特性最重要,而本論文主要研製鎖相迴路之注入鎖定除頻器。

    首先,第一部分我們呈現一個寬頻除二注入鎖定除頻器,此除頻器使用台積電矽鍺0.18 μm製程,晶片面積為0.859 × 0.817 mm2。此除二除頻器設計基於一電容耦合的壓控振盪器,且利用電阻加入共振腔來增加除頻範圍。此除頻器最佳工作電壓操作在0.8伏特,整體功耗為6.23 mW,在注入強度為0 dbm時,除頻範圍可從3.1 GHz ~ 9.3 GHz,百分比為100 %。

    接著,第二部分呈現一個使用電容性交叉耦合對的注入鎖定除二除頻器,此除頻器使用台積電矽鍺0.18 μm製程,晶片面積為0.884 × 0.645 mm2。此除二除頻器設計基於兩個N型金氧半電晶體交錯耦合對為中心所組成的電壓壓控振盪器,以及一組差動用來注入訊號的N型金氧半電晶體並聯共振腔三個電感所組成。此除二除頻器,在供應電壓為1.09伏特時,消耗為6.3 mW,在注入強度為0dbm時,除頻範圍可從3.8 GH~ 6.8 GHz,百分比為77.55 %。

    最後,一個使用電容性交叉耦合對的寬頻除五注入鎖定除頻器,同樣使用台積電0.18 μm製程來實現。此除頻器使用降低品質因素的共振腔來增加鎖頻範圍。此除五除頻器,在供應電壓為0.9伏特時,消耗為2.98 mW,在注入強度為0dbm時,除頻範圍可從9.4 GH~ 12.6 GHz,百分比為29.06 %。


    In the RF transceiver, PLL are very important, PLL characteristics include Phase Frequency Detector (PFD), Charge Pump (CP), Loop Filter (LF),Voltage Controlled Oscillator (VCO), and Frequency Divider (FD), In order to pursue low-power, low phase noise, wide Locking range, the most important characteristics of performance are VCO and Divider. This thesis presents the design of Injection-Locked Frequency Dividers (ILFDs).

    First, a wide locking range divide-by-2 injection-locked frequency divider (ILFD) using a standard 0.18 μm BiCMOS process is presented. The ILFD circuit bases on capacitive cross-coupled oscillator and uses resonator with resistor to enhance the locking range. The power consumption of the ILFD core is 6.72 mW and the locking range is from 3.1 to 9.3 GHz (100 %) at injection power Pinj = 0 dBm. At the supply voltage of 1.09 V, the divider’s free-running frequency is 3.53 GHz. The die area is 0.859 × 0.817 mm2 .

    Secondly, this thesis presents a low power and wide locking range divider by-2 injection-locked frequency divider (ILFD) using a standard 0.18 μm BiCMOS process is presented. The ILFD is based on a differential VCO with dual injection MOSFETs for coupling the external signal to the resonator. The power consumption of the ILFD core is 6.3 mW and the locking range is from 3.0 ~ 6.8 GHz (77.55 %) at injection power Pinj = 0 dBm. At the supply voltage of 1.09 V, the divider’s free-running frequency is 2.19 GHz. The die area is 0.884 × 0.645 mm2 .

    Finally, a wide-locking range ÷5 ILFD with capacitive cross-coupled oscillator was implemented in the TSMC 0.18 μm 1P6M CMOS process. The divide-by-5 ILFD is used in the resonator to degrade the quality factor so that locking range is enhanced. The power consumption of the ILFD core is 2.98 mW and the locking range is from 9.4 ~ 12.6 GHz (29.06 %) at injection power Pinj = 0 dBm. At the supply voltage of 0.9 V, the divider’s free-running frequency is 1.89 GHz. The die area is 0.987 × 1.096 mm2.

    摘要 I Abstract III 致謝 V Table of Contents VI List of Figures VIII List of Tables XIV Chapter 1 Introduction 1 1.1 Background 1 1.2 Thesis Organization 3 Chapter 2 Principles and Design Considerations of Voltage ControlledOscillators 5 2.1 Introduction 5 2.2 The Oscillators Theory 7 2.2.1 Feedback Oscillators 7 2.2.2 Resonator and Negative Resistance 9 2.3 The Classification of Oscillators 12 2.3.1 Ring Oscillator 12 2.3.2 LC-Tank Oscillator 15 2.4 Passive Components Design in VCO 23 2.4.1 Capacitor Design 23 2.4.2 Varactor Design 25 2.4.3 Inductor Design 29 2.4.4 Resistor Design 32 2.5 The Basic parameters of VCO 33 2.5.1 RF Center Frequency [Hz] 33 2.5.2 RF Output Signal Power [dBm] 33 2.5.3 Power Dissipation [mW] 33 2.5.4 Harmonic/spurious [dBc] 34 2.5.5 Phase Noise 34 2.5.6 Tuning Range 37 2.5.7 Tuning Sensitivity [Hz/V] 38 2.5.8 Quality Factor 39 2.5.9 Figure of Merit [dBc/Hz] 42 Chapter 3 Design of Injection Locked Frequency Divider 43 3.1 Principle of Injection Locked Frequency Divider 44 3.2 Locking Range 46 Chapter 4 Wide-Band ÷2 Capacitive Cross-Coupled Injection-Locked Frequency Divider 49 4.1 Introduction 49 4.2 Circuit Design 50 4.3 Measurement Results 51 Chapter 5 Tuning and Locking Range of Varactor-less ÷2 Injection-Locked Frequency Divider 67 5.1 Introduction 67 5.2 Circuit Design 68 5.3 Measurement Results 70 Chapter 6 Wide-Band Capacitive Cross-Coupled Divide-by-5 Injection-Locked Frequency Divider 81 6.1 Introduction 81 6.2 Circuit Design 82 6.3 Measurement Results 85 Chapter 7 Conclusions 91 References 93

    [1] B. Razavi, “RF Microelectronics”, Upper Saddle River, NJ: Prentice Hall, 1998
    [2] N. M. Nguyen and R. G. Meyer, “Start-up and frequency stability in high-frequency oscillators,” IEEE J. Solid-State Circuit, vol. 27, no. 5, pp. 810–820, May 1992.
    [3] S. Smith, Microelectronic Circuit 4th edition, Oxford University Press 1998.
    [4] B. Razavi, Design of Analog CMOS Integrated Crcuits, MC Graw Hall,2001.
    [5] P. Andreani, S. Mattisson, “On the use of MOS varactors in RF VCOs,” IEEE Journal of Solid-State Circuits, vol. 35, no. 6, pp. 905-910, June 2000.
    [6] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [7] Y. K. Koutsoyannopoulos, and Y. Papananos, “Systematic analysis and modeling of integrated inductors and transformers in RF IC design,” IEEE Trans. Crcuits and System-II, vol. 47, no. 8, pp. 699-713, 2000.
    [8] A. Zolfaghari, A. Chan, and B. Razavi, “Stacked inductors and transformers in CMOS technology,” IEEE J. Solid-State Circuits, vol. 36, no. 4, pp. 620-628, 2001.
    [9] H. M. Greenhouse, “Design of planar rectangular microelectronic inductors,” IEEE Transactions on Parts, Hybrids, and Packaging, vol. 10, pp. 101-109, Jun 1974.
    [10] A. Hajimiri and T. H. Lee, “A general theory of phase noise in electrical oscillators,” IEEE J. Solid-State Circuits, vol. 33, no. 2, pp. 179−194, Feb. 1998.
    [11] J. J. Rael and A. A. Abidi, “Physical processes of phase noise in differential LC Oscillators,” IEEE Custom Integrated Circuits Conference, 2000, pp. 569−572.
    [12] T. Lee and A. Hajimiri, “Oscillator phase noise: a tutorial,” IEEE J. Solid-State Circuits, vol. 35, no. 3, pp. 326−336, Mar. 2000.
    [13] B. Razavi, Design of Analog CMOS Integrated Circuits, Mc Graw Hill, 2001.
    [14] T. H. Lee, The Design of CMOS Radio Frequency Integrated Circuits, Cambridge University Press 1998.
    [15] D. Hauspie, E.-C. Park, and J. Craninckx, “Wide-band VCO with simultaneous switching of frequency band, active core, and varactor size,” IEEE J. Solid-State Circuits, vol. 42, no. 7, pp. 1472–1480, Jul. 2007.
    [16] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [17] J. Craninckx and M. S. J. Steyaert, “A 1.75-GHz/3-V dual-modulus divide-by-128/ 129 prescaler in 0.7 um CMOS,” IEEE J. Solid-State Circuits, vol. 31, pp. 890-897, July 1996.
    [18] Q. Huang and R. Rogenmoser, “Speed optimization of edge-triggered CMOS circuits for gigahertz single-phase clocks,” IEEE J. Solid-State Circuits, vol. 31, pp. 456-463, Mar. 1996.
    [19] J. Lee and B. Razavi, “A 40 GHz frequency divider in 0.18μm CMOS technology,” IEEE J. Solid-State Circuits, vol. 39, pp. 594-601, Apr. 2004.
    [20] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [21] H. D. Wohlmuth and D. Kehrer, “A high sensitivity static 2:1 frequency divider up to 27 GHz in 120 nm CMOS,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 823-826, Sept. 2002.
    [22] M. Tiebout, “A 480 uW 2 GHz ultra low power dual-modulus prescaler in 0.25 um standard CMOS,” IEEE International Symposium on Circuit and System (ISCAS), vol. 5, pp. 741-744, May 2000.
    [23] H. Wu, and A. Hajimiri, “A 19 GHz 0.5 mW 0.35 μm CMOS frequency divider with shunt-peaking locking-range enhancement,” IEEE ISSCC Dig. Tech. Papers, pp. 412-413, Feb. 2001.
    [24] R. J. Betancourt-Zamora, S. Verma, and T. H. Lee, “1 GHz and 2.8 GHz CMOS injection- locked ring oscillator prescalers,” IEEE Symposium on VLSI Circuits, pp. 47-50, June 2001.
    [25] P. Kinget, R. Melville, D. Long, and V. Gopinathan, “An Injection Locking Scheme for Precision Quadrature Generation,” IEEE J. Solid-State Circuits, vol. 37, pp. 845-851, July 2002.
    [26] H. R. Rategh, and T.H. Lee, “Superharmonic injection-locked frequency dividers,” IEEE J. Solid-State Circuits, vol. 34, pp. 813-821, June 1999.
    [27] W. Z. Chen, and C. L. Kuo, “18 GHz and 7 GHz superharmonic injection-locked dividers in 0.25pm CMOS technology,” IEEE European Solid State Circuits Conference (ESSCIRC), pp. 89-92, Sept. 2002.
    [28] H. Wu, “Signal generation and processing in high-frequency/high-speed silicon based integrated circuits,” PhD thesis, California Institute of Technology, 2003.
    [29] R. Adler, “A study of locking phenomena in oscillators,” Proc. IEEE, vol. 61, pp.1380-1385, Oct. 1973.
    [30] S.-L. Jang, Y.-J. Chen, C.-H. Fang, and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p.1888-1889.
    [31] S.-L. Jang, X.-Y. Hang, and W.–T. Liu, “Review: capacitive cross-coupled injection-locked frequency dividers,” Analog Integr Circ Sig Process, 88:97–104, 2016.
    [32] M. Tiebout, “A CMOS direct injection-locked oscillator topology as high-frequency low-power frequency divider,” IEEE J. Solid-State Circuits,vol. 39, no. 7, pp. 1170–1174, Jul. 2004.
    [33] Y.-H. Chuang, S.-H. Lee, R.-H. Yen, S.-L. Jang, J.-F. Lee and M.-H. Juang, “A wide locking range and low voltage CMOS direct injection-locked frequency divider,” IEEE Microw. Wireless Compon. Lett., vol. 16, no. 5, pp.299-301, May, 2006.
    [34] C. Wu, C. Tang, and S. Liu, “Analysis of on-chip spiral inductors using the distributed capacitance model,” IEEE J. Solid-State Circuits, vol. 38, pp.1040- 1044, June 2003.
    [35] J. R. Long and M.A. Copeland, “The modeling, characterization and design of monolithic inductors for silicon RF IC's.” IEEE J. Solid State Circuits, vol. 32, p. 357, 1997.
    [36] S.-L. Jang, Z.-H. Wu, C.-W. Hsue and H.-F. Teng, “Wide-locking range dual-band injection-locked frequency divider,” Microw. Opt. Technol. Lett. vol. 55, 10, pp. 2333–2337, Oct. 2013.
    [37] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Letters ,vol. 51, no. 23, 05 Nov 2015, p. 1888 – 1889.
    [38] S.-L. Jang, L.-Y. Huang, C.-W. Hsue, and J.-F. Huang, “Injection-locked frequency divider using injection mixer DC-biased in sub-threshold,” IEEE Microw. Wireless Compon. Lett., vol. 25, no. 3, pp. 193-195, March 2015.
    [39] J. R. Hu and B. P. Otis, “A 3μW, 400 MHz divide-by-5 injection locked frequency divider with 56% lock range in 90nm CMOS,” in RFIC Symp., 2008 pp. 665–668.
    [40] X. Yi, C. C. Boon, M. A. Do, K. S. Yeo, and W. M. Lim, “Design of ring-oscillator-based injection-locked frequency dividers with single-phase inputs,” IEEE Microw.Wireless Compon. Lett., vol. 21, no. 10, pp. 559-561, 2011.
    [41] J. Jeong and Y. Kwon, “V-band high-order harmonic injection-locked frequency-divider MMICs with wide bandwidth and low-power dissipation,” IEEE Trans. Microw. Theory Tech., vol. 53, no. 6, pp. 1891-1898, Jun. 2005.
    [42] P.-K. Tsai, T.-H. Huang and Y.-H. Pang, “CMOS 40 GHz divide-by-5 injection-locked frequency divider,” IET Electronics Let., vol.46, no.14, pp.1003-1004, Jul. 2010.
    [43] M.-W. Li, P.-C. Wang, T.-H. Huang, and H.-R. Chuang, “Low-voltage, wide locking range, millimeter-wave divide-by-5 injection-locked frequency dividers,” IEEE Trans. Microw. Theory Tech., vol. 60, no. 3, pp. 679–685, Mar. 2012.
    [44] M. Jalalifar and G.-S. Byun, “A K-band divide-by-five injection-locked frequency divider using a near-threshold VCO,” IEEE Microw. Wireless Compon. Lett., vol. 24, no. 12, pp. 881-883, 2014.
    [45] S.-L. Jang and C.-Y. Lin, “A wide-locking range Class-C injection-locked frequency divider,” Electronics Lett ., vol. 50, 23, pp.1710-1712, 2014.
    [46] S.-L. Jang, Y.-J. Chen, C.-H. Fang and W. C. Lai, “ Enhanced locking range technique for frequency divider using dual-resonance RLC resonator,” Electronics Let., vol. 51, no. 23, 05Nov 2015, p. 1888 – 1889.
    [47] S.-L. Jang, W.-C. Cheng and C.-W. Hsue, “ A triple-resonance RLC-tank divide-by-2 Injection-locked frequency divider,” Electronics Let., Vol. 52, No. 8, pp. 624–626, 2016.

    無法下載圖示 全文公開日期 2022/01/16 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE