簡易檢索 / 詳目顯示

研究生: 盧正添
Cheng-tien Lu
論文名稱: 熱處理製程對FeCoNiCrCu0.5塊狀高熵合金在不同環境腐蝕特性之研究
Corrosion Behavior of FeCoNiCrCu0.5 Bulky High Entropy Alloy with Heat-treatment Processes in Different Environments
指導教授: 蔡顯榮
Hsien-Lung Tsai
口試委員: 王朝正
Chaur-Jeng Wang
宋振銘
none
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 76
中文關鍵詞: 高熵合金電化學熱處理鑄造動態極化曲線
外文關鍵詞: High entropy alloy, Electrochemical, heat-treatment, casting, potentiodynamic polarization
相關次數: 點閱:188下載:7
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要探討FeCoNiCrCu0.5塊狀高熵合金時效熱處理製程條件之不同環境腐蝕行為。研究結果顯示鑄造狀態的高熵合金經均質化處理,再以時效熱處理製程(350℃, 500℃, 650℃, 800℃及950℃)處理試片,在3.5 wt% NaCl、1N NaOH 和 1N H2SO4水溶液下,而與304L不銹鋼於3.5 wt% NaCl、1N NaOH 和 1N H2SO4水溶液極化曲線比較;於3.5 wt% NaCl水溶液之極化數據比較中,304L不銹鋼得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金具有最高之腐蝕速率;1N NaOH水溶液之極化數據比較中,304L不銹鋼得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金具有最高之腐蝕速率;於1N H2SO4水溶液之極化數據比較中,304L不銹鋼得到最低之腐蝕速率、FeCoNiCrCu0.5高熵合金得到最高之腐蝕速率,其中又以FeCoNiCrCu0.5高熵合金經由650℃時效熱處理製程之FeCoNiCrCu0.5塊狀高熵合金具有較高之腐蝕速率,亦即為具有較差之抗蝕性,研判為FeCoNiCrCu0.5高熵合金中富含銅相,而造成偏析的現象,反而造成腐蝕速率加快,抗蝕性變差。


    The corrosion behavior of FeCoNiCrCu0.5 high-entropy alloys under various heat-treatment processes and corrosion environments was studied. The heat treatment of the as-cast alloy specimens was carried out at 1050℃ with 1 hour holding time. After water quenching serial heat-treatments at 350℃, 500℃, 650℃, 800℃ and 950℃ with 24 hours holding time were carried out. The corrosion resistance of the specimens has been evaluated by potentiodynamic polarization of immersion tests. The specimen treated at 950℃ exhibits serious corrosion in NaOH and H2SO4 solution due to significant segregation of Cu-riched phase. Because of the active sensitivity zone of appreciable potential difference, the high-entropy alloy was preferentially attacked along the Cu-riched phase.

    摘  要I Abstract ……………………………………………………………….II 誌  謝…………………………………………..................................Ⅲ 第一章 前言1 第二章 文獻回顧3 2.1 高熵合金3 2.1.1 高熵合金的發展回顧3 2.1.2 高熵合金的定義與應用4 2.1.3 高熵合金的研究4 2.1.3.1 多元高熵合金晶體結構及硬度之研究5 2.1.3.2 以 FCC 及BCC 元素為劃分配置等莫耳多元合金系統之研究7 2.1.3.3 Cu、Al、Cr、Fe、Co、Ni、Si和Ti高熵合金抗蝕性之研究9 2.1.3.4 FeCoNiCrCux高熵合金抗蝕性之研究12 2.2 材料腐蝕14 2.2.1 腐蝕之發生原因14 2.2.2 腐蝕之型態14 2.2.2.1 均勻腐蝕15 2.2.2.2 穿孔腐蝕15 2.2.2.3 加凡尼腐蝕16 2.2.3 電化學腐蝕16 2.2.3.1 電化學測試17 2.2.3.2 電化學極化17 2.2.3.3 混合電位22 2.2.3.4 腐蝕速率24 2.2.3.5 鈍化與鈍化膜25 2.2.3.6 腐蝕速率之量測26 2.2.4 化學腐蝕27 第三章 實驗方法28 3.1 實驗流程28 3.2 基材製備29 3.3 鑄態基材熱處理29 3.4 試片研磨29 3.5 X-ray繞射分析30 3.6 材料顯微組織觀察及成份分析30 3.7 電化學實驗31 3.7.1 恆電位儀實驗設備及裝置31 3.7.2 動電位極化曲線(Potentiodynamic)量測31 3.8 浸泡試驗32 3.9 硬度量測32 第四章 實驗結果與討論………..33 4.1 FeCoNiCrCu0.5高熵合金顯微組織及成份分析33 4.1.1 鑄態基材及時效熱處理高熵合金之金相組織(OM)33 4.1.2 鑄態基材之SEM顯微組織結構及成份分析34 4.1.3 FeCoNiCrCu0.5鑄態基材及時效熱處理後之SEM分析35 4.1.4 FeCoNiCrCu0.5鑄態基材及時效熱處理後之硬度值37 4.2 X-ray 繞射37 4.3 電化學分析38 4.3.1 3.5% NaCl水溶液環境之極化曲線圖38 4.3.2 1N H2SO4動態極化曲線圖41 4.3.3 1N NaOH動態極化曲線圖43 4.3.4 FeCoNiCrCu0.5高熵合金之腐蝕行為45 4.3.4.1 鑄態之FeCoNiCrCu0.5高熵合金45 4.3.4.2 350℃時效熱處理之FeCoNiCrCu0.5高熵合金48 4.3.4.3 500℃時效熱處理之FeCoNiCrCu0.5高熵合金51 4.3.4.4 650℃時效熱處理之FeCoNiCrCu0.5高熵合金54 4.3.4.5 800℃時效熱處理之FeCoNiCrCu0.5高熵合金57 4.3.4.6 950℃時效熱處理之FeCoNiCrCu0.5高熵合金60 4.5 浸泡腐蝕63 第五章 結論71 參考文獻73

    [1] J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H.Tsau, and S. Y. Chang, “Nanostructured high-entropy alloys with multi-principal elements -- Novel alloy design concepts and outcomes”, Advance Engineering Materials, vol.5 (2004), pp. 299-303.
    [2] P. K. Huang, J. W. Yeh, T. T. Shun, and S . K. Chen, “Multi-principal element alloys with improved oxidation and wear resistance for thermal spray coating”, Advance Engineering Materials, vol.6 (2004), pp. 74-78.
    [3] Hyo S. Lee, Kyung Y. Jeon, Hee Y. Kim, and Soon H. Hong, “Fabrication process and thermal properties of SiCp/Al metal matrix composites for electronic packaging applications”, Journal of Materials Science, Vol.35 (2008), pp. 6231-6236.
    [4] V. Medeleiene and A. Kosenko, “Structural and functional properties of electrodeposited copper metal matrix composite coating with inclusions of WC”, Materials Science, Vol. 14 (2008), pp. 29-33.
    [5] 葉均蔚,陳凱瑞,“高熵合金”,科學發展,377期,pp.16-21,2004。
    [6] 葉均蔚, “具奈米結構之多元高熵合金系統”,知識創新,40期,2003。
    [7] 許雲翔,“以 FCC 及BCC 元素為劃分配置等莫耳多元合金系統之研究”,國立清華大學材料科學工程研究所碩士論文,2000,p. 123-130。
    [8] 洪育德,“ Cu、Al、Cr、Fe、Co、Ni、Si和Ti高熵合金抗蝕性之研究”,國立清華大學材料科學工程研究所碩士論文,2002,pp. 98-99。
    [9] 許佑睿,“FeCoNiCrCux 高熵合金之抗蝕性研究”,國立海洋大學材料工程研究所碩士論文,2004,pp. 104-106。
    [10] Y. J. Hsu, W. C. Chiang, and J. K. Wu, “Corrosion behavior of
    FeCoNiCrCux high entropy alloys in 3.5% NaCl solution”,
    Materials Chemistry and Physics, Vol. 92 (2005), pp. 112-117.
    [11] M. C. Baykul, “Preparation of shape gold tips for STM by using electro-chemical etching method”, Materials Science and Engineer B, Vol. 74 (2000) , pp. 229-233.
    [12] A. V. Benedetti, P. T. A. Sumodjo, K. Nobe, P. L. Cabot, and W. G. Proud, “Electrochemical studies of copper, copper-aluminum and copper- aluminum-silver”, Electrochemica Acta, Vol. 40, No.16 (1995), pp. 2657-2668.
    [13] B. Cantor, I. T. H. Chang, P. Knight, and A. J. B.Vincent, “Microstructure development in equiatomic multicomponent alloys” ,Materials Science and Engineer A, 375-377 (2000) , pp. 213-218.
    [14] C.Y. Hsu, J. W. Yeh, “Wear Resistance and High-Temperature Compression Strength of FCC CuCoNiCrAl0.5Fe Alloy with Boron Addition”, Metallurgical and Materials Transactions A, Vol. 31A (2004), pp. 1465-1469.
    [15] J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus,“In situ STM study of the effect of chlorides on the initial stages of anodic oxidation of Cu(111) in alkaline solutions”,Electrochemica Acta, Vol. 48 (2003), pp. 1157-1167.
    [16] Y. Y. Chen , U. T. Hong, H. C. Shih, J. W. Yeh, and T. Duval,“Electro-chemical Kinetics of the High Entropy alloys in Aqueous Enviroments – a Comparison with type-304 Stainless Steel”, Corrosion Science, Vol. 47 (2005), pp. 2679-2699.
    [17] 李清祺, “鐵基合金於氯化鈉之高溫腐蝕機制”,國立台灣科技大學機械工程系博士學位論文,2006,pp. 135-136。
    [18] J. Datta, C. Bhattacharya, and S. Bandyopadhyay, “Influence of Cl-, Br-, No3-, and SO42- ions on the corrosion behavior of 6061 Al alloy”, Bull. Mater. Sci., Vol. 28 (2005), pp. 253-258.
    [19] G. Okamoto, “Passive film of 18-8 stainless steel structure and its function”, Corrosion Science , Vol. 13 (1973) , pp.471-489.
    [20] D. Itzhak and P. Peled,“The effect of Cu addition on the corrosion behavior of sintered stainless steel in H2SO4 environment ”, Corrosion Science , Vol. 26 (1986), pp. 49-54.
    [21] C. Garcia, F. Martin, P. De. Tiedra, Y. Blanco, M. Lopez,“Pitting corrosion of welded joints of austenitic stainless steels studied by using an electrochemical minicell”, Corrosion Science, Vol.26, No.1 (2008), pp. 1184-1194.
    [22] J. Kunze, V. Maurice, L. H. Klein, H. H. Strehblow, and P. Marcus,“In situ STM study of the anodic oxidation of Cu(001) in 0.1M NaOH”, Journal of Electroanalytical Chemistry, 554-555 (2003), pp. 113-125.

    QR CODE