簡易檢索 / 詳目顯示

研究生: 張庭瑄
Ting-Syuan Jhang
論文名稱: 硫屬化合物鈉離子導體之合成及電解質應用
Synthesis and potential electrolyte applications of chalcogenide sodium ion conductors
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 戴龑
Yian Tai
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 82
中文關鍵詞: 硫屬化合物cubic Na3PS4cubic Na3SbS4Na9SbP2S12Na9SbP2S11Se機械球磨法離子導電率離子導體電化學窗口
外文關鍵詞: chalcogenide, cubic Na3PS4, cubic Na3SbS4, Na9SbP2S12, Na9SbP2S11Se, mechanical ball-milling, ionic conductivity, ion conductor, electrochemical window
相關次數: 點閱:348下載:10
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究中,利用高能量機械球磨法,以370 rpm持續12小時,合成Na3PS4、Na3SbS4、Na9SbP2S12和Na9SbP2S11Se硫屬化合物,再單軸加壓(469 MPa)製成碇狀,加熱至200°C,可令高能研磨粉末反應進行更完全。使用交流阻抗分析(AC impedance)、恆電壓測量與循環伏安法(Cyclic voltammetry),測量對稱及非對稱電池構型之電化學性質。
    將高能量球磨法合成過後之Na3PS4、Na3SbS4、Na9SbP2S12和Na9SbP2S11Se硫屬化合物粉末,加熱至200°C持續2小時,以X光繞射(X-ray diffraction)進行鑑定,在兩倍角(2θ)為15~50°出現數個很寬的背景繞射。X光繞射圖譜顯示Na3PS4和Na3SbS4立方相晶體繞射特徵。Na9SbP2S12和Na9SbP2S11Se繞射峰類似,應該是前兩種硫屬化合物具有同樣晶體結構的固溶體(solid solution),另搭配元素組成比例進行確認。
    比較利用不同策略提升鈉離子導電率的四種固態電解質,cubic Na3PS4硫屬化合物在降溫條件量測,得室溫之離子導電率為1.17 x 10-4 S cm-1。cubic Na3SbS4硫屬化合物在降溫條件量測,得室溫之離子導電率為2.93 x 10-4 S cm-1。Na9SbP2S12硫屬化合物在降溫條件量測,得室溫之離子導電率為3.66 x 10-4 S cm-1。Na9SbP2S11Se硫屬化合物在降溫條件量測,得室溫之離子導電率為4.40 x 10-4 S cm-1,Na9SbP2S11Se硫屬化合物為四種固態電解質中具有最高之室溫離子導電率,但彼此差距有限,同時在溫度110°C以上時,Na9SbP2S12硫屬化合物之離子導電率為四種中最高值。
    Na9SbP2S12硫屬化合物其電子或電洞導電率(σe+h)為1.303 x 10-11 S cm-1,具有低電子導體特性,以Na9SbP2S12作為電解質將不會有漏電問題,Na9SbP2S12提供的電化學窗口達5.0 V (vs. Na/Na+)。
    以循環伏安法觀察鈉金屬與Na9SbP2S12硫屬化合物之間的電化學反應,掃瞄範圍為-1.0 ~ 5.0 V (vs. Na/Na+),結果顯示僅為單純鈉離子的還原反應與鈉金屬原子氧化反應,並無發現第三相反應產生。


    In this study, Na3PS4, Na3SbS4, Na9SbP2S12 and Na9SbP2S11Se chalcogenide are synthesized by high energy mechanical ball-milling at 370 rpm for 12 h, and then the ball milled powder was compacted with uniaxial cold press (469 MPa) into a pellet. The pellet undergoes solid state reaction and crystallization through the heating procedure up to 200°C. The electrochemical properties of these sulfides are measured in symmetric and asymmetric cell configurations using AC impedance, constant voltage measurement, and cyclic voltammetry.
    The ball milled Na3PS4, Na3SbS4, Na9SbP2S12 and Na9SbP2S11Se chalcogenide powders were heated to 200°C for 2 h. The X-ray diffraction patterns of Na3PS4, Na3SbS4, Na9SbP2S12 and Na9SbP2S11Se chalcogenide show a few wide background diffractions between 15° to 50° (2θ). The X-ray diffraction patterns of Na3PS4 and Na3SbS4 show somewhat shifted diffraction lines of the cubic phase. The Na9SbP2S12 and Na9SbP2S11Se diffraction peaks are similar, we think they are solid solutions of the parent structure. The sulfide compositions are confirmed with energy dispersive spectrometer (EDS).
    The ion conductivity of cubic Na3PS4 chalcogenide is measured 1.17 x 10-4 S cm-1 at room temperature in the cooling ramp. The ion conductivity of cubic Na3SbS4 chalcogenide is measured 2.93 x 10-4 S cm-1 at room temperature in the cooling ramp. The ion conductivity of Na9SbP2S12 chalcogenide is measured 3.66 x 10-4 S cm-1 at room temperature in the cooling ramp. The ion conductivity of Na9SbP2S11Se chalcogenide is measured 4.40 x 10-4 S cm-1 at room temperature in the cooling ramp. The Na9SbP2S11Se chalcogenide is the highest ionic conductivity at room temperature, but it only slightly increased. At temperatures above 110°C, the Na9SbP2S12 chalcogenide is the highest ionic conductivity at room temperature. Thus we conclude that solid solutions do raise the ion conductivity of sodium chalcogenides.
    Specifically, the electron/hole conductivity of the Na9SbP2S12 chalcogenide is 1.303 x 10-11 S cm-1 S cm-1 is estimated beyond 5.0 V (vs. Na/Na+), while the sodium ion conduction predominates within 0 – 5.0 V (vs. Na/Na+). Since the electron/hole conductivity is well less than the ion conductivity, Na9SbP2S12 as an electrolyte is not supposed to have leakage problem. Na9SbP2S12 chalcogenide had a wide electrochemical window up to 5.0 V (vs. Na/Na+).
    The potentials are scanned from −1 to 5.0 V (vs. Na/Na+). We have found only the sodium ion reduction reaction and sodium metal atomic oxidation reaction, no third phase reaction. The results of cyclic voltammetry indicate that the window 0 – 5.0 V (vs. Na/Na+) can be used for the Na9SbP2S12 electrolyte.

    目錄 摘 要 I ABSTRACT III 目錄 V 表目錄 VIII 圖目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與理論基礎 3 2.1 鈉離子電解質 3 2.1.1 固態電解質 3 2.1.2 ab initio molecular dynamics 4 2.2 硫屬玻璃和玻璃陶瓷電解質 5 2.2.1 硫屬玻璃和玻璃陶瓷電解質 5 2.2.2 cubic Na3PS4 7 2.2.3 cubic Na3SbS4 9 2.2.4 陽離子取代 10 2.2.4.1 等價陽離子取代 10 2.2.4.2 異價陽離子取代 10 2.2.5 陰離子取代 12 2.2.5.1 等價陰離子取代 12 2.2.5.2 異價陰離子取代 13 2.2.6 硫屬化合物穩定相 13 2.3 硫屬玻璃和玻璃陶瓷電解質合成方法 15 2.3.1 硫屬玻璃合成方法 15 2.3.1.1 熔融驟冷法 15 2.3.1.2 液相合成法 16 2.3.1.3 機械球磨法 17 2.3.1.4 三種合成方法比較 18 2.3.2 硫屬玻璃陶瓷合成方法 20 2.4 硫屬玻璃和玻璃陶瓷電解質傳導機制 21 2.4.1 硫屬玻璃和玻璃陶瓷電解質傳導機制 21 2.4.2 硫屬玻璃和玻璃陶瓷離子傳導 23 第三章 實驗方法與步驟 24 3.1 實驗藥品耗材與儀器設備 24 3.1.1 固態電解質製備 24 3.1.2 電流收集器製作 25 3.1.3 其他藥品耗材與儀器設備 26 3.1.4 材料鑑定及儀器設備 27 3.1.5 電化學分析及儀器設備 27 3.2 實驗流程 28 3.2.1 硫屬化合物合成 28 3.2.2 電化學量測流程 30 3.2.3 量測構型組裝 30 3.2.3.1 對稱電池(symmetric cell)構型 30 3.2.3.2 非對稱電池(asymmetric cell)構型 31 3.3 實驗方法 31 3.3.1 硫屬化合物電解質合成 31 3.3.2 硫屬化合物電解質壓碇 32 3.3.3 電流收集器製作 32 3.3.4 對稱電池之構型製作 33 3.3.5 非對稱電池之構型製作 33 3.4 固態電解質鑑定與分析 34 3.4.1 X光繞射分析(XRD) 34 3.4.2 元素組成分析(EDS) 35 3.4.3 電化學交流阻抗分析(AC impedance) 35 3.4.3.1 電化學交流阻抗分析原理 35 3.4.3.2 交流阻抗量測與離子導電率計算 37 3.4.4 循環伏安法(CV) 39 第四章 結果與討論 40 4.1 X光繞射分析(XRD) 40 4.2 元素組成分析(EDS) 44 4.3 電化學交流阻抗分析 47 4.3.1 交流阻抗分析 47 4.3.1.1 升溫程序 47 4.3.1.2 降溫程序 50 4.3.2 離子導電率與活化能 55 4.4 電子與電洞之導電率 61 4.5 循環伏安法(CV) 62 第五章 結論 68 參考文獻 70 附錄 73 附錄A液相合成法之實驗方法 73 A.1實驗藥品耗材與儀器設備 73 A.2 硫屬化合物系統電解質合成 74 A.3 混合系統(硫屬化合物+高分子材料)電解質合成 74 附錄B液相合成法之離子導電率 76 B.1 硫屬化合物系統 76 B.1.1 75Na2S•15P2S5•10MS硫屬化合物 76 B.1.2 50Na2S•25NaX•25P2S5硫屬化合物 76 B.1.3 Na2S-P2S5-GeS2硫屬化合物系統 77 B.1.4 Na2S-P2S5-SiS2硫屬化合物系統 77 B.2 混合系統(硫屬化合物+高分子材料) 78 B.2.1 (75Na2S•25P2S5)+PVA (2:1 Wt%)硫屬化合物 78 B.2.2 (75Na2S•25P2S5)+高分子 (2:1 Wt%)硫屬化合物 78 B.2.3 (75Na2S•25P2S5)+PEO (2:1 Wt%)硫屬化合物 79 B.2.4 (75Na2S•25P2S5)+PEO硫屬化合物 79 B.2.5 (75Na2S•15P2S5•10MS)+PEO (2:1 Wt%)硫屬化合物 80 附錄C 機械球磨法之離子導電率 81 C.1 硫屬化合物 81 C.2 Na3PS4硫屬化合物 81 C.3 Na3SbS4硫屬化合物 82 C.4 Na9SbP2S12硫屬化合物 82 C.5 Na3SbS3Se硫屬化合物 82

    參考文獻
    1.Carmichael, R.S., Physical properties of rocks and minerals. 1989: CRC press Boca Raton.
    2.Vignarooban, K., et al., Current trends and future challenges of electrolytes for sodium-ion batteries. International Journal of Hydrogen Energy, 2016. 41(4): p. 2829-2846.
    3.Lin, Z. and C. Liang, Lithium–sulfur batteries: from liquid to solid cells. J. Mater. Chem. A, 2015. 3(3): p. 936-958.
    4.Wei, T., et al., An All-Ceramic Solid-State Rechargeable Na+-Battery Operated at Intermediate Temperatures. Advanced Functional Materials, 2014. 24(34): p. 5380-5384.
    5.Ribes, M., B. Barrau, and J.L. Souquet, Sulfide glasses: Glass forming region, structure and ionic conduction of glasses in Na2S-XS2 (X=Si; Ge), Na2S-P2S5 and Li2S-GeS2 systems. Journal of Non-Crystalline Solids, 1980. 38: p. 271-276.
    6.Ong, S.P., et al., Phase stability, electrochemical stability and ionic conductivity of the Li10±1MP2X12(M = Ge, Si, Sn, Al or P, and X = O, S or Se) family of superionic conductors. Energy Environ. Sci., 2013. 6(1): p. 148-156.
    7.Richards, W.D., et al., Design and synthesis of the superionic conductor Na10SnP2S12. Nat Commun, 2016. 7: p. 11009.
    8.Yu, C., et al., Na-ion dynamics in tetragonal and cubic Na3PS4, a Na-ion conductor for solid state Na-ion batteries. J. Mater. Chem. A, 2016. 4(39): p. 15095-15105.
    9.Zhang, L., et al., Vacancy-Contained Tetragonal Na3SbS4 Superionic Conductor. Adv Sci (Weinh), 2016. 3(10): p. 1600089.
    10.Berbano, S.S., et al., Formation and structure of Na2S+P2S5 amorphous materials prepared by melt-quenching and mechanical milling. Journal of Non-Crystalline Solids, 2012. 358(1): p. 93-98.
    11.Teragawa, S., et al., Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. Journal of Materials Chemistry A, 2014. 2(14): p. 5095.
    12.Yubuchi, S., A. Hayashi, and M. Tatsumisago, Sodium-ion Conducting Na3PS4 Electrolyte Synthesized via a Liquid-phase Process Using N-Methylformamide. Chemistry Letters, 2015. 44(7): p. 884-886.
    13.Richards, W.D., et al., Design of Li1+2xZn1−xPS4, a new lithium ion conductor. Energy Environ. Sci., 2016. 9(10): p. 3272-3278.
    14.Mizuno, F., et al., New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials, 2005. 17(7): p. 918-921.
    15.Mizuno, F., et al., High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics, 2006. 177(26-32): p. 2721-2725.
    16.Hayashi, A., et al., Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries. Nat Commun, 2012. 3: p. 856.
    17.Seino, Y., et al., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci., 2014. 7(2): p. 627-631.
    18.Cao, C., et al., Recent advances in inorganic solid electrolytes for lithium batteries. Frontiers in Energy Research, 2014. 2: p. 25.
    19.Tatsumisago, M. and A. Hayashi, Sulfide Glass-Ceramic Electrolytes for All-Solid-State Lithium and Sodium Batteries. International Journal of Applied Glass Science, 2014. 5(3): p. 226-235.
    20.Wang, H., et al., An Air-Stable Na3SbS4 Superionic Conductor Prepared by a Rapid and Economic Synthetic Procedure. Angew Chem Int Ed Engl, 2016. 55(30): p. 8551-5.
    21.Banerjee, A., et al., Na3SbS4 : A Solution Processable Sodium Superionic Conductor for All-Solid-State Sodium-Ion Batteries. Angew Chem Int Ed Engl, 2016. 55(33): p. 9634-8.
    22.Chu, I.H., et al., Room-Temperature All-solid-state Rechargeable Sodium-ion Batteries with a Cl-doped Na3PS4 Superionic Conductor. Sci Rep, 2016. 6: p. 33733.
    23.Kandagal, V.S., M.D. Bharadwaj, and U.V. Waghmare, Theoretical prediction of a highly conducting solid electrolyte for sodium batteries: Na10GeP2S12. J. Mater. Chem. A, 2015. 3(24): p. 12992-12999.
    24.Jha, P.K., O.P. Pandey, and K. Singh, Structural and thermal properties of Na2S–P2S5 glass and glass ceramics. Journal of Non-Crystalline Solids, 2013. 379: p. 89-94.
    25.Hayashi, A., et al., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications, 2003. 5(2): p. 111-114.
    26.Teragawa, S., et al., Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources, 2014. 248: p. 939-942.
    27.Kitaura, H., et al., Fabrication of electrode–electrolyte interfaces in all-solid-state rechargeable lithium batteries by using a supercooled liquid state of the glassy electrolytes. J. Mater. Chem., 2011. 21(1): p. 118-124.
    28.Kanno, R. and M. Murayama, Lithium Ionic Conductor Thio-LISICONThe Li2S-GeS2-P2S5 System. Journal of The Electrochemical Society, 2001. 148: p. A742-A746.
    29.Larink, D., H. Eckert, and S.W. Martin, Structure and Ionic Conductivity in the Mixed-Network Former Chalcogenide Glass System [Na2S]2/3[(B2S3)x(P2S5)1–x]1/3. The Journal of Physical Chemistry C, 2012. 116(43): p. 22698-22710.
    30.Yamauchi, A., et al., Preparation and ionic conductivities of (100 − x)(0.75Li2S·0.25P2S5)·xLiBH4 glass electrolytes. Journal of Power Sources, 2013. 244: p. 707-710.
    31.Kennedy, J.H. and Z. Zhang, Preparation-and-Electrochemical-Properties-of-the-SiS2-P2S5-Li2S-Glass-Coformer-System. J. Electrochem. Soc., 1989. 136: p. 2441.

    QR CODE