簡易檢索 / 詳目顯示

研究生: 宋泓毅
Hung-Yi Sung
論文名稱: 鋰鍺磷硫與氟摻雜改質之固態電解質的合成、鑑定與特性
Synthesis, characterization, and properties of fluorine doped LGPS solid electrolytes
指導教授: 黃炳照
Bing Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 115
中文關鍵詞: 全固態電池鋰鍺磷硫硫化氫生成氟摻雜成分相圖離子導離率
外文關鍵詞: All-solid-state battery, LGPS, hydrogen sulfide formation, fluorine doping, composition diagram, ionic conductivity
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多數固態電解質都有導離率不佳的問題(<1 mS/cm),但鋰鍺磷硫(LGPS)硫化物固態電解質在室溫下擁有與液態電解質相當的導離度(6~12 mS/cm),使得全固態電池漸漸受到世人重視,但是此材料對負極的不穩定性以及硫化氫生成限制其商業化的發展。
    本研究的第一個部分為LGPS合成,由於LGPS此材料合成困難,造成許多文獻所報導的導離率普遍不高(2~3 mS/cm),本研究一開始也遇到合成出來的材料導離率不高的問題,但透過改變製程參數、組成和熱傳行為探討導離率與其材料結構的變化,始得到接近文獻所報導的導離率(6 mS/cm)。另一方面,合成此材料需要在手套箱外進行球磨的步驟,但台灣氣候普遍潮濕,在手套箱外進行球磨可能會造成水氣污染樣品導致結構被破壞,最後得到低導離率的樣品,本研究也發展一種無球磨的技術,能在不球磨的狀況且縮短合成時間的方式下得到高導離率的樣品(5.9 mS/cm)。
    第二部分則是希望藉由氟的摻雜增強LGPS對負極的穩定性,透過在負極與電解質的介面生成LiF這種不導電子的物種,緩和Li-Ge合金的生長,而提升電化學穩定性。一開始進行摻雜發現LGPS對氟的溶解度並不高,會有明顯的thio-LISICON雜相生成,進而利用成分相圖來對此材料進行成分探索。在低氟摻雜(LixGeyPzS11.9F0.1)下,在增加Li2S比例下,其雜相生成會從thio-LISICON轉變Li7PS6,藉由後續成分相圖分析,最後得到組成 Li10.43Ge1.29P1.57S11.5F0.5(#12)。由鋰對鋰對稱電池發現其組成可在0.1mA/cm2下循環250小時; 而未摻雜的LGPS在200小時就有非常大的極化現象產生。進行全電池發現組成#12並不適合與NMC811正極材料接觸,會在電化學循環過程中產生導離率低的介面層,使得電池效能下降。在硫化氫測試方面為摻雜的LGPS 在30分鐘後所生成的硫化氫為20ppm,而組成#12的氟摻雜鋰鍺磷硫僅有15 ppm,推測可能是(P-F-/S2-)鍵結穩定整體結構降低硫化氫生成。本研究探討各種不同製程參數以及成分相圖對氟摻雜LGPS的結構影響。接近純相的Li10.43Ge1.29P1.57S11.5F0.5也成功被合成出來,具有高導度和良好濕度穩定性,對環境以及未來生產製程的影響有重大意義。


    Solid state electrolyte generally faces the challenge of low ionic conductivity. Among all solid-state electrolytes, LGPS sulfide solid-state electrolyte exhibits very high ionic conductivity(6~8 mS/cm) comparable to liquid electrolyte at room temperature. However, this material suffers from anode instability, and hydrogen sulfide formation limit its commercialization.
    The first part of this work is the LGPS synthesis. Due to the difficulty in synthesizing LGPS, many literature works report low ionic conductivity (2~3 mS/cm). At the beginning of this study, the as-synthesized LGPS also faced the problem of low ionic conductivity. After studying the material structure and ionic conductivity via different process parameters, composition and heat transfer behavior. Finally, the as-synthesized LGPS can achieve high ionic conductivity (6 mS/cm). This work also optimizes the process parameter with high ionic conductivity (5.9 mS/cm) and shorter synthesis time by removing the ball milling step outside of the glovebox due to Taiwan’s relatively high humidity climate.
    The second part of this work utilizes lithium fluoride as a dopant to enhance the anode stability. At the beginning of doping, the fluorine solubility in the structure is not high enough, which makes the thio-LISICON phase formation. After this, using the composition phase diagrams were studied to explore the possible composition of this material. At the low extent of fluorine doping, we can observe a phase transition region from thio-LISICON to Li7PS6 in certain area in the composition diagram. After carefully analyzing the XRD patterns of specific compositions in the composition diagram. Finally, we successfully synthesized the fluorine-doped LGPS with the composition Li10.43Ge1.29P1.57S11.5F0.5(#12). Comparing composition #12 with pristine LGPS in a lithium symmetry cell configuration, the cell with composition #12 could be continuously cycled for 250 hr compared to 200 hr for pristine LGPS. In a full cell test, we learned an additional challenge that composition #12 would form a resistive layer during cycling when in contact with the NMC811 cathode, resulting in poor battery performance. In moisture stability measurement, the composition #12 has less H2S formation (less than 15ppm) compared to pristine LGPS (about 20ppm) which may be attributed to strong bonding of (P-S2-/F-) in the structure. This study investigates the feasibility of fluorine doped LGPS and demonstrates the effects of various synthesis parameters. Pure Li10.43Ge1.29P1.57S11.5F0.5 was prepared successfully with high ionic conductivity and excellent humidity resistance. The lesson learned paves the way for future production and mitigating the environmental concerns of sulfide solid-state electrolytes

    摘要 I Abstract III 致謝 V 目錄 VII 圖目錄 XI 第1章 緒論 1 1.1 鋰離子電池 1 1.2全固態鋰電池 4 1.2.1 固態電解質 5 1.2.2 氧化物固態電解質 7 1.2.3 硫化物固態電解質 8 1.2.4 鹵化物固態電解質 10 1.3固態電解質所面臨到的問題 13 第二章 文獻回顧 15 2.1各種硫化物固態電解質之比較 15 2.2 鋰鍺磷硫(LGPS)電解質的挑戰 23 2.2.1 LGPS之電化學視窗 23 2.2.2 LGPS與負極 26 2.2.3 LGPS與正極 29 2.2.4 LGPS之合成 32 2.3 改善策略 34 2.3.1 元素摻雜 34 2.3.2 Fluorine相關介面穩定策略 42 2.4 研究動機與目的 46 第三章 實驗方法與儀器 49 3.1 實驗儀器 49 3.2 實驗藥品 50 3.3 儀器分析與原理 51 3.3.1 X-Ray Diffraction 51 3.3.2 導離率測定 52 3.3.3 拉曼光譜 53 3.4實驗步驟與電化學測試手法 54 3.4.1 LGPS硫化物電解質合成 54 3.4.2 導離率測定 56 3.4.3 鋰對鋰對稱電池組裝 57 3.4.4 全電池組裝 58 第四章 LGPS電解質合成條件優化 61 4.1 LGPS製程參數探討 61 4.2 樣品在煆燒過程的熱傳行為 68 4.3 無球磨製程 71 4.4 總結 76 第五章 氟摻雜LGPS之相圖與物性 77 5.1 氟摻雜之LGPS與製程參數探討 77 5.2 氟摻雜之LGPS成分相圖分析 83 5.2.1 Composition diagram of LixGeyPzS11.9F0.1 83 5.2.2 Composition diagram of LixGeyPzS11.5F0.5 90 5.3氟摻雜之LGPS物性以及電化學分析 94 5.3.1 晶格大小與拉曼光譜 94 5.3.2 鋰金屬對稱電池 96 5.3.3 電子導電率 98 5.3.4 全電池測試 100 5.3.5 濕度穩定性 104 第六章 結論 105 第七章 未來展望 107 參考資料 108

    1. Chen, R.; Qu, W.; Guo, X.; Li, L.; Wu, F., The pursuit of solid-state electrolytes for lithium batteries: from comprehensive insight to emerging horizons. Materials Horizons 2016, 3 (6), 487-516.
    2. Armand, M.; Tarascon, J.-M., Building better batteries. nature 2008, 451 (7179), 652-657.
    3. Kim, K. J.; Balaish, M.; Wadaguchi, M.; Kong, L.; Rupp, J. L., Solid‐state Li–metal batteries: challenges and horizons of oxide and sulfide solid electrolytes and their interfaces. Advanced Energy Materials 2021, 11 (1), 2002689.
    4. Boaretto, N.; Garbayo, I.; Valiyaveettil-SobhanRaj, S.; Quintela, A.; Li, C.; Casas-Cabanas, M.; Aguesse, F., Lithium solid-state batteries: State-of-the-art and challenges for materials, interfaces and processing. Journal of Power Sources 2021, 502, 229919.
    5. Manthiram, A.; Yu, X.; Wang, S., Lithium battery chemistries enabled by solid-state electrolytes. Nature Reviews Materials 2017, 2 (4), 1-16.
    6. Kato, Y.; Hori, S.; Kanno, R., Li10GeP2S12‐type superionic conductors: synthesis, structure, and ionic transportation. Advanced Energy Materials 2020, 10 (42), 2002153.
    7. Famprikis, T.; Canepa, P.; Dawson, J. A.; Islam, M. S.; Masquelier, C., Fundamentals of inorganic solid-state electrolytes for batteries. Nature materials 2019, 18 (12), 1278-1291.
    8. Mercier, R.; Malugani, J.-P.; Fahys, B.; Robert, G., Superionic conduction in Li2S-P2S5-LiI-glasses. Solid State Ionics 1981, 5, 663-666.
    9. Deshpande, V.; Pradel, A.; Ribes, M., The mixed glass former effect in the Li2S: SiS2: GeS2 system. Materials research bulletin 1988, 23 (3), 379-384.
    10. Kanno, R.; Hata, T.; Kawamoto, Y.; Irie, M., Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid state ionics 2000, 130 (1-2), 97-104.
    11. Murayama, M.; Kanno, R.; Irie, M.; Ito, S.; Hata, T.; Sonoyama, N.; Kawamoto, Y., Synthesis of new lithium ionic conductor thio-LISICON—lithium silicon sulfides system. Journal of Solid State Chemistry 2002, 168 (1), 140-148.
    12. Kanno, R.; Murayama, M., Lithium ionic conductor thio-LISICON: the Li2 S GeS2 P 2 S 5 system. Journal of the electrochemical society 2001, 148 (7), A742.
    13. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K., A lithium superionic conductor. Nature materials 2011, 10 (9), 682-686.
    14. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiß, T.; Schlosser, M., Li6PS5X: a class of crystalline Li‐rich solids with an unusually high Li+ mobility. Angewandte Chemie International Edition 2008, 47 (4), 755-758.
    15. Wang, C.; Liang, J.; Zhao, Y.; Zheng, M.; Li, X.; Sun, X., All-solid-state lithium batteries enabled by sulfide electrolytes: from fundamental research to practical engineering design. Energy & Environmental Science 2021, 14 (5), 2577-2619.
    16. Yamaguti, Y.; Sisido, S., Studies on the electrolytic conduction of fused salts. II. J. Chem. Soc. Japan 1941, 62 (4), 304-307.
    17. Asano, T.; Sakai, A.; Ouchi, S.; Sakaida, M.; Miyazaki, A.; Hasegawa, S., Solid halide electrolytes with high lithium‐ion conductivity for application in 4 V class bulk‐type all‐solid‐state batteries. Advanced Materials 2018, 30 (44), 1803075.
    18. Li, X.; Liang, J.; Luo, J.; Banis, M. N.; Wang, C.; Li, W.; Deng, S.; Yu, C.; Zhao, F.; Hu, Y., Air-stable Li 3 InCl 6 electrolyte with high voltage compatibility for all-solid-state batteries. Energy & Environmental Science 2019, 12 (9), 2665-2671.
    19. Li, X.; Liang, J.; Chen, N.; Luo, J.; Adair, K. R.; Wang, C.; Banis, M. N.; Sham, T. K.; Zhang, L.; Zhao, S., Water‐mediated synthesis of a superionic halide solid electrolyte. Angewandte Chemie 2019, 131 (46), 16579-16584.
    20. Zhou, L.; Zuo, T.-T.; Kwok, C. Y.; Kim, S. Y.; Assoud, A.; Zhang, Q.; Janek, J.; Nazar, L. F., High areal capacity, long cycle life 4 V ceramic all-solid-state Li-ion batteries enabled by chloride solid electrolytes. Nature Energy 2022, 1-11.
    21. Zhao, S.; Zhu, X.; Jiang, W.; Ji, Z.; Ling, M.; Wang, L.; Liang, C., Fundamental air stability in solid-state electrolytes: principles and solutions. Materials Chemistry Frontiers 2021, 5 (20), 7452-7466.
    22. Nikodimos, Y.; Huang, C.-J.; Taklu, B. W.; Su, W.-N.; Hwang, B. J., Chemical Stability of Sulfide Solid-state Electrolytes: Stability Toward Humid Air and Compatibility with Solvents and Binders. Energy & Environmental Science 2022.
    23. Tachez, M.; Malugani, J.-P.; Mercier, R.; Robert, G., Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics 1984, 14 (3), 181-185.
    24. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous β-Li3PS4. Journal of the American Chemical Society 2013, 135 (3), 975-978.
    25. Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: synthesis, structure, stability and dynamics. Nano Energy 2021, 83, 105858.
    26. Zhou, L.; Minafra, N.; Zeier, W. G.; Nazar, L. F., Innovative approaches to Li-argyrodite solid electrolytes for all-solid-state lithium batteries. Accounts of Chemical Research 2021, 54 (12), 2717-2728.
    27. Gautam, A.; Sadowski, M.; Ghidiu, M.; Minafra, N.; Senyshyn, A.; Albe, K.; Zeier, W. G., Engineering the Site‐Disorder and Lithium Distribution in the Lithium Superionic Argyrodite Li6PS5Br. Advanced Energy Materials 2021, 11 (5), 2003369.
    28. Kwon, O.; Hirayama, M.; Suzuki, K.; Kato, Y.; Saito, T.; Yonemura, M.; Kamiyama, T.; Kanno, R., Synthesis, structure, and conduction mechanism of the lithium superionic conductor Li 10+ δ Ge 1+ δ P 2− δ S 12. Journal of Materials Chemistry A 2015, 3 (1), 438-446.
    29. Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors. Nature materials 2015, 14 (10), 1026-1031.
    30. Mo, Y.; Ong, S. P.; Ceder, G., First principles study of the Li10GeP2S12 lithium super ionic conductor material. Chemistry of Materials 2012, 24 (1), 15-17.
    31. Han, F.; Gao, T.; Zhu, Y.; Gaskell, K. J.; Wang, C., A battery made from a single material. Advanced materials 2015, 27 (23), 3473-3483.
    32. Dewald, G. F.; Ohno, S.; Kraft, M. A.; Koerver, R.; Till, P.; Vargas-Barbosa, N. M.; Janek, J. r.; Zeier, W. G., Experimental assessment of the practical oxidative stability of lithium thiophosphate solid electrolytes. Chemistry of Materials 2019, 31 (20), 8328-8337.
    33. Zhu, Y.; He, X.; Mo, Y., Origin of outstanding stability in the lithium solid electrolyte materials: insights from thermodynamic analyses based on first-principles calculations. ACS applied materials & interfaces 2015, 7 (42), 23685-23693.
    34. Krauskopf, T.; Richter, F. H.; Zeier, W. G.; Janek, J. r., Physicochemical concepts of the lithium metal anode in solid-state batteries. Chemical Reviews 2020, 120 (15), 7745-7794.
    35. Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J. r., Direct observation of the interfacial instability of the fast ionic conductor Li10GeP2S12 at the lithium metal anode. Chemistry of Materials 2016, 28 (7), 2400-2407.
    36. Koerver, R.; Aygün, I.; Leichtweiß, T.; Dietrich, C.; Zhang, W.; Binder, J. O.; Hartmann, P.; Zeier, W. G.; Janek, J. r., Capacity fade in solid-state batteries: interphase formation and chemomechanical processes in nickel-rich layered oxide cathodes and lithium thiophosphate solid electrolytes. Chemistry of Materials 2017, 29 (13), 5574-5582.
    37. Zhang, W.; Leichtweiß, T.; Culver, S. P.; Koerver, R.; Das, D.; Weber, D. A.; Zeier, W. G.; Janek, J. r., The detrimental effects of carbon additives in Li10GeP2S12-based solid-state batteries. ACS applied materials & interfaces 2017, 9 (41), 35888-35896.
    38. Reddy, M. V.; Julien, C. M.; Mauger, A.; Zaghib, K., Sulfide and oxide inorganic solid electrolytes for all-solid-state li batteries: A review. Nanomaterials 2020, 10 (8), 1606.
    39. Murayama, M.; Kanno, R.; Kawamoto, Y.; Kamiyama, T., Structure of the thio-LISICON, Li4GeS4. Solid State Ionics 2002, 154, 789-794.
    40. Murayama, M.; Sonoyama, N.; Yamada, A.; Kanno, R., Material design of new lithium ionic conductor, thio-LISICON, in the Li2S–P2S5 system. Solid State Ionics 2004, 170 (3-4), 173-180.
    41. Kato, Y.; Saito, R.; Sakano, M.; Mitsui, A.; Hirayama, M.; Kanno, R., Synthesis, structure and lithium ionic conductivity of solid solutions of Li10 (Ge1− xMx) P2S12 (M= Si, Sn). Journal of Power Sources 2014, 271, 60-64.
    42. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H.-H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P., Inorganic solid-state electrolytes for lithium batteries: mechanisms and properties governing ion conduction. Chemical reviews 2016, 116 (1), 140-162.
    43. Sun, Y.; Suzuki, K.; Hori, S.; Hirayama, M.; Kanno, R., Superionic Conductors: Li10+δ[SnySi1–y]1+δP2−δS12 with a Li10GeP2S12-type Structure in the Li3PS4–Li4SnS4–Li4SiS4 Quasi-ternary System. Chemistry of Materials 2017, 29 (14), 5858-5864.
    44. Suzuki, K.; Sakuma, M.; Hori, S.; Nakazawa, T.; Nagao, M.; Yonemura, M.; Hirayama, M.; Kanno, R., Synthesis, structure, and electrochemical properties of crystalline Li–P–S–O solid electrolytes: Novel lithium-conducting oxysulfides of Li10GeP2S12 family. Solid State Ionics 2016, 288, 229-234.
    45. Sun, Y.; Suzuki, K.; Hara, K.; Hori, S.; Yano, T.-a.; Hara, M.; Hirayama, M.; Kanno, R., Oxygen substitution effects in Li10GeP2S12 solid electrolyte. Journal of Power Sources 2016, 324, 798-803.
    46. Hori, S.; Suzuki, K.; Hirayama, M.; Kato, Y.; Kanno, R., Lithium superionic conductor Li9. 42Si1. 02P2. 1S9. 96O2. 04 with Li10GeP2S12-type structure in the Li2S–P2S5–SiO2 pseudoternary system: synthesis, electrochemical properties, and structure–composition relationships. Frontiers in Energy Research 2016, 4, 38.
    47. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4), 1-7.
    48. Li, Y.; Daikuhara, S.; Hori, S.; Sun, X.; Suzuki, K.; Hirayama, M.; Kanno, R., Oxygen Substitution for Li–Si–P–S–Cl Solid Electrolytes toward Purified Li10GeP2S12-Type Phase with Enhanced Electrochemical Stabilities for All-Solid-State Batteries. Chemistry of Materials 2020, 32 (20), 8860-8867.
    49. Xu, M.; Song, S.; Daikuhara, S.; Matsui, N.; Hori, S.; Suzuki, K.; Hirayama, M.; Shiotani, S.; Nakanishi, S.; Yonemura, M., Li10GeP2S12-Type Structured Solid Solution Phases in the Li9+ δP3+ δ′ S12–k O k System: Controlling Crystallinity by Synthesis to Improve the Air Stability. Inorganic Chemistry 2021.
    50. Banerjee, A.; Wang, X.; Fang, C.; Wu, E. A.; Meng, Y. S., Interfaces and interphases in all-solid-state batteries with inorganic solid electrolytes. Chemical reviews 2020, 120 (14), 6878-6933.
    51. Fan, X.; Ji, X.; Han, F.; Yue, J.; Chen, J.; Chen, L.; Deng, T.; Jiang, J.; Wang, C., Fluorinated solid electrolyte interphase enables highly reversible solid-state Li metal battery. Science advances 2018, 4 (12), eaau9245.
    52. Wan, H.; Liu, S.; Deng, T.; Xu, J.; Zhang, J.; He, X.; Ji, X.; Yao, X.; Wang, C., Bifunctional interphase-enabled Li10GeP2S12 electrolytes for lithium–sulfur battery. ACS Energy Letters 2021, 6 (3), 862-868.
    53. Zhao, F.; Sun, Q.; Yu, C.; Zhang, S.; Adair, K.; Wang, S.; Liu, Y.; Zhao, Y.; Liang, J.; Wang, C., Ultrastable anode interface achieved by fluorinating electrolytes for all-solid-state Li metal batteries. ACS Energy Letters 2020, 5 (4), 1035-1043.
    54. Zhang, S.; Zhao, F.; Wang, S.; Liang, J.; Wang, J.; Wang, C.; Zhang, H.; Adair, K.; Li, W.; Li, M., Advanced High‐Voltage All‐Solid‐State Li‐Ion Batteries Enabled by a Dual‐Halogen Solid Electrolyte. Advanced Energy Materials 2021, 11 (32), 2100836.
    55. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of aliovalent cation substitution and mechanical compression on Li-ion conductivity and diffusivity in argyrodite solid electrolytes. Chemistry of Materials 2020, 33 (1), 146-157.
    56. Taklu, B. W.; Su, W.-N.; Nikodimos, Y.; Lakshmanan, K.; Temesgen, N. T.; Lin, P.-X.; Jiang, S.-K.; Huang, C.-J.; Wang, D.-Y.; Sheu, H.-S., Dual CuCl doped argyrodite superconductor to boost the interfacial compatibility and air stability for all solid-state lithium metal batteries. Nano Energy 2021, 90, 106542.
    57. Hori, S.; Kato, M.; Suzuki, K.; Hirayama, M.; Kato, Y.; Kanno, R., Phase Diagram of the Li4GeS4–Li3 PS 4 Quasi‐Binary System Containing the Superionic Conductor Li10GeP2S12. Journal of the American Ceramic Society 2015, 98 (10), 3352-3360.
    58. He, M.; Guo, R.; Hobold, G. M.; Gao, H.; Gallant, B. M., The intrinsic behavior of lithium fluoride in solid electrolyte interphases on lithium. Proceedings of the National Academy of Sciences 2020, 117 (1), 73-79.

    無法下載圖示 全文公開日期 2027/08/25 (校內網路)
    全文公開日期 2027/08/25 (校外網路)
    全文公開日期 2027/08/25 (國家圖書館:臺灣博碩士論文系統)
    QR CODE