簡易檢索 / 詳目顯示

研究生: 林珮璇
Pei-Xuan Lin
論文名稱: 以鐵和鹵素摻雜提高硫銀鍺礦Li6PS5Cl硫化物固態電解質之鋰離子傳導率和空氣穩定性
Enhancing ionic conductivity and air stability of argyrodite Li6PS5Cl sulfide solid electrolyte by iron and halide substitution
指導教授: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
口試委員: 黃炳照
Bing-Joe Hwang
蘇威年
Wei-Nien Su
吳溪煌
She-Huang Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 107
中文關鍵詞: 硫化物固態電解質硫銀鍺礦雙摻雜離子傳導率空氣穩定性鐵摻雜氯摻雜溴摻雜
外文關鍵詞: sulfide solid electrolyte, Argyrodite, dual-doped, ionic conductivity, air-stability, iron-doped, chloride-doped, bromide-doped
相關次數: 點閱:247下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 全固態電池(ASSLB)目前被認為是當前鋰離子電池技術的未來方向之一,因為它們具有更高的理論能量密度和更高的安全性。在ASSLB之中重要的組成是固態電解質(SE),其條件高離子傳導率和熱穩定性。在各種固態電解質中,硫銀鍺礦一直備受關注。在此,我們報告了一系列雙摻雜的固態電解質:Li6-2yFeyPS5Cl、Li6-x-2yFeyPS5-xCl1+x、Li6-x-2yFeyPS5-xClBrx。合成方法為透過固態燒結製備而成的。該系列的晶體結構、離子傳導率和物理性質通過X射線粉末衍射(XRD)、拉曼光譜、SEM、阻抗測量和空氣穩定性測試來進行表徵。
    鐵單摻雜的固態電解質Li6-2yFeyPS5Cl導離度從1.28 mS/cm(Li6PS5Cl)提升至1.73 mS/cm(Li5.7Fe0.15PS5Cl),導離率提升的主要貢獻原因為在Li位點逐步引入Fe,使得鋰空位的逐漸增加。在鐵與氯的雙摻雜Li5.8-xFe0.1PS5-xCl1+x與Li5.7-xFe0.15PS5-xCl1+x之中,10%鐵的摻雜系列Li5.8-xFe0.1PS5-xCl1+x的導離度皆高於15%鐵的摻雜系列Li5.7-xFe0.15PS5-xCl1+x,原因為富含鹵素的硫銀鍺礦不能維持如此高的Fe取代度,會產生雜質,在這之中導離度以Li5.6Fe0.1PS4.8Cl1.2最高2.0 mS/cm。而在Li6-x-2yFeyPS5-xClBrx系列之中以Li5.5Fe0.1PS4.7ClBr0.3電解質在室溫下表現出最高的導離率2.1 mS/cm,幾乎為Li6PS5Cl導離度的一倍之高。導離度增加的原因為:鹵素的增加會產生鋰空缺,同時也增加了位點無序。此外,鋰離子和周圍骨架陰離子之間的靜電相互作用減弱,因此使得電解質的離子傳導率提升。此外,鐵的單摻雜以及鐵與鹵素的雙摻雜皆抑制了固態電解質接觸到水氣後產生的H2S氣體,以Li5.5Fe0.1PS4.7ClBr0.3的H2S產生量最低,為Li6PS5Cl產量的一半。而鋰對稱電池的結果顯示介面的不穩定性,若要應用於全固態電池中還有需要改值的地方。整體而言,透過鐵與鹵素的取代以增加鋰空缺,可增加硫銀鍺礦的導離度,從而使硫銀鍺礦成為更理想的固態電解質。


    All-solid-state lithium batteries (ASSLB) are currently considered future candidates for next-generation battery systems because of their higher theoretical energy density and higher safety. An important component in ASSLB is the solid electrolytes (SEs), which have high ionic conductivity and higher thermal stability. Among various solid electrolytes, argyrodites have been considered a promising SE for ASSLB. Here, we report a series of dual-doped solid electrolytes: Li6-2yFeyPS5Cl, Li6-x-2yFeyPS5-xCl1+x, Li6-x-2yFeyPS5-xClBrx, prepared by direct solid-state sintering. Their crystal structure, ion conductivity, and physical properties were characterized by X-ray powder diffraction (XRD), Raman spectroscopy, SEM, impedance measurement, and air stability test.
    The ionic conductivity of iron-doped solid electrolyte Li6-2yFeyPS5Cl increased from 1.28 mS/cm (Li6PS5Cl) to 1.73 mS/cm (Li5.7Fe0.15PS5Cl). The step-wise introduction of Fe in Li sites causes the gradual increase in lithium vacancies. The ionic conductivity of 10% iron-doped series Li5.8-xFe0.1PS5-xCl1+x is higher than 15% Fe doped series Li5.7-xFe0.15PS5-xCl1+x. The halogen-rich argyrodite cannot maintain such a high degree as the Fe dopant and causes impurities. Among the iron and chloride dual-doped materials, Li5.6Fe0.1PS4.8Cl1.2 shows the highest ionic conductivity of 2.0 mS/cm. For the iron and bromide dual-doped Li6-x-2yFeyPS5-xClBrx series, Li5.5Fe0.1PS4.7ClBr0.3 exhibits the highest ionic conductivity of 2.1 mS/cm, which is almost twice as high as that of Li6PS5Cl. The enhanced ionic conductivity results from the increase in lithium vacancies and site disorder caused by halide substitution. In addition, this modification of anions decreases in Li+ attraction to anion framework.
    Both of the introduction of iron and halide can suppress the H2S gas generation from the solid electrolyte, when exposed to moisture. The H2S generated from Li5.5Fe0.1PS4.7ClBr0.3 is the lowest, which is almost half of Li6PS5Cl. However, the results from the Li symmetric cell show unstable interface toward lithium metal. Thus, further improvement of the electrolyte will be needed for the application in ASSLB. This work showㄋ that the substitution of iron and halide can increase the lithium vacancy and optimize the argyrodite's ionic conductivity, thereby making them an ideal solid electrolyte in ASSLB.

    摘要 II ABSTRACT III 目錄 V 圖目錄 VII 表目錄 XI 第 1 章 緒論 1 1.1 前言 1 1.2 全固態電池 2 1.3 固態電解質 5 1.3.1 Thio-LISICONs 6 1.3.2 LGPS家族 9 1.3.3 硫銀鍺礦固態電解質 11 1.4 鋰離子傳導機制及高離子導體的設計原理 12 1.4.1 鋰離子傳導機制 12 1.4.2 高離子導體的設計原理 14 第 2 章 文獻回顧 16 2.1 硫銀鍺礦固態電解質介紹 16 2.2 晶格結構 18 2.3 合成方法 20 2.3.1 機械研磨 21 2.3.2 機械研磨和後退火 23 2.3.3 固態燒結 24 2.3.4 濕式化學法 27 2.4 結構調整(摻雜元素) 30 2.4.1 鋰空位 30 2.4.2 摻雜 31 2.5 低濕敏性固態電解質之設計 37 2.6 研究動機與目的 40 第 3 章 實驗方法及實驗儀器 41 3.1 實驗藥品 41 3.2 實驗儀器及配件 42 3.3 實驗步驟 43 3.3.1 固態電解質材料製備 43 3.3.2 KP-cell型電池組裝 44 3.4 電化學效能測試 46 3.4.1 充放電測試 46 3.4.2 交流阻抗分析 46 3.5 材料結構與特性鑑定分析 47 3.5.1 X-ray繞射分析 (XRD) 47 3.5.2 場發射掃描式電子顯微鏡 (FE-SEM) 48 3.5.3 X光能量色散圖譜分析 (EDS) 48 3.5.4 拉曼(Raman)散射光譜分析儀 49 3.5.5 固態電解質之空氣穩定測試 49 第 4 章 結果與討論 51 4.1 鐵與鹵素的摻雜 51 4.1.1 晶格結構的變化 51 4.1.2 導離度的影響 61 4.2 材料物性分析 71 4.2.1 導電度 71 4.2.2 Raman 73 4.2.3 表面型態及元素分佈 74 4.2.4 空氣穩定性測試 79 4.3 鋰對稱電池 80 第 5 章 結論 82 未來展望 83 參考文獻 84

    1. Gachot, G.; Grugeon, S.; Armand, M.; Pilard, S.; Guenot, P.; Tarascon, J.-M.; Laruelle, S., Deciphering the multi-step degradation mechanisms of carbonate-based electrolyte in Li batteries. Journal of Power Sources 2008, 178 (1), 409-421.
    2. Lin, D.; Liu, Y.; Cui, Y., Reviving the lithium metal anode for high-energy batteries. Nat Nanotechnol 2017, 12 (3), 194-206.
    3. Xia, S.; Wu, X.; Zhang, Z.; Cui, Y.; Liu, W., Practical Challenges and Future Perspectives of All-Solid-State Lithium-Metal Batteries. Chem 2019, 5 (4), 753-785.
    4. Meesala, Y.; Jena, A.; Chang, H.; Liu, R.-S., Recent Advancements in Li-Ion Conductors for All-Solid-State Li-Ion Batteries. ACS Energy Letters 2017, 2 (12), 2734-2751.
    5. Kim, J. G.; Son, B.; Mukherjee, S.; Schuppert, N.; Bates, A.; Kwon, O.; Choi, M. J.; Chung, H. Y.; Park, S., A review of lithium and non-lithium based solid state batteries. Journal of Power Sources 2015, 282, 299-322.
    6. Hatzell, K. B.; Chen, X. C.; Cobb, C. L.; Dasgupta, N. P.; Dixit, M. B.; Marbella, L. E.; McDowell, M. T.; Mukherjee, P. P.; Verma, A.; Viswanathan, V.; Westover, A. S.; Zeier, W. G., Challenges in Lithium Metal Anodes for Solid-State Batteries. ACS Energy Letters 2020, 5 (3), 922-934.
    7. Liu, H.; Cheng, X.-B.; Huang, J.-Q.; Yuan, H.; Lu, Y.; Yan, C.; Zhu, G.-L.; Xu, R.; Zhao, C.-Z.; Hou, L.-P.; He, C.; Kaskel, S.; Zhang, Q., Controlling Dendrite Growth in Solid-State Electrolytes. ACS Energy Letters 2020, 5 (3), 833-843.
    8. Sun, Y.-K., Promising All-Solid-State Batteries for Future Electric Vehicles. ACS Energy Letters 2020, 5 (10), 3221-3223.
    9. Hu, Y.-S., Batteries: Getting solid. Nature Energy 2016, 1 (4).
    10. Janek, J.; Zeier, W. G., A solid future for battery development. Nature Energy 2016, 1 (9).
    11. Kariatsumari, K., Toyota Announces 4-layer All-solid-state Battery. 2010.
    12. Fergus, J. W., Ceramic and polymeric solid electrolytes for lithium-ion batteries. Journal of Power Sources 2010, 195 (15), 4554-4569.
    13. Schnell, J.; Günther, T.; Knoche, T.; Vieider, C.; Köhler, L.; Just, A.; Keller, M.; Passerini, S.; Reinhart, G., All-solid-state lithium-ion and lithium metal batteries – paving the way to large-scale production. Journal of Power Sources 2018, 382, 160-175.
    14. Kerman, K.; Luntz, A.; Viswanathan, V.; Chiang, Y.-M.; Chen, Z., Review—Practical Challenges Hindering the Development of Solid State Li Ion Batteries. Journal of The Electrochemical Society 2017, 164 (7), A1731-A1744.
    15. Inada, T., Fabrications and properties of composite solid-state electrolytes. Solid State Ionics 2003, 158 (3-4), 275-280.
    16. Ohta, S.; Komagata, S.; Seki, J.; Saeki, T.; Morishita, S.; Asaoka, T., All-solid-state lithium ion battery using garnet-type oxide and Li3BO3 solid electrolytes fabricated by screen-printing. Journal of Power Sources 2013, 238, 53-56.
    17. Nam, Y. J.; Cho, S. J.; Oh, D. Y.; Lim, J. M.; Kim, S. Y.; Song, J. H.; Lee, Y. G.; Lee, S. Y.; Jung, Y. S., Bendable and thin sulfide solid electrolyte film: a new electrolyte opportunity for free-standing and stackable high-energy all-solid-state lithium-ion batteries. Nano Lett 2015, 15 (5), 3317-23.
    18. Bachman, J. C.; Muy, S.; Grimaud, A.; Chang, H. H.; Pour, N.; Lux, S. F.; Paschos, O.; Maglia, F.; Lupart, S.; Lamp, P.; Giordano, L.; Shao-Horn, Y., Inorganic Solid-State Electrolytes for Lithium Batteries: Mechanisms and Properties Governing Ion Conduction. Chem Rev 2016, 116 (1), 140-62.
    19. Kamaya, N.; Homma, K.; Yamakawa, Y.; Hirayama, M.; Kanno, R.; Yonemura, M.; Kamiyama, T.; Kato, Y.; Hama, S.; Kawamoto, K.; Mitsui, A., A lithium superionic conductor. Nat Mater 2011, 10 (9), 682-6.
    20. Kanno, R., Synthesis of a new lithium ionic conductor, thio-LISICON–lithium germanium sulfide system. Solid State Ionics 2000, 130 (1-2), 97-104.
    21. Kanno, R.; Murayama, M., Lithium Ionic Conductor Thio-LISICON: The Li[sub 2]S-GeS[sub 2]-P[sub 2]S[sub 5] System. Journal of The Electrochemical Society 2001, 148 (7).
    22. Inada, R.; Kusakabe, K.; Tanaka, T.; Kudo, S.; Sakurai, Y., Synthesis and properties of Al-free Li7−xLa3Zr2−xTaxO12 garnet related oxides. Solid State Ionics 2014, 262, 568-572.
    23. Mazza, D., Remarks on a ternary phase in the La2O3Me2O5Li2O system (Me=Nb, Ta). Materials Letters 1988, 7 (5-6), 205-207.
    24. Malugani, J., Correlation between structural and electrical properties in (1-x) AgPO3·xMX2 glasses (M = Pb2+, Hg2+; X = I-, Br-, Cl-) from Raman spectroscopy and ionic conductivity measurements. Solid State Ionics 1986, 21 (2), 131-138.
    25. Muramatsu, H.; Hayashi, A.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Structural change of Li2S–P2S5 sulfide solid electrolytes in the atmosphere. Solid State Ionics 2011, 182 (1), 116-119.
    26. Homma, K.; Yonemura, M.; Nagao, M.; Hirayama, M.; Kanno, R., Crystal Structure of High-Temperature Phase of Lithium Ionic Conductor, Li3PS4. Journal of the Physical Society of Japan 2010, 79 (Suppl.A), 90-93.
    27. Yang, Y.; Wu, Q.; Cui, Y.; Chen, Y.; Shi, S.; Wang, R. Z.; Yan, H., Elastic Properties, Defect Thermodynamics, Electrochemical Window, Phase Stability, and Li(+) Mobility of Li3PS4: Insights from First-Principles Calculations. ACS Appl Mater Interfaces 2016, 8 (38), 25229-42.
    28. Hayashi, A.; Hama, S.; Minami, T.; Tatsumisago, M., Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses. Electrochemistry Communications 2003, 5 (2), 111-114.
    29. Seino, Y.; Ota, T.; Takada, K.; Hayashi, A.; Tatsumisago, M., A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries. Energy Environ. Sci. 2014, 7 (2), 627-631.
    30. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., New, Highly Ion-Conductive Crystals Precipitated from Li2S-P2S5 Glasses. Advanced Materials 2005, 17 (7), 918-921.
    31. Wenzel, S.; Weber, D. A.; Leichtweiss, T.; Busche, M. R.; Sann, J.; Janek, J., Interphase formation and degradation of charge transfer kinetics between a lithium metal anode and highly crystalline Li7P3S11 solid electrolyte. Solid State Ionics 2016, 286, 24-33.
    32. Mizuno, F.; Hayashi, A.; Tadanaga, K.; Tatsumisago, M., High lithium ion conducting glass-ceramics in the system Li2S–P2S5. Solid State Ionics 2006, 177 (26-32), 2721-2725.
    33. Zhang, Z.; Shao, Y.; Lotsch, B.; Hu, Y.-S.; Li, H.; Janek, J.; Nazar, L. F.; Nan, C.-W.; Maier, J.; Armand, M.; Chen, L., New horizons for inorganic solid state ion conductors. Energy & Environmental Science 2018, 11 (8), 1945-1976.
    34. Murayama, M., Synthesis of New Lithium Ionic Conductor Thio-LISICON—Lithium Silicon Sulfides System. Journal of Solid State Chemistry 2002, 168 (1), 140-148.
    35. Liu, Z.; Huang, F.; Yang, J.; Wang, B.; Sun, J., New lithium ion conductor, thio-LISICON lithium zirconium sulfide system. Solid State Ionics 2008, 179 (27-32), 1714-1716.
    36. Tachez, M.; Malugani, J.; Mercier, R.; Robert, G., Ionic conductivity of and phase transition in lithium thiophosphate Li3PS4. Solid State Ionics 1984, 14 (3), 181-185.
    37. Liu, Z.; Fu, W.; Payzant, E. A.; Yu, X.; Wu, Z.; Dudney, N. J.; Kiggans, J.; Hong, K.; Rondinone, A. J.; Liang, C., Anomalous high ionic conductivity of nanoporous beta-Li3PS4. J Am Chem Soc 2013, 135 (3), 975-8.
    38. Ahn, B. T.; Huggins, R. A., Synthesis and lithium conductivities of Li2SiS3 and Li4SiS4. Materials Research Bulletin 1989, 24 (7), 889-897.
    39. Kaib, T.; Haddadpour, S.; Kapitein, M.; Bron, P.; Schröder, C.; Eckert, H.; Roling, B.; Dehnen, S., New Lithium Chalcogenidotetrelates, LiChT: Synthesis and Characterization of the Li+-Conducting Tetralithium ortho-Sulfidostannate Li4SnS4. Chemistry of Materials 2012, 24 (11), 2211-2219.
    40. Yamane, H.; Shibata, M.; Shimane, Y.; Junke, T.; Seino, Y.; Adams, S.; Minami, K.; Hayashi, A.; Tatsumisago, M., Crystal structure of a superionic conductor, Li7P3S11. Solid State Ionics 2007, 178 (15-18), 1163-1167.
    41. Kato, Y.; Kawamoto, K.; Kanno, R.; Hirayama, M., Discharge Performance of All-Solid-State Battery Using a Lithium Superionic Conductor Li10GeP2S12. Electrochemistry 2012, 80 (10), 749-751.
    42. Wenzel, S.; Randau, S.; Leichtweiß, T.; Weber, D. A.; Sann, J.; Zeier, W. G.; Janek, J., Direct Observation of the Interfacial Instability of the Fast Ionic Conductor Li10GeP2S12 at the Lithium Metal Anode. Chemistry of Materials 2016, 28 (7), 2400-2407.
    43. Bron, P.; Johansson, S.; Zick, K.; Schmedt auf der Gunne, J.; Dehnen, S.; Roling, B., Li10SnP2S12: an affordable lithium superionic conductor. J Am Chem Soc 2013, 135 (42), 15694-7.
    44. Whiteley, J. M.; Woo, J. H.; Hu, E.; Nam, K.-W.; Lee, S.-H., Empowering the Lithium Metal Battery through a Silicon-Based Superionic Conductor. Journal of The Electrochemical Society 2014, 161 (12), A1812-A1817.
    45. Kato, Y.; Saito, R.; Sakano, M.; Mitsui, A.; Hirayama, M.; Kanno, R., Synthesis, structure and lithium ionic conductivity of solid solutions of Li10(Ge1−M )P2S12 (M = Si, Sn). Journal of Power Sources 2014, 271, 60-64.
    46. Krauskopf, T.; Culver, S. P.; Zeier, W. G., Bottleneck of Diffusion and Inductive Effects in Li10Ge1–xSnxP2S12. Chemistry of Materials 2018, 30 (5), 1791-1798.
    47. Kato, Y.; Hori, S.; Saito, T.; Suzuki, K.; Hirayama, M.; Mitsui, A.; Yonemura, M.; Iba, H.; Kanno, R., High-power all-solid-state batteries using sulfide superionic conductors. Nature Energy 2016, 1 (4).
    48. Deiseroth, H. J.; Kong, S. T.; Eckert, H.; Vannahme, J.; Reiner, C.; Zaiss, T.; Schlosser, M., Li6PS5X: a class of crystalline Li-rich solids with an unusually high Li+ mobility. Angew Chem Int Ed Engl 2008, 47 (4), 755-8.
    49. Kuhs, W. F.; Nitsche, R.; Scheunemann, K., The crystal structure of Cu6PS5Br, a new superionic conductor. Acta Crystallographica Section B 1978, 34 (1), 64-70.
    50. Kuhs, W. F.; Nitsche, R.; Scheunemann, K., The argyrodites — A new family of tetrahedrally close-packed structures. Materials Research Bulletin 1979, 14 (2), 241-248.
    51. Hellstrom, E. E.; Huggins, R. A., Silver ionic and electronic conductivity in Ag9GaS6, Ag9AlS6, AgGaS2, AgAlS2, and AgAl5S8. Journal of Solid State Chemistry 1980, 35 (2), 207-214.
    52. Deiseroth, H.-J.; Maier, J.; Weichert, K.; Nickel, V.; Kong, S.-T.; Reiner, C., Li7PS6 and Li6PS5X (X: Cl, Br, I): Possible Three-dimensional Diffusion Pathways for Lithium Ions and Temperature Dependence of the Ionic Conductivity by Impedance Measurements. Zeitschrift für anorganische und allgemeine Chemie 2011, 637 (10), 1287-1294.
    53. de Klerk, N. J. J.; Rosłoń, I.; Wagemaker, M., Diffusion Mechanism of Li Argyrodite Solid Electrolytes for Li-Ion Batteries and Prediction of Optimized Halogen Doping: The Effect of Li Vacancies, Halogens, and Halogen Disorder. Chemistry of Materials 2016, 28 (21), 7955-7963.
    54. Rao, R. P.; Adams, S., Studies of lithium argyrodite solid electrolytes for all-solid-state batteries. physica status solidi (a) 2011, 208 (8), 1804-1807.
    55. Boulineau, S.; Courty, M.; Tarascon, J.-M.; Viallet, V., Mechanochemical synthesis of Li-argyrodite Li6PS5X (X=Cl, Br, I) as sulfur-based solid electrolytes for all solid state batteries application. Solid State Ionics 2012, 221, 1-5.
    56. Yu, C.; van Eijck, L.; Ganapathy, S.; Wagemaker, M., Synthesis, structure and electrochemical performance of the argyrodite Li 6 PS 5 Cl solid electrolyte for Li-ion solid state batteries. Electrochimica Acta 2016, 215, 93-99.
    57. Ziolkowska, D. A.; Arnold, W.; Druffel, T.; Sunkara, M.; Wang, H., Rapid and Economic Synthesis of a Li7PS6 Solid Electrolyte from a Liquid Approach. ACS Appl Mater Interfaces 2019, 11 (6), 6015-6021.
    58. Yubuchi, S.; Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of high lithium-ion conducting Li6PS5Cl solid electrolyte from ethanol solution for all-solid-state lithium batteries. Journal of Power Sources 2015, 293, 941-945.
    59. Yubuchi, S.; Uematsu, M.; Deguchi, M.; Hayashi, A.; Tatsumisago, M., Lithium-Ion-Conducting Argyrodite-Type Li6PS5X (X = Cl, Br, I) Solid Electrolytes Prepared by a Liquid-Phase Technique Using Ethanol as a Solvent. ACS Applied Energy Materials 2018, 1 (8), 3622-3629.
    60. Yu, C.; Ganapathy, S.; Hageman, J.; van Eijck, L.; van Eck, E. R. H.; Zhang, L.; Schwietert, T.; Basak, S.; Kelder, E. M.; Wagemaker, M., Facile Synthesis toward the Optimal Structure-Conductivity Characteristics of the Argyrodite Li6PS5Cl Solid-State Electrolyte. ACS Appl Mater Interfaces 2018, 10 (39), 33296-33306.
    61. Wang, S.; Zhang, Y.; Zhang, X.; Liu, T.; Lin, Y. H.; Shen, Y.; Li, L.; Nan, C. W., High-Conductivity Argyrodite Li6PS5Cl Solid Electrolytes Prepared via Optimized Sintering Processes for All-Solid-State Lithium-Sulfur Batteries. ACS Appl Mater Interfaces 2018, 10 (49), 42279-42285.
    62. Rayavarapu, P. R.; Sharma, N.; Peterson, V. K.; Adams, S., Variation in structure and Li+-ion migration in argyrodite-type Li6PS5X (X = Cl, Br, I) solid electrolytes. Journal of Solid State Electrochemistry 2011, 16 (5), 1807-1813.
    63. He, X.; Zhu, Y.; Mo, Y., Origin of fast ion diffusion in super-ionic conductors. Nat Commun 2017, 8, 15893.
    64. Shi, S.; Lu, P.; Liu, Z.; Qi, Y.; Hector, L. G., Jr.; Li, H.; Harris, S. J., Direct calculation of Li-ion transport in the solid electrolyte interphase. J Am Chem Soc 2012, 134 (37), 15476-87.
    65. Emly, A.; Kioupakis, E.; Van der Ven, A., Phase Stability and Transport Mechanisms in Antiperovskite Li3OCl and Li3OBr Superionic Conductors. Chemistry of Materials 2013, 25 (23), 4663-4670.
    66. Deng, Y.; Eames, C.; Chotard, J. N.; Lalere, F.; Seznec, V.; Emge, S.; Pecher, O.; Grey, C. P.; Masquelier, C.; Islam, M. S., Structural and Mechanistic Insights into Fast Lithium-Ion Conduction in Li4SiO4-Li3PO4 Solid Electrolytes. J Am Chem Soc 2015, 137 (28), 9136-45.
    67. Jalem, R.; Yamamoto, Y.; Shiiba, H.; Nakayama, M.; Munakata, H.; Kasuga, T.; Kanamura, K., Concerted Migration Mechanism in the Li Ion Dynamics of Garnet-Type Li7La3Zr2O12. Chemistry of Materials 2013, 25 (3), 425-430.
    68. Wang, Y.; Richards, W. D.; Ong, S. P.; Miara, L. J.; Kim, J. C.; Mo, Y.; Ceder, G., Design principles for solid-state lithium superionic conductors. Nat Mater 2015, 14 (10), 1026-31.
    69. Boyce, J. B.; Huberman, B. A., Superionic conductors: Transitions, structures, dynamics. Physics Reports 1979, 51 (4), 189-265.
    70. Culver, S. P.; Koerver, R.; Krauskopf, T.; Zeier, W. G., Designing Ionic Conductors: The Interplay between Structural Phenomena and Interfaces in Thiophosphate-Based Solid-State Batteries. Chemistry of Materials 2018, 30 (13), 4179-4192.
    71. Kraft, M. A.; Culver, S. P.; Calderon, M.; Bocher, F.; Krauskopf, T.; Senyshyn, A.; Dietrich, C.; Zevalkink, A.; Janek, J.; Zeier, W. G., Influence of Lattice Polarizability on the Ionic Conductivity in the Lithium Superionic Argyrodites Li6PS5X (X = Cl, Br, I). J Am Chem Soc 2017, 139 (31), 10909-10918.
    72. Krauskopf, T.; Pompe, C.; Kraft, M. A.; Zeier, W. G., Influence of Lattice Dynamics on Na+ Transport in the Solid Electrolyte Na3PS4–xSex. Chemistry of Materials 2017, 29 (20), 8859-8869.
    73. Weber, D. A.; Senyshyn, A.; Weldert, K. S.; Wenzel, S.; Zhang, W.; Kaiser, R.; Berendts, S.; Janek, J.; Zeier, W. G., Structural Insights and 3D Diffusion Pathways within the Lithium Superionic Conductor Li10GeP2S12. Chemistry of Materials 2016, 28 (16), 5905-5915.
    74. Busche, M. R.; Weber, D. A.; Schneider, Y.; Dietrich, C.; Wenzel, S.; Leichtweiss, T.; Schröder, D.; Zhang, W.; Weigand, H.; Walter, D.; Sedlmaier, S. J.; Houtarde, D.; Nazar, L. F.; Janek, J., In SituMonitoring of Fast Li-Ion Conductor Li7P3S11Crystallization Inside a Hot-Press Setup. Chemistry of Materials 2016, 28 (17), 6152-6165.
    75. Winkler, C., Germanium, Ge, ein neues, nichtmetallisches Element. Berichte der deutschen chemischen Gesellschaft 1886, 19 (1), 210-211.
    76. Beeken, R. B.; Garbe, J. J.; Gillis, J. M.; Petersen, N. R.; Podoll, B. W.; Stoneman, M. R., Electrical conductivities of the Ag6PS5X and the Cu6PSe5X (X=Br, I) argyrodites. Journal of Physics and Chemistry of Solids 2005, 66 (5), 882-886.
    77. Chen, H. M.; Maohua, C.; Adams, S., Stability and ionic mobility in argyrodite-related lithium-ion solid electrolytes. Phys Chem Chem Phys 2015, 17 (25), 16494-506.
    78. Yu, C.; Zhao, F.; Luo, J.; Zhang, L.; Sun, X., Recent development of lithium argyrodite solid-state electrolytes for solid-state batteries: Synthesis, structure, stability and dynamics. Nano Energy 2021, 83.
    79. Zhang, Z.; Zhang, L.; Liu, Y.; Yu, C.; Yan, X.; Xu, B.; Wang, L.-m., Synthesis and characterization of argyrodite solid electrolytes for all-solid-state Li-ion batteries. Journal of Alloys and Compounds 2018, 747, 227-235.
    80. Koch, C. C.; Whittenberger, J. D., Mechanical milling/alloying of intermetallics. Intermetallics 1996, 4 (5), 339-355.
    81. Yu, C.; Ganapathy, S.; van Eck, E. R. H.; van Eijck, L.; Basak, S.; Liu, Y.; Zhang, L.; Zandbergen, Henny W.; Wagemaker, M., Revealing the relation between the structure, Li-ion conductivity and solid-state battery performance of the argyrodite Li6PS5Br solid electrolyte. J. Mater. Chem. A 2017, 5 (40), 21178-21188.
    82. Yu, C.; Hageman, J.; Ganapathy, S.; van Eijck, L.; Zhang, L.; Adair, K. R.; Sun, X.; Wagemaker, M., Tailoring Li6PS5Br ionic conductivity and understanding of its role in cathode mixtures for high performance all-solid-state Li–S batteries. Journal of Materials Chemistry A 2019, 7 (17), 10412-10421.
    83. Jung, W. D.; Kim, J. S.; Choi, S.; Kim, S.; Jeon, M.; Jung, H. G.; Chung, K. Y.; Lee, J. H.; Kim, B. K.; Lee, J. H.; Kim, H., Superionic Halogen-Rich Li-Argyrodites Using In Situ Nanocrystal Nucleation and Rapid Crystal Growth. Nano Lett 2020, 20 (4), 2303-2309.
    84. Bai, X.; Duan, Y.; Zhuang, W.; Yang, R.; Wang, J., Research progress in Li-argyrodite-based solid-state electrolytes. Journal of Materials Chemistry A 2020, 8 (48), 25663-25686.
    85. Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Preparation of Li2S–P2S5 solid electrolyte from N-methylformamide solution and application for all-solid-state lithium battery. Journal of Power Sources 2014, 248, 939-942.
    86. Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Formation of Li2S–P2S5 Solid Electrolyte from N-Methylformamide Solution. Chemistry Letters 2013, 42 (11), 1435-1437.
    87. Teragawa, S.; Aso, K.; Tadanaga, K.; Hayashi, A.; Tatsumisago, M., Liquid-phase synthesis of a Li3PS4 solid electrolyte using N-methylformamide for all-solid-state lithium batteries. Journal of Materials Chemistry A 2014, 2 (14).
    88. Phuc, N. H. H.; Totani, M.; Morikawa, K.; Muto, H.; Matsuda, A., Preparation of Li3PS4 solid electrolyte using ethyl acetate as synthetic medium. Solid State Ionics 2016, 288, 240-243.
    89. Rangasamy, E.; Liu, Z.; Gobet, M.; Pilar, K.; Sahu, G.; Zhou, W.; Wu, H.; Greenbaum, S.; Liang, C., An iodide-based Li7P2S8I superionic conductor. J Am Chem Soc 2015, 137 (4), 1384-7.
    90. Park, K. H.; Oh, D. Y.; Choi, Y. E.; Nam, Y. J.; Han, L.; Kim, J. Y.; Xin, H.; Lin, F.; Oh, S. M.; Jung, Y. S., Solution-Processable Glass LiI-Li4 SnS4 Superionic Conductors for All-Solid-State Li-Ion Batteries. Adv Mater 2016, 28 (9), 1874-83.
    91. Phuc, N. H. H.; Yamamoto, T.; Muto, H.; Matsuda, A., Fast synthesis of Li2S–P2S5–LiI solid electrolyte precursors. Inorganic Chemistry Frontiers 2017, 4 (10), 1660-1664.
    92. Yao, X.; Liu, D.; Wang, C.; Long, P.; Peng, G.; Hu, Y. S.; Li, H.; Chen, L.; Xu, X., High-Energy All-Solid-State Lithium Batteries with Ultralong Cycle Life. Nano Lett 2016, 16 (11), 7148-7154.
    93. Wang, Y.; Lu, D.; Bowden, M.; El Khoury, P. Z.; Han, K. S.; Deng, Z. D.; Xiao, J.; Zhang, J.-G.; Liu, J., Mechanism of Formation of Li7P3S11 Solid Electrolytes through Liquid Phase Synthesis. Chemistry of Materials 2018, 30 (3), 990-997.
    94. Ito, S.; Nakakita, M.; Aihara, Y.; Uehara, T.; Machida, N., A synthesis of crystalline Li7P3S11 solid electrolyte from 1,2-dimethoxyethane solvent. Journal of Power Sources 2014, 271, 342-345.
    95. Yu, C.; Li, Y.; Li, W.; Adair, K. R.; Zhao, F.; Willans, M.; Liang, J.; Zhao, Y.; Wang, C.; Deng, S.; Li, R.; Huang, H.; Lu, S.; Sham, T.-K.; Huang, Y.; Sun, X., Enabling ultrafast ionic conductivity in Br-based lithium argyrodite electrolytes for solid-state batteries with different anodes. Energy Storage Materials 2020, 30, 238-249.
    96. Adeli, P.; Bazak, J. D.; Park, K. H.; Kochetkov, I.; Huq, A.; Goward, G. R.; Nazar, L. F., Boosting Solid-State Diffusivity and Conductivity in Lithium Superionic Argyrodites by Halide Substitution. Angew Chem Int Ed Engl 2019, 58 (26), 8681-8686.
    97. Schneider, H.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis-Kelley, C.; Sanchez-Carrera, R.; Kovalev, I.; Mudalige, A.; Kulisch, J.; Safont-Sempere, M. M.; Hartmann, P.; Weiβ, T.; Schneider, L.; Hinrichsen, B., A novel class of halogen-free, super-conductive lithium argyrodites: Synthesis and characterization. Journal of Power Sources 2017, 366, 151-160.
    98. Zhang, Z.; Zhang, J.; Jia, H.; Peng, L.; An, T.; Xie, J., Enhancing ionic conductivity of solid electrolyte by lithium substitution in halogenated Li-Argyrodite. Journal of Power Sources 2020, 450.
    99. Schneider, H.; Sedlmaier, S. J.; Du, H.; Kelley, T.; Leitner, K.; ter Maat, J.; Scordilis‐Kelley, C.; Mudalige, A.; Kulisch, J.; Schneider, L., Stabilization of Highly Conductive Lithium Argyrodites by Means of Lithium Substitution: The Case of Li6Fe0.5PS6. ChemistrySelect 2019, 4 (12), 3351-3354.
    100. Zhang, Z.; Sun, Y.; Duan, X.; Peng, L.; Jia, H.; Zhang, Y.; Shan, B.; Xie, J., Design and synthesis of room temperature stable Li-argyrodite superionic conductors via cation doping. Journal of Materials Chemistry A 2019, 7 (6), 2717-2722.
    101. Kraft, M. A.; Ohno, S.; Zinkevich, T.; Koerver, R.; Culver, S. P.; Fuchs, T.; Senyshyn, A.; Indris, S.; Morgan, B. J.; Zeier, W. G., Inducing High Ionic Conductivity in the Lithium Superionic Argyrodites Li6+ xP1- xGe xS5I for All-Solid-State Batteries. J Am Chem Soc 2018, 140 (47), 16330-16339.
    102. Ohno, S.; Helm, B.; Fuchs, T.; Dewald, G.; Kraft, M. A.; Culver, S. P.; Senyshyn, A.; Zeier, W. G., Further Evidence for Energy Landscape Flattening in the Superionic Argyrodites Li6+xP1–xMxS5I (M = Si, Ge, Sn). Chemistry of Materials 2019, 31 (13), 4936-4944.
    103. Zhou, L.; Assoud, A.; Zhang, Q.; Wu, X.; Nazar, L. F., New Family of Argyrodite Thioantimonate Lithium Superionic Conductors. J Am Chem Soc 2019, 141 (48), 19002-19013.
    104. Minafra, N.; Culver, S. P.; Krauskopf, T.; Senyshyn, A.; Zeier, W. G., Effect of Si substitution on the structural and transport properties of superionic Li-argyrodites. Journal of Materials Chemistry A 2018, 6 (2), 645-651.
    105. Adeli, P.; Bazak, J. D.; Huq, A.; Goward, G. R.; Nazar, L. F., Influence of Aliovalent Cation Substitution and Mechanical Compression on Li-Ion Conductivity and Diffusivity in Argyrodite Solid Electrolytes. Chemistry of Materials 2020, 33 (1), 146-157.
    106. Liang, J.; Chen, N.; Li, X.; Li, X.; Adair, K. R.; Li, J.; Wang, C.; Yu, C.; Norouzi Banis, M.; Zhang, L.; Zhao, S.; Lu, S.; Huang, H.; Li, R.; Huang, Y.; Sun, X., Li10Ge(P1–xSbx)2S12 Lithium-Ion Conductors with Enhanced Atmospheric Stability. Chemistry of Materials 2020, 32 (6), 2664-2672.
    107. Kimura, T.; Kato, A.; Hotehama, C.; Sakuda, A.; Hayashi, A.; Tatsumisago, M., Preparation and characterization of lithium ion conductive Li3SbS4 glass and glass-ceramic electrolytes. Solid State Ionics 2019, 333, 45-49.
    108. Hayashi, A.; Muramatsu, H.; Ohtomo, T.; Hama, S.; Tatsumisago, M., Improvement of chemical stability of Li3PS4 glass electrolytes by adding MxOy (M = Fe, Zn, and Bi) nanoparticles. Journal of Materials Chemistry A 2013, 1 (21).
    109. Ohtomo, T.; Hayashi, A.; Tatsumisago, M.; Kawamoto, K., Suppression of H2S gas generation from the 75Li2S·25P2S5 glass electrolyte by additives. Journal of Materials Science 2013, 48 (11), 4137-4142.
    110. Zhao, F.; Liang, J.; Yu, C.; Sun, Q.; Li, X.; Adair, K.; Wang, C.; Zhao, Y.; Zhang, S.; Li, W.; Deng, S.; Li, R.; Huang, Y.; Huang, H.; Zhang, L.; Zhao, S.; Lu, S.; Sun, X., A Versatile Sn‐Substituted Argyrodite Sulfide Electrolyte for All‐Solid‐State Li Metal Batteries. Advanced Energy Materials 2020, 10 (9).
    111. Pearce, C. I., Electrical and Magnetic Properties of Sulfides. Reviews in Mineralogy and Geochemistry 2006, 61 (1), 127-180.
    112. Sang, L.; Haasch, R. T.; Gewirth, A. A.; Nuzzo, R. G., Evolution at the Solid Electrolyte/Gold Electrode Interface during Lithium Deposition and Stripping. Chemistry of Materials 2017, 29 (7), 3029-3037.
    113. Kazuhiko, S.; Seiji, O.; Yasuo, M.; Hirofumi, W.; Kenjirou, W.; Junichi, K.; Masahiko, U.; Akihiro, Y., Report of the industrial research institute of NIIGATA prefecture in Japan. The Electrochemical Society of Japan 2003.

    無法下載圖示 全文公開日期 2024/09/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE