簡易檢索 / 詳目顯示

研究生: 王靜萱
Jing-shiuan Wang
論文名稱: 創新固態高分子複合電解質:藉由高分子官能基化石墨烯提升離子導電度
Innovative Solid-State Polymer Nanocomposite Electrolytes: Enhancement of Ionic Conductivity by Polymer- Functionalized Graphenes
指導教授: 黃炳照
Bing-joe Hwang
口試委員: 陳崇賢
Chorng-Shyan Chern
張豐志
Feng-chih Chang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 152
中文關鍵詞: 石墨烯鏈接化學高分子固態電解質鋰電池
外文關鍵詞: graphene, click reaction, polymer electrolyte, lithium ion battery
相關次數: 點閱:231下載:17
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 如何於高分子電解質(polymer electrolyte)中有效的改善鋰離子傳導環境,進而提高導電度為目前高分子電解質研究中極重要的議題之一。本研究中將介紹一個新穎的材料-嫁接高分子之石墨烯,並將其導入於高分子電解質中於鋰電池(lithium ion battery)應用中。為了發展有效而且可靠的策略對於擁有強大內聚力和表面慣性的石墨進行嫁接改質,我們選擇利用共價鍵結的方式將石墨烯官能基化,以達成精確的介面控制。一個以炔類構成的石墨烯(Alkyne-FG)為本研究核心材料,結合可逆鏈轉移聚合法(reversible additional-fragmentation chain transfer)和鏈接化學(click reaction)與高分子結合以製備出具有高分子嫁接的石墨烯(polymer-functionalized graphene;polymer-FG)。此外,探討不同形態及種類嫁接高分子之石墨烯的添加及鋰鹽類及其修飾石墨烯之添加量對固態電解質膜特性之研究,包含結晶性、熱性質、解離度及離子導電度等性質。
    最後將製備出的固態電解質薄膜應用於鋰二次電池,並使用商業用陰極材料磷酸鋰鐵,進行電化學以及充放電測試。


    There is a growing shift from liquid electrolytes toward solid polymer electrolytes, in energy storage devices, due to the many advantages of the latter such as enhanced safety, flexibility, and manufacturability. The main issue with polymer electrolytes is their lower ionic conductivity compared to that of liquid electrolytes. Nanoscale fillers such as silica and alumina nanoparticles are known to enhance the ionic conductivity of polymer electrolytes. Although graphene have been used as fillers for polymers in various applications, they have not yet been used in polymer electrolytes as they are conductive and can pose the risk of electrical shorting. In this study, we show a powerful and reliable strategy to synthesis covalently functionalize graphene. The polymer electrolytes whose ion-conducting channels are physically and chemically modulated by the polymer functionalize graphene. We show that such hybrid nanofillers increase the lithium ion conductivity of PEG electrolyte by almost 2 orders of magnitude. Furthermore, the lithium ion transference number was tLi+ of PEG/PILB-G/LiClO4 at 60 ◦C was as high as 0.68 , which was also three times higher than that of PEG/LiClO4.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1前言 1.2研究動機與目的 第二章 文獻回顧 2.1高分子電解質簡介 2.2 高分子電解質種類介紹 2.2.1 固態高分子電解質 2.2.2膠態(gel-type)高分子電解質 2.2.3 複合式高分子電解質 2.3 石墨烯(Graphene) 2.4可逆性加成-分裂鏈轉移聚合法[51-53](reversible additional-fragmentation chain transfer,RAFT) 2.4.1 可逆性加成-分裂鏈轉移聚合法(reversible addition-fragmentation chain transfer,RAFT)機制[54] 2.4.2 活化基(Z group)與離去基(R group) 2.5 1,3偶極環化加成反應(1,3 dipolar cycloaddition ;Click reaction) 第三章 實驗藥品、設備、原理及步驟 3.1實驗藥品與設備 3.1.1 實驗材料與藥品 3.1.2實驗設備與器材 3.2 合成反應之流程結構示意圖 3.3 單體之合成與製備 3.3.1 單體Di(thiobenzoyl) Disulfide (BDTPA)之合成 3.3.2單體4-cyano-4-(thiobenzoyl) sulfonyl pentanoic acid (CTB; RAFT chain transfer agents (CTAs))之合成 3.3.3單體3-Azidopropanol 之合成 3.3.4 單體3-azidopropyl4-cyano-4-((phenylcarbonothioyl)thio) butanoate (CTAs-N3) 之合成 3.3.5 單體4-(prop-2-ynyloxy)benzenamininm (PBA)的製備 3.3.6 1-azido-2-(2-methoxyethoxy)ethane (PEG-N3)之合成 3.3.7 利用RAFT聚合法製備poly(2-(dimethylamino)ethyl methacrylate) (PDMA) 3.3.8 離子型高分子PDMA-Br之合成 3.3.9 離子型高分子 polyvinylimdazole (PVI)之合成 3.4 氧化石墨烯(Graphene Oxide,GO)之製備 3.5 Alkyne-functionalized Grapphene sheet (Alkyne-FG)之製備 3.6 藉由鍵接化學(Click reaction)將末端具有疊氮之高分子(polymer-N3)嫁接於含炔基之石墨烯(Alkyne-FG) 3.7 藉由非共價鍵修飾法合成將離子液體型高分子(ionic liquid polymer)與氧化石墨(graphene oxide)結合 3.8 薄膜之製備 3.8.1 未經改質之高分子薄膜合成 3.8.2 PEG和高分子官能化石墨烯混摻之高分子複合膜 3.8.3 PEG/石墨烯複合高分子電解質膜(PEG-Li+/graphene composite membrane)之合成 3.9實驗方法與儀器原理 3.9.1 傅立葉轉換紅外光譜儀( Fourier transform infrared spectroscopy;FTIR )鑑定 3.9.2 液態核磁共振儀( Solution Nuclear Magnetic Resonance;NMR ) 3.9.3 固態核磁共振儀 ( 13C-Solid state Nuclear Magnetic Resonance ;13C-NMR ) 3.9.4 凝膠滲透層析儀( Gel permeation chromatography;GPC ) 3.9.5 X-ray繞射儀( X-ray Diffraction;XRD ) 3.9.6 熱重分析儀( Thermogravimetric analysis;TGA ) 3.9.7 示差掃瞄熱分析法(Differential Scanning Calorimeter ;DSC) 3.9.8 X射線光能子能譜儀( X-ray photoelectroscopy;XPS ) 3.9.9掃瞄式電子顯微鏡( Scanning Electron Microscopy;SEM ) 3.9.10穿透式電子顯微鏡(Transmission Electron Microscope; TEM ) 3.9.11交流阻抗分析(AC-Impedance) 3.9.11-1交流阻抗分析基礎原理 第四章 實驗結果與討論 4.1單體及其延伸物之合成與鑑定 4.1.1 鏈轉移試劑之合成路徑 (Azido-CTAs; CTAs) 4.1.1-(a) Di(thiobenzoyl) Disulfide (BDTPA) 4.1.1-(b) 4-cyano-4-(thiobenzoyl) sulfonyl pentanoic acid (CTA; RAFT chain transfer agents (CTAs)) 4.1.1-(c) 3-Azidopropanol 4.1.1-(d)3-azidopropyl4-cyano-4-((phenylcarbonothioyl)thio) butanoate (Azido-CTAs) 4.1.2末端具疊氮官能基的高分子之結構鑑(azido-terminated polymer; polymer-N3) 4.1.3具炔基的石墨烯(alkyne-functionalized graphene; alkyne-FG)之合成路徑 4.1.3 (a) 氧化石墨烯 ( graphene oxide; GO )之鑑定 4.1.3-(b) Alkyne-FG之結構鑑定 4.1.4高分子修飾之石墨烯(polymer-functionalized graphene; polymer-FG) 4.1.4-(a) 利用非共價化學法修飾石墨烯 4.1.4-(b) 利用共價化學法修飾石墨烯(PILB-FG and PEGB-FG) 4.2 高分子修飾之石墨烯(polymer-functionalized graphene; polymer-FG)及其複合物之結晶行為及形態學分析 4.2.1離子型高分子之石墨烯 4.2.1-(a) 高分子修飾之石墨烯於多種有機溶機之相容性討論 4.2.1-(b) 高分子修飾之石墨烯形態學分析 4.2.2添加鋰鹽類之聚乙二醇/石墨烯(PEG/graphene)固態電解質 4.2.2-(a) 不同型態之polymer-FG 與鋰鹽類(過氯酸鋰;LiClO4)之離子作用力 4.2.2-(b) 高分子修飾石墨烯種類及添加量對PEG主體及PEG-Li/ Graphene之影響 4.2.2-(c) 鋰鹽類的添加量對PEG主體及PEG-Li+ /graphene之影響 4.2.2-(d) PEG-Li+/graphene電解質膜形態學分析 4.3 PEG-Li+/graphene固態電解質之鋰離子導電度 4.3.1石墨烯種類及添加量對PEG-Li+/graphene固態電解質導電度的影響 4.3.2鋰鹽類的添加量對PEG-Li+/graphene固態電解質導電度的影響 4.3.3溫度的改變對PEO-Li+/graphene固態電解質導電度的影響 4.3.4石墨烯種類改變對PEO-Li+ /graphene固態電解質鋰離子運動性的影響 4.4 PEG-Li+/graphene固態電解質之電化學表現 4.4.1PEG-Li+/graphene氧化裂解電位 4.4.2PEG-Li+/graphene充放電測試結果 第五章 結論 第六章 參考文獻

    1. An, Y., et al., Improved properties of polymer electrolyte by ionic liquid PP1.3TFSI for secondary lithium ion battery. Journal of Solid State Electrochemistry, 2012. 16(1): p. 383-389.
    2. Armand, M.G., W.; Andreani, R. in Second International Meeting on Polymer Electrolytes. 1990. New York.
    3. Bannister, D.J., et al., Ionic conductivities for poly(ethylene oxide) complexes with lithium salts of monobasic and dibasic acids and blends of poly(ethylene oxide) with lithium salts of anionic polymers. Polymer, 1984. 25(9): p. 1291-1296.
    4. Binder, W.H. and R. Sachsenhofer, 'Click' chemistry in polymer and materials science. Macromolecular Rapid Communications, 2007. 28(1): p. 15-54.
    5. Binder, W.H. and R. Sachsenhofer, 'Click' chemistry in polymer and material science: An Update. Macromolecular Rapid Communications, 2008. 29(12-13): p. 952-981.
    6. Bock, V.D., H. Hiemstra, and J.H. van Maarseveen, CuI-Catalyzed Alkyne–Azide “Click” Cycloadditions from a Mechanistic and Synthetic Perspective. European Journal of Organic Chemistry, 2006. 2006(1): p. 51-68.
    7. Bohnke, O., et al., Gel electrolyte for solid-state electrochromic cell. Journal of the Electrochemical Society, 1992. 139(7): p. 1862-1865.
    8. Chaiko, D.J., New Poly(ethylene oxide)−Clay Composites. Chemistry of Materials, 2003. 15(5): p. 1105-1110.
    9. Chan, T.R., et al., Polytriazoles as Copper(I)-Stabilizing Ligands in Catalysis. Organic Letters, 2004. 6(17): p. 2853-2855.
    10. Chen-Yang, Y.W., et al., Influence of silica aerogel on the properties of polyethylene oxide-based nanocomposite polymer electrolytes for lithium battery. Journal of Power Sources, 2008. 182(1): p. 340-348.
    11. Chiefari, J., et al., Living free-radical polymerization by reversible addition - Fragmentation chain transfer: The RAFT process. Macromolecules, 1998. 31(16): p. 5559-5562.
    12. Chiefari, J., et al., Thiocarbonylthio Compounds (SC(Z)S−R) in Free Radical Polymerization with Reversible Addition-Fragmentation Chain Transfer (RAFT Polymerization). Effect of the Activating Group Z. Macromolecules, 2003. 36(7): p. 2273-2283.
    13. Chinnam, P.R. and S.L. Wunder, Polyoctahedral Silsesquioxane-Nanoparticle Electrolytes for Lithium Batteries: POSS-Lithium Salts and POSS-PEGs. Chemistry of Materials, 2011. 23(23): p. 5111-5121.
    14. Choi, E.-Y., et al., Noncovalent functionalization of graphene with end-functional polymers. Journal of Materials Chemistry, 2010. 20(10): p. 1907.
    15. Chong, B.Y.K., et al., Thiocarbonylthio compounds [S=C(Ph)S-R) in free radical polymerization with reversible addition-fragmentation chain transfer (RAFT polymerization). Role of the free-radical leaving group (R). Macromolecules, 2003. 36(7): p. 2256-2272.
    16. Chu, P.P., M.J. Reddy, and H.M. Kao, Novel composite polymer electrolyte comprising mesoporous structured SiO2 and PEO/Li. Solid State Ionics, 2003. 156(1-2): p. 141-153.
    17. Croce, F., et al., Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on polyacrylonitrile. Chemistry of Materials, 1993. 5(9): p. 1268-1272.
    18. Dias, F.B., L. Plomp, and J.B.J. Veldhuis, Trends in polymer electrolytes for secondary lithium batteries. Journal of Power Sources, 2000. 88(2): p. 169-191.
    19. Díaz, D.D., et al., Click chemistry in materials synthesis. 1. Adhesive polymers from copper-catalyzed azide-alkyne cycloaddition. Journal of Polymer Science Part A: Polymer Chemistry, 2004. 42(17): p. 4392-4403.
    20. Duxbury, C.J., D. Cummins, and A. Heise, Glaser coupling of polymers: Side-reaction in Huisgens “click” coupling reaction and opportunity for polymers with focal diacetylene units in combination with ATRP. Journal of Polymer Science Part A: Polymer Chemistry, 2009. 47(15): p. 3795-3802.
    21. Fang, M., et al., Covalent polymer functionalization of graphene nanosheets and mechanical properties of composites. Journal of Materials Chemistry, 2009. 19(38): p. 7098-7105.
    22. Fang, M., et al., Single-layer graphene nanosheets with controlled grafting of polymer chains. Journal of Materials Chemistry, 2010. 20(10): p. 1982-1992.
    23. Fazio, F., et al., Synthesis of Sugar Arrays in Microtiter Plate. Journal of the American Chemical Society, 2002. 124(48): p. 14397-14402.
    24. Fiona, M.G., Solid Polymer Electrolyte: fundamentals and technological applications. 1997.
    25. Fournier, D., R. Hoogenboom, and U.S. Schubert, Clicking polymers: A straightforward approach to novel macromolecular architectures. Chemical Society Reviews, 2007. 36(8): p. 1369-1380.
    26. Gondi, S.R., A.P. Vogt, and B.S. Sumerlin, Versatile pathway to functional telechelics via RAFT polymerization and click chemistry. Macromolecules, 2007. 40(3): p. 474-481.
    27. Goto, A., et al., Mechanism and kinetics of RAFT-based living radical polymerizations of styrène and methyl methacrylate. Macromolecules, 2001. 34(3): p. 402-408.
    28. Green, A.A. and M.C. Hersam, Solution phase production of graphene with controlled thickness via density differentiation. Nano Letters, 2009. 9(12): p. 4031-4036.
    29. H.B. Armand, S.M.C., M. Dulcot, in Second International Meeting on Solid Electrolyte. 1978: Scotland.
    30. Hajek, J. 1994: French Patent.
    31. He, H. and C. Gao, General approach to individually dispersed, highly soluble, and conductive graphene nanosheets functionalized by nitrene chemistry. Chemistry of Materials, 2010. 22(17): p. 5054-5064.
    32. Herrmann, P.P. and D. Wildmann, FABRICATION OF PLANAR DIELECTRIC WAVEGUIDES WITH HIGH OPTICAL DAMAGE THRESHOLD. IEEE Journal of Quantum Electronics, 1983. QE-19(12): p. 1735-1738.
    33. Huisgen, R., Kinetics and Mechanism of 1,3-Dipolar Cycloadditions. Angewandte Chemie International Edition in English, 1963. 2(11): p. 633-645.
    34. Huisgen, R., 1,3-Dipolar Cycloadditions. Past and Future. Angewandte Chemie International Edition in English, 1963. 2(10): p. 565-598.
    35. Ji, K.S., et al., Role of functional nano-sized inorganic fillers in poly(ethylene) oxide-based polymer electrolytes. Journal of Power Sources, 2003. 117(1-2): p. 124-130.
    36. Kim, T., et al., Synthesis of phase transferable graphene sheets using ionic liquid polymers. ACS Nano, 2010. 4(3): p. 1612-1618.
    37. Kobayashi, N., M. Uchiyama, and E. Tsuchida, Poly[lithium methacrylate-co-oligo(oxyethylene)methacrylate] as a solid electrolyte with high ionic conductivity. Solid State Ionics, 1985. 17(4): p. 307-311.
    38. Kolb, H.C., M.G. Finn, and K.B. Sharpless, Click Chemistry: Diverse Chemical Function from a Few Good Reactions. Angewandte Chemie - International Edition, 2001. 40(11): p. 2004-2021.
    39. Kumar, B. and L.G. Scanlon, Polymer-ceramic composite electrolytes. Journal of Power Sources, 1994. 52(2): p. 261-268.
    40. La Serra, E.R., et al., Preparation and characterization of thin films of TiO2PbO and TiO2Bi2O3 compositions. Journal of Non-Crystalline Solids, 1990. 121(1-3): p. 323-328.
    41. Lahiri, J., et al., Graphene growth on Ni(111) by transformation of a surface carbide. Nano Letters, 2011. 11(2): p. 518-522.
    42. Leveque, M., et al., Cationic transport numbers in polyether-based networks containing lithium salts. Journal of Power Sources, 1985. 14(1-3): p. 27-30.
    43. Lin, C.W., et al., Influence of TiO2 nano-particles on the transport properties of composite polymer electrolyte for lithium-ion batteries. Journal of Power Sources, 2005. 146(1-2): p. 397-401.
    44. Lisong, H. and S. Sakka, Preparation and spectroscopic studies of alkoxide-derived V2O5GeO2 sols and coatings. Journal of Non-Crystalline Solids, 1989. 112(1-3): p. 424-427.
    45. Long, J., M. Fang, and G. Chen, Microwave-assisted rapid synthesis of water-soluble graphene. Journal of Materials Chemistry, 2011.
    46. Mattevi, C., H. Kim, and M. Chhowalla, A review of chemical vapour deposition of graphene on copper. Journal of Materials Chemistry, 2011. 21(10): p. 3324-3334.
    47. Moad, G., E. Rizzardo, and S.H. Thang, Living radical polymerization by the RAFT process. Australian Journal of Chemistry, 2005. 58(6): p. 379-410.
    48. Moad, G., E. Rizzardo, and S.H. Thang, Living radical polymerization by the RAFT process - A first update. Australian Journal of Chemistry, 2006. 59(10): p. 669-692.
    49. Moad, G., E. Rizzardo, and S.H. Thang, Radical addition-fragmentation chemistry in polymer synthesis. Polymer, 2008. 49(5): p. 1079-1131.
    50. Novoselov, K.S., et al., Electric field in atomically thin carbon films. Science, 2004. 306(5696): p. 666-669.
    51. Novoselov, K.S., et al., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America, 2005. 102(30): p. 10451-10453.
    52. Orgueira, H.A., et al., Regioselective synthesis of [1,2,3]-triazoles catalyzed by Cu(I) generated in situ from Cu(0) nanosize activated powder and amine hydrochloride salts. Tetrahedron Letters, 2005. 46(16): p. 2911-2914.
    53. Owen B. B., S.P.M., Untereker D. F.,, Handbook of Batteries and Fuel Cells, ed. Linden D. Eds. 1984, New York: Mcgraw-Hill Book Company. pp12-13.
    54. Pan, Y., et al., Water-soluble poly(N-isopropylacrylamide)-graphene sheets synthesized via click chemistry for drug delivery. Advanced Functional Materials, 2011. 21(14): p. 2754-2763.
    55. Persi, L., et al., Poly(ethylene oxide)-based, nanocomposite electrolytes as improved separators for rechargeable lithium polymer batteries: The Li/LiMn3O6 case. Journal of the Electrochemical Society, 2002. 149(2): p. A212-A216.
    56. Potts, J.R., et al., Thermomechanical properties of chemically modified graphene/poly(methyl methacrylate) composites made by in situ polymerization. Carbon, 2011. 49(8): p. 2615-2623.
    57. Quartarone, E., P. Mustarelli, and A. Magistris, PEO-based composite polymer electrolytes. Solid State Ionics, 1998. 110(1-2): p. 1-14.
    58. Rafiee, M.A., et al., Buckling resistant graphene nanocomposites. Applied Physics Letters, 2009. 95(22).
    59. Ratna, D., et al., Poly(ethylene oxide)/clay nanocomposites for solid polymer electrolyte applications. Polymer International, 2007. 56(7): p. 900-904.
    60. Rocco, A.M., C.P. Da Fonseca, and R.P. Pereira, A polymeric solid electrolyte based on a binary blend of poly(ethylene oxide), poly(methyl vinyl ether-maleic acid) and LiClO4. Polymer, 2002. 43(13): p. 3601-3609.
    61. Rostovtsev, V.V., et al., A Stepwise Huisgen Cycloaddition Process: Copper(I)-Catalyzed Regioselective “Ligation” of Azides and Terminal Alkynes. Angewandte Chemie International Edition, 2002. 41(14): p. 2596-2599.
    62. Scrosati, B., F. Croce, and L. Persi, Impedance spectroscopy study of PEO-based nanocomposite polymer electrolytes. Journal of the Electrochemical Society, 2000. 147(5): p. 1718-1721.
    63. Singh, I., et al., Metal-Free “Click” Chemistry: Efficient Polymer Modification via 1,3-Dipolar Cycloaddition of Nitrile Oxides and Alkynes. Macromolecules, 2009. 42(15): p. 5411-5413.
    64. Stallworth, P.E., et al., Lithium-7 NMR and ionic conductivity studies of gel electrolytes based on poly(methylmethacrylate). Electrochimica Acta, 1995. 40(13-14): p. 2137-2141.
    65. Stallworth, P.E., et al., Sodium-23 NMR and complex impedance studies of gel electrolytes based on poly (acrylonitrile). Solid State Ionics, 1994. 73(1–2): p. 119-126.
    66. Stamm, C. and W. Lukosz, Integrated optical difference interferometer as refractometer and chemical sensor. Sensors and Actuators: B. Chemical, 1993. 11(1-3): p. 177-181.
    67. Stankovich, S., et al., Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
    68. Stankovich, S., et al., Stable aqueous dispersions of graphitic nanoplatelets via the reduction of exfoliated graphite oxide in the presence of poly(sodium 4-styrenesulfonate). Journal of Materials Chemistry, 2006. 16(2): p. 155.
    69. Stankovich, S., et al., Synthesis and exfoliation of isocyanate-treated graphene oxide nanoplatelets. Carbon, 2006. 44(15): p. 3342-3347.
    70. Tang, C., et al., High ion conducting polymer nanocomposite electrolytes using hybrid nanofillers. Nano Letters, 2012. 12(3): p. 1152-1156.
    71. Tornøe, C.W., C. Christensen, and M. Meldal, Peptidotriazoles on Solid Phase:  [1,2,3]-Triazoles by Regiospecific Copper(I)-Catalyzed 1,3-Dipolar Cycloadditions of Terminal Alkynes to Azides. The Journal of Organic Chemistry, 2002. 67(9): p. 3057-3064.
    72. Tsavalas, J.G., et al., Living radical polymerization by reversible addition-fragmentation chain transfer in ionically stabilized miniemulsions. Macromolecules, 2001. 34(12): p. 3938-3946.
    73. van Berkel, S.S., et al., Application of Metal-Free Triazole Formation in the Synthesis of Cyclic RGD–DTPA Conjugates. ChemBioChem, 2008. 9(11): p. 1805-1815.
    74. Wang, X.J., et al., Novel composite polymer electrolytes based on poly(ether-urethane) network polymer and modified montmorillonite. Electrochemistry Communications, 2003. 5(12): p. 1025-1029.
    75. Wang, Y.P., et al., Effect of functionalized montmorillonite addition on the thermal properties and ionic conductivity of PVDF-PEG polymer electrolyte. Reactive and Functional Polymers, 2008. 68(7): p. 1170-1177.
    76. Wu, P., et al., Efficiency and Fidelity in a Click-Chemistry Route to Triazole Dendrimers by the Copper(I)-Catalyzed Ligation of Azides and Alkynes. Angewandte Chemie International Edition, 2004. 43(30): p. 3928-3932.
    77. Xu, Y., et al., A graphene hybrid material covalently functionalized with porphyrin: Synthesis and optical limiting property. Advanced Materials, 2009. 21(12): p. 1275-1279.
    78. Yang, X., et al., "clicking" graphite oxide sheets with well-defined polystyrenes: A new Strategy to control the layer thickness. Polymer, 2011. 52(14): p. 3046-3052.
    79. Ye, Y.-S., et al., A new graphene-modified protic ionic liquid-based composite membrane for solid polymer electrolytes. Journal of Materials Chemistry, 2011. 21(28): p. 10448-10453.
    80. Ye, Y.-S., et al., Polytriazole/clay nanocomposites synthesized using in situ polymerization and click chemistry. Polymer, 2010. 51(2): p. 430-436.
    81. Yu, G., et al., Solution-processed graphene/MnO 2 nanostructured textiles for high-performance electrochemical capacitors. Nano Letters, 2011. 11(7): p. 2905-2911.
    82. Zhang, H., S. Kulkarni, and S.L. Wunder, Blends of POSS−PEO(n=4)8 and High Molecular Weight Poly(ethylene oxide) as Solid Polymer Electrolytes for Lithium Batteries. The Journal of Physical Chemistry B, 2007. 111(14): p. 3583-3590.
    83. 李銅進, 「鋰一次電池發展」, in 材料與社會. (1992). p. 第54頁.
    84. 費定國,李桐進,, 鋰電池專題報導, in 能源資源與環境. 第一期79年2月. p. 10頁.
    85. 楊長榮、唐宏怡、張國恩, 高分子鋰二次電池電解質材料介紹, in 工業材料. 1998. p. 93.

    QR CODE