簡易檢索 / 詳目顯示

研究生: 賴姵宇
Pei-Yu Lai
論文名稱: 金屬玻璃鍍層於鋰電池正極鋁集流板之腐蝕特性研究
Investigation of corrosion properties of thin film metallic glasses on cathodic aluminum current collectors in lithium ion batteries
指導教授: 朱瑾
Jinn P. Chu
黃炳照
Bing-Joe Hwang
口試委員: 鄭銘堯
Ming-Yao Cheng
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 137
中文關鍵詞: 雙三氟甲烷磺醯亞胺鋰鋁集流板腐蝕金屬玻璃薄膜類固液界面膜
外文關鍵詞: Lithium bis(trifluoromethane sulfonyl) imide, corrosion, aluminum current collector, thin film metallic glass, solid-electrolyte-interface-like layer
相關次數: 點閱:271下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙三氟甲烷磺醯亞胺鋰(LiTFSI)電解鹽之化學穩定性及熱穩定性優於六氟磷酸鋰(LiPF6)鹽,如作為鋰電池電解液鹽類,不僅可降低電池安全性顧慮,亦可提升電池使用壽命。


    Lithium bis(trifluoromethane sulfonyl) imide (LiTFSI) salt is claimed to be a potential alternative to lithium hexafluorophosphate (LiPF6) since it has greater electrochemical properties such as chemical and thermal stability which may provide benefits of higher safety and longer lifetime of lithium ion batteries (LIBs).

    Table of Contents 摘要 I Abstract II Acknowledgements IV Table of Contents V List of Figures VII List of Tables XII Chapter 1 Introduction 1 1.1 Evolution and Developments of Lithium Batteries 1 1.2 Overview of Metallic Glasses (MGs) 2 1.3 Motivation and Objectives of the Work 3 Chapter 2 Background 5 2.1 Lithium Ion Batteries (LIBs) 5 2.1.1 Working Principles of LIBs 5 2.1.2 Materials for LIBs 8 2.1.3 Corrosion of Al current collectors in LIBs 13 2.2 Thin Film Metallic Glasses (TFMGs) 16 2.2.1 Concepts and Characteristics 16 2.2.2 Anti-corrosion Properties 18 2.2.3 Fabrication of TFMGs – Magnetron Sputtering 22 Chapter 3 Experimental Procedures 24 3.1 Instruments 24 3.2 Materials 25 3.3 Study Methodologies 26 3.3.1 Substrate Preparation 28 3.3.2 Electrolyte Preparation 30 3.3.3 Electrode Preparation 31 3.3.4 2-Electrode System Assembly 34 3.3.5 3-Electrode System Assembly 35 3.4 Materials Characterizations 36 3.4.1 Microstructural Analyses 36 3.4.2 Electrical Resistivity 38 3.4.3 Electrochemical Stability 39 3.4.4 Water Content 41 3.4.5 Crystallographic Characterization 42 3.5 Electrochemical Measurements 43 3.5.1 Electrochemical Resistance 43 3.5.2 Corrosion Behavior 43 3.5.3 Ecorr and Jcorr Determination 44 3.5.4 Charge-Discharge Cycling Performance 44 Chapter 4 Results and Discussion 46 4.1 Effects of TFMGs on the Anti-corrosion Property of Al Substrates 46 4.1.1 Characterizations of Al Current Collectors 46 4.1.1.1 Microstructural Analyses 46 4.1.1.2 Ecorr and Jcorr Determination 52 4.1.2 Corrosion Test Trials 58 4.1.3 Corrosion and Impedance Tests 60 4.1.3.1 Corrosion Behavior 60 4.1.3.2 Electrochemical Resistance 66 4.1.4 Microstructural Analyses after Corrosion 72 4.2 Integration of Cathode Materials with TFMG-Coated Current Collectors 92 4.2.1 Cell System Trials 92 4.2.2 Characterizations of Electrodes 95 4.2.2.1 Microstructure Observation 95 4.2.2.2 Crystallographic Characterization 96 4.2.3 Coin Cell Cycling Performance 97 4.2.3.1 Capacity and Retention 97 4.2.3.2 Electrochemical Resistance 102 4.2.4 Supplementary Tests- Sample Microstructural Analyses after the Corrosion Test within the Electrolyte of an addition of LiPF6 105 4.3 Corrosion Types and Proposed Corrosion Mechanisms 108 4.4 Overall Discussion 112 Chapter 5 Conclusions 114 References 116

    References
    1. WHITTINGHAM, M.S., Electrical Energy Storage and Intercalation Chemistry. Science, 1976. 192(4244): p. 1126-1127.
    2. Keywords to understanding Sony Energy Devices: keyword01-1991. Available from: http://www.sonyenergy-devices.co.jp/en/keyword/.
    3. Huang, J.C., J.P. Chu, and J.S.C. Jang, Recent progress in metallic glasses in Taiwan. Intermetallics, 2009. 17(12): p. 973-987.
    4. Chu, J.P., et al., Thin film metallic glasses: Unique properties and potential applications. Thin Solid Films, 2012. 520(16): p. 5097-5122.
    5. Williard, N., et al., Evaluation of batteries for safe air transport. Energies, 2016. 9(5).
    6. Kanamura, K., et al., Electrochemical behavior of Al current collector of rechargeable lithium batteries in propylene carbonate with LiCF3SO3, Li(CF3SO2)2N, or Li(c4F9SO2)(CF3SO2)N. Journal of the Electrochemical Society, 2002. 149(2): p. A185-A194.
    7. Di Censo, D., I. Exnar, and M. Graetzel, Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries. Electrochemistry Communications, 2005. 7(10): p. 1000-1006.
    8. Li, W. and Y. Oyama, Corrosion protection using protected electron collector. 2005, Google Patents.
    9. Zhao, X. and Y.M. Lin, Corrosion resistant current collector utilizing graphene film protective layer. 2014, Google Patents.
    10. He, X.M., et al., Current collector, electrode of electrochemical battery, and electrochemical battery using the same. 2015, Google Patents.
    11. Chuang, C.-Y., et al., Electrochemical characterization of Zr-based thin film metallic glass in hydrochloric aqueous solution. Thin Solid Films, 2013. 529: p. 338-341.
    12. Tarascon, J.M. and M. Armand, Issues and challenges facing rechargeable lithium batteries. Nature, 2001. 414(6861): p. 359-367.
    13. Battery types used in portable and solar lighting-LEDWATCHER. Available from: http://www.ledwatcher.com/battery-types-used-in-portable-and-solar-lighting/.
    14. How cells work-Johnson Matthey Battery Systems. Available from: http://www.jmbatterysystems.com/technology/cells/how-cells-work.
    15. Harris, S.J. and P. Lu, Effects of Inhomogeneities—Nanoscale to Mesoscale—on the Durability of Li-Ion Batteries. The Journal of Physical Chemistry C, 2013. 117(13): p. 6481-6492.
    16. Xia, H.M., Shirley Y.; Lu, Li; Ceder, Gerbrand. Electrochemical Behavior and Li Diffusion Study of LiCoO₂ Thin Film Electrodes Prepared by PLD. 2007; Available from: http://hdl.handle.net/1721.1/35827.
    17. Takami, T., Functional cobalt oxides: Fundamentals, properties, and applications. Functional Cobalt Oxides: Fundamentals, Properties, and Applications. 2014. 51.
    18. James F. Rohan, M.H., Sanjay Patil, Declan P. Casey and Tomás Clancy ICT - Energy - Concepts Towards Zero - Power Information and Communication Technology. Energy Storage: Battery Materials and Architectures at the Nanoscale. 2014: InTech. 111.
    19. Goriparti, S., et al., Review on recent progress of nanostructured anode materials for Li-ion batteries. Journal of Power Sources, 2014. 257: p. 421-443.
    20. Vetter, J., et al., Ageing mechanisms in lithium-ion batteries. Journal of Power Sources, 2005. 147(1–2): p. 269-281.
    21. Pinsona, M.B. and M.Z. Bazant, Theory of SEI formation in rechargeable batteries: Capacity fade, accelerated aging and lifetime prediction. Journal of the Electrochemical Society, 2013. 160(2): p. A243-A250.
    22. Julien, C., et al., Comparative Issues of Cathode Materials for Li-Ion Batteries. Inorganics, 2014. 2(1): p. 132.
    23. Goodenough, J.B. and Y. Kim, Challenges for Rechargeable Li Batteries. Chemistry of Materials, 2010. 22(3): p. 587-603.
    24. Nitta, N., et al., Li-ion battery materials: present and future. Materials Today, 2015. 18(5): p. 252-264.
    25. Hu, M., X. Pang, and Z. Zhou, Recent progress in high-voltage lithium ion batteries. Journal of Power Sources, 2013. 237: p. 229-242.
    26. Wohlfahrt-Mehrens, M., C. Vogler, and J. Garche, Aging mechanisms of lithium cathode materials. Journal of Power Sources, 2004. 127(1–2): p. 58-64.
    27. Hayner, C.M., X. Zhao, and H.H. Kung, Materials for rechargeable lithium-ion batteries. Annual Review of Chemical and Biomolecular Engineering, 2012. 3: p. 445-471.
    28. Wakihara, M., Recent developments in lithium ion batteries. Materials Science and Engineering: R: Reports, 2001. 33(4): p. 109-134.
    29. Quartarone, E. and P. Mustarelli, Electrolytes for solid-state lithium rechargeable batteries: Recent advances and perspectives. Chemical Society Reviews, 2011. 40(5): p. 2525-2540.
    30. Whitehead, A.H. and M. Schreiber, Current collectors for positive electrodes of lithium-based batteries. Journal of the Electrochemical Society, 2005. 152(11): p. A2105-A2113.
    31. Myung, S.T., Y. Hitoshi, and Y.K. Sun, Electrochemical behavior and passivation of current collectors in lithium-ion batteries. Journal of Materials Chemistry, 2011. 21(27): p. 9891-9911.
    32. Zhang, S.S. and T.R. Jow, Aluminum corrosion in electrolyte of Li-ion battery. Journal of Power Sources, 2002. 109(2): p. 458-464.
    33. Kanamura, K., Anodic oxidation of nonaqueous electrolytes on cathode materials and current collectors for rechargeable lithium batteries. Journal of Power Sources, 1999. 81–82: p. 123-129.
    34. Zhang, S.S., K. Xu, and T.R. Jow, Study of LiBF4 as an electrolyte salt for a Li-ion battery. Journal of the Electrochemical Society, 2002. 149(5): p. A586-A590.
    35. Xu, K., et al., LiBOB as salt for lithium-ion batteries. A possible solution for high temperature operation. Electrochemical and Solid-State Letters, 2002. 5(1): p. A26-A29.
    36. Braithwaite, J.W., et al., Corrosion of Lithium-Ion Battery Current Collectors. Journal of the Electrochemical Society, 1999. 146(2): p. 448-456.
    37. Kramer, E., S. Passerini, and M. Winter, Dependency of aluminum collector corrosion in lithium ion batteries on the electrolyte solvent. ECS Electrochemistry Letters, 2012. 1(5): p. C9-C11.
    38. Behl, W.K. and E.J. Plichta, Stability of aluminum substrates in lithium-ion battery electrolytes. Journal of Power Sources, 1998. 72(2): p. 132-135.
    39. Hyams, T.C., J. Go, and T.M. Devine, Corrosion of aluminum current collectors in high-power lithium-ion batteries for use in hybrid electric vehicles. Journal of the Electrochemical Society, 2007. 154(8): p. C390-C396.
    40. Kühnel, R.-S., et al., Suppression of aluminum current collector corrosion in ionic liquid containing electrolytes. Journal of Power Sources, 2012. 214: p. 178-184.
    41. Kr̈amer, E., et al., Mechanism of anodic dissolution of the aluminum current collector in 1 M LiTFSI EC:DEC 3:7 in rechargeable lithium batteries. Journal of the Electrochemical Society, 2013. 160(2): p. A356-A360.
    42. Terborg, L., et al., Ion chromatographic determination of hydrolysis products of hexafluorophosphate salts in aqueous solution. Analytica Chimica Acta, 2012. 714: p. 121-126.
    43. Myung, S.T., et al., Electrochemical behavior of Al in a non-aqueous alkyl carbonate solution containing LiBOB salt. Journal of Power Sources, 2010. 195(24): p. 8297-8301.
    44. Xu, K., Electrolytes and interphases in Li-ion batteries and beyond. Chemical Reviews, 2014. 114(23): p. 11564.
    45. Armand, M., The history of polymer electrolytes. Solid State Ionics, 1994. 69(3): p. 309-319.
    46. Kalhoff, J., et al., Enabling LiTFSI-based electrolytes for safer lithium-ion batteries by Using linear fluorinated carbonates as (Co)solvent. ChemSusChem, 2014. 7(10): p. 2939-2946.
    47. Song, S.-W., et al., Effect on aluminum corrosion of LiBF4 addition into lithium imide electrolyte; a study using the EQCM. Electrochimica Acta, 2004. 49(9–10): p. 1483-1490.
    48. Wang, X., E. Yasukawa, and S. Mori, Electrochemical behavior of lithium imide/cyclic ether electrolytes for 4 V lithium metal rechargeable batteries. Journal of the Electrochemical Society, 1999. 146(11): p. 3992-3998.
    49. Morita, M., et al., Anodic behavior of aluminum in organic solutions with different electrolytic salts for lithium ion batteries. Electrochimica Acta, 2002. 47(17): p. 2787-2793.
    50. Wang, X., E. Yasukawa, and S. Mori, Inhibition of anodic corrosion of aluminum cathode current collector on recharging in lithium imide electrolytes. Electrochimica Acta, 2000. 45(17): p. 2677-2684.
    51. Dahbi, M., et al., Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage. Journal of Power Sources, 2011. 196(22): p. 9743-9750.
    52. Kawamura, T., et al., Methyl difluoroacetate inhibits corrosion of aluminum cathode current collector for lithium ion cells. Electrochemical and Solid-State Letters, 2005. 8(9): p. A459-A463.
    53. Kühnel, R.S., et al., Mixtures of ionic liquid and organic carbonate as electrolyte with improved safety and performance for rechargeable lithium batteries. Electrochimica Acta, 2011. 56(11): p. 4092-4099.
    54. Matsumoto, K., et al., Suppression of aluminum corrosion by using high concentration LiTFSI electrolyte. Journal of Power Sources, 2013. 231: p. 234-238.
    55. McOwen, D.W., et al., Concentrated electrolytes: Decrypting electrolyte properties and reassessing Al corrosion mechanisms. Energy and Environmental Science, 2014. 7(1): p. 416-426.
    56. Li, Y. and P.S. Fedkiw, Effect of gel electrolytes containing silica nanoparticles on aluminum corrosion. Electrochimica Acta, 2007. 52(7): p. 2471-2477.
    57. Chen, C.J., et al., On the amorphous and nanocrystalline Zr–Cu and Zr–Ti co-sputtered thin films. Journal of Alloys and Compounds, 2009. 483(1–2): p. 337-340.
    58. Liu, Y.H., et al., Deposition of multicomponent metallic glass films by single-target magnetron sputtering. Intermetallics, 2012. 21(1): p. 105-114.
    59. Jia, H., et al., Thin-film metallic glasses for substrate fatigue-property improvements. Thin Solid Films, 2014. 561: p. 2-27.
    60. Tsai, P.H., et al., Sharpness improvement of surgical blade by means of ZrCuAlAgSi metallic glass and metallic glass thin film coating. Intermetallics, 2012. 31: p. 127-131.
    61. Chu, J.P., et al., Fabrication and characterizations of thin film metallic glasses: Antibacterial property and durability study for medical application. Thin Solid Films, 2014. 561: p. 102-107.
    62. Li, Z., C. Zhang, and L. Liu, Wear behavior and corrosion properties of Fe-based thin film metallic glasses. Journal of Alloys and Compounds, 2015. 650: p. 127-135.
    63. Liu, F.X., et al., Fatigue-resistance enhancements by glass-forming metallic films. Materials Science and Engineering: A, 2007. 468–470: p. 246-252.
    64. Chang, Y.Z., et al., Zr-based metallic glass thin film coating for fatigue-properties improvement of 7075-T6 aluminum alloy. Thin Solid Films, 2013. 544: p. 331-334.
    65. Diyatmika, W., et al., Thin film metallic glasses in optoelectronic, magnetic, and electronic applications: A recent update. Current Opinion in Solid State and Materials Science, 2015. 19(2): p. 95-106.
    66. Ningshen, S., et al., Corrosion behavior of Zr-based metallic glass coating on type 304L stainless steel by pulsed laser deposition method. Surface and Coatings Technology, 2011. 205(15): p. 3961-3966.
    67. Chu, C.W., et al., Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process. Thin Solid Films, 2009. 517(17): p. 4930-4933.
    68. Deng, Y.-L., et al., The fabrication and property evaluation of Zr–Ti–B–Si thin film metallic glass materials. Surface and Coatings Technology, 2014. 259, Part B: p. 115-122.
    69. Subramanian, B., et al., Fabrication of amorphous Zr48Cu36Al 8Ag8 thin films by ion beam sputtering and their corrosion behavior in SBF for bio implants. Journal of Alloys and Compounds, 2013. 572: p. 163-169.
    70. Bhattacharya, R.S., A.K. Rai, and P.P. Pronko, Corrosion behavior of amorphous TiNi films fabricated by ion beam mixing. Materials Letters, 1984. 2(6): p. 483-486.
    71. Draper, C.W., et al., Microstructure and behavior of laser-mixed Cr/Ni films on Cu alloys. Journal of Materials Research, 1987. 2(1): p. 35-45.
    72. Wang, A.P., et al., Preparation and corrosion behaviour of amorphous Ni-based alloy coatings. Materials Science and Engineering: A, 2007. 449–451: p. 277-280.
    73. Wu, Z.F., et al., Thickness-dependent pitting corrosion behavior in Ni-Nb thin film metallic glass. Thin Solid Films, 2014. 564: p. 294-298.
    74. Zhang, B., Y.G. Chen, and H.B. Guo, Effects of annealing on structures and properties of Cu-Hf-Al amorphous thin films. Journal of Alloys and Compounds, 2014. 582: p. 496-499.
    75. Chen, L.T., et al., Microstructure, mechanical and anti-corrosion property evaluation of iron-based thin film metallic glasses. Surface and Coatings Technology, 2014. 260: p. 46-55.
    76. Wang, Y., et al., Passivation behavior of Fe-based amorphous metallic coating IN NaCl and H2SO4 solutions. Jinshu Xuebao/Acta Metallurgica Sinica, 2015. 51(1): p. 49-56.
    77. Reichelt, K. and X. Jiang, The preparation of thin films by physical vapour deposition methods. Thin Solid Films, 1990. 191(1): p. 91-126.
    78. Kelly, P.J. and R.D. Arnell, Magnetron sputtering: a review of recent developments and applications. Vacuum, 2000. 56(3): p. 159-172.
    79. Physical Vapor Deposition, in The Materials Science of Semiconductors. 2008, Springer US: Boston, MA. p. 526.
    80. Harsha, K.S.S., Principles of Vapor Deposition of Thin Films. 2006, Elsevier Science. p. 594-595.
    81. Sputtering Power Supply-Angstrom Sciences. Available from: http://www.angstromsciences.com/sputtering-power-supply.
    82. Matthew M. Waite, S.I.S., David A. Glocker. SVC Bulletin Back Issues-2010. Sputtering Sources, p. 42-43; Available from: http://www.svc.org/Publications/SVC-Bulletin-Back-Issues.cfm.
    83. Erich Bergmann, D.R. Corrosion protection with «perfect» atomic layers. 2013; Available from: http://www.polymedia.ch/OpArticles/view/57.
    84. MacLeod, S.K., Moisture determination using Karl Fischer titrations. Analytical Chemistry, 1991. 63(10): p. 557A-566A.
    85. Kang, S., et al., Enhancing performance of a lithium ion battery by optimizing the surface properties of the current collector. International Journal of Electrochemical Science, 2015. 10(3): p. 2324-2335.
    86. Dollé, M., et al., Development of Reliable Three-Electrode Impedance Measurements in Plastic Li-Ion Batteries. Journal of the Electrochemical Society, 2001. 148(8): p. A851-A857.
    87. An, S.J., et al., The state of understanding of the lithium-ion-battery graphite solid electrolyte interphase (SEI) and its relationship to formation cycling. Carbon, 2016. 105: p. 52-76.
    88. Mun, J., et al., Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature. Journal of the Electrochemical Society, 2011. 158(5): p. A453-A457.
    89. N. L. Sukiman, X.Z., N. Birbilis, A.E. Hughes, J. M. C. Mol, S. J. Garcia, X. Zhou and G. E. Thompson, Durability and Corrosion of Aluminium and Its Alloys: Overview, Property Space, Techniques and Developments, in Aluminium Alloys - New Trends in Fabrication and Applications, Z. Ahmad, Editor. 2012, InTech. p. 59.
    90. Musa, A.Y., Corrosion Protection of Al Alloys: Organic Coatings and Inhibitors, in Recent Researches in Corrosion Evaluation and Protection, R.S. Razavi, Editor. 2012, InTech. p. 54.
    91. Kanamura, K., W. Hoshikawa, and T. Umegaki, Electrochemical characteristics of LiNi0.5Mn1.5O4 cathodes with Ti or Al current collectors. Journal of the Electrochemical Society, 2002. 149(3): p. A339-A345.

    QR CODE