簡易檢索 / 詳目顯示

研究生: 李東翰
Tung-Han Lee
論文名稱: 微弧氧化以不同電壓及時間運用於鈦鐵複合材料表面改質之研究
Study on Surface Modification of Titanium-Iron Composites by Micro-arc Oxidation with Different Voltages and Time.
指導教授: 黃昌群
Chang-Chiun Huang
口試委員: 郭中豐
湯燦泰
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2019
畢業學年度: 107
語文別: 中文
論文頁數: 111
中文關鍵詞: 微弧氧化複合塗層熱熔射噴塗耐磨性耐蝕性
外文關鍵詞: micro-arc oxidation, composite coatings, thermal sprayed, titanium, wear resistance, corrosion resistance
相關次數: 點閱:216下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 材料表面改質技術的開發對於提高在鋼鐵、化學、車輛和航太等工業材料的耐蝕性及耐磨性至關重要。本研究中,我們開發了一種複合塗層,先以熱噴塗法在AISI 1020低碳鋼基材上噴塗一層鈦金屬,再以微弧氧化法於鈦上生長出二氧化鈦氧化膜層。本實驗藉由改變微弧氧化時的放電電壓及微弧時間,並分析氧化膜膜厚、硬度、耐磨耗及耐腐蝕性能的影響。
    以微弧氧化所生成之氧化膜在X射線繞射儀(XRD)分析下,均有二氧化鈦之金紅石相。從掃描式電子顯微鏡(SEM)分析圖中發現,二氧化鈦氧化膜表面的孔洞數量會隨著微弧時間增加而減少,但孔洞尺寸會隨著微弧時間增加而變大。厚度在固定時間,電壓增加時,其厚度會增加;而當固定電壓,增加時間時,厚度也會提升約三到四倍。從耐磨耗看來,微弧時間為15 min時,二氧化鈦氧化膜層的磨穿距離皆比10 min提升約10倍,當中又以電壓為350 V最佳。而耐腐蝕性則是微弧時間10 min時較佳,是因為二氧化鈦氧化膜層表面的孔洞雖然變少了,但是孔洞的孔徑變大,導致腐蝕液更容易從孔洞流進陶瓷氧化膜層內部,使其腐蝕能力降低。


    The development of material surface modification technology is essential to improve the corrosion resistance and wear resistance of industrial materials such as steel, chemicals, vehicles and aerospace. In this study, we presented a coating technique for AISI 1020 steel on which there is a thermal-sprayed titanium layer and layer of TiO2 grows by micro-arc oxidation. At the same time, by changing the discharge voltages and micro-arc time during micro-arc oxidation, we investigated thickness, hardness, the wear and corrosion resistance effect of the oxide film.
    The oxide film formed by micro-arc oxidation has a rutile phase of titanium dioxide under XRD analysis. From the SEM analysis, we found that the number of holes on the surface of the TiO2 film layer decreases as the micro-arc time increases, but the holes size increases as the micro-arc time increases. When the micro-arc time is fixed, the thickness will be increase when the voltage is increased; and when the voltage is fixed and the time is increased, the thickness will increase to become triple to quadruple. For the wear resistance, when the micro-arc time is 15 min, the wear-through distance of the TiO2 film layer is increased to ten times higher than 10 min., and the voltage 350 V gives the best wear resistense results. Corrosion resistance is better when the micro-arc time is 10 min Because the number of holes on the surface of the TiO2 film layer is reduced and the hole size becomes large. As a result, the etching liquid can easily flow from the holes into the ceramic oxide film layer, there reducing the corrosion ability.

    目錄 摘要 I ABSTRACT II 誌謝 IV 目錄 VI 圖目錄 X 表目錄 XIII 第1章 緒論 1 1.1 前言 1 1.2 研究動機與目的 3 第2章 研究背景與文獻回顧 5 2.1 鋼鐵簡介 5 2.2 鈦及二氧化鈦結構 6 2.2.1 鈦的性質及應用 6 2.2.2 二氧化鈦晶體結構與特性[31] 6 2.3 熱噴塗技術 10 2.3.1 熱噴塗技術發展歷史[32] 10 2.3.2 熱噴塗技術原理 11 2.3.3 熱噴塗材料[33] 13 2.3.4 熱噴塗技術類別[34] 15 2.3.5 熱噴塗鈦技術應用及運用於複合材料塗層 18 2.4 微弧氧化 20 2.4.1 微弧氧化發展歷史 21 2.4.2 微弧氧化之膜層生長過程 22 2.4.3 微弧氧化之膜層結構及成份分析 23 2.4.4 微弧氧化之電壓電流特性 25 2.4.5 微弧氧化之電解液選擇 27 2.4.6 微弧氧化與陽極處理比較 28 2.4.7 微弧氧化隨放電電壓改變 29 2.4.8 微弧氧化隨時間改變 29 2.4.9 微弧氧化於複合材料塗層之應用 30 第3章 實驗設計與方法 31 3.1 實驗流程 31 3.2 微弧氧化前置作業 35 3.2.1 試片尺寸與製備 35 3.2.2 熱熔射噴塗鈦作業 35 3.2.3 表面封孔及試片製作 36 3.2.4 電解液調配 39 3.2.5 微弧氧化處理 39 3.3 實驗參數 41 3.4 材料分析 42 3.4.1 掃描式電子顯微鏡(SEM)分析 42 3.4.2 能量散射光譜儀(EDS)分析 43 3.4.3 膜厚分析 43 3.4.4 X射線繞射儀(XRD)分析 44 3.4.5 硬度分析 45 3.4.6 耐磨耗測試(TRB球磨機) 46 3.4.7 腐蝕電位分析(電化學)[52] 48 第4章 實驗結果與分析 52 4.1 二氧化鈦薄膜之表面形貌 55 4.2 二氧化鈦薄膜之成份形貌 63 4.3 二氧化鈦薄膜之膜厚分析 66 4.4 二氧化鈦薄膜之硬度分析 68 4.4.1 電壓與時間比較 68 4.4.2 鈦及低碳鋼與經過微弧氧化後膜層比較 71 4.5 二氧化鈦薄膜之耐磨耗分析 73 4.5.1 電壓與時間比較 73 4.5.2 鈦與經過微弧氧化後膜層比較 79 4.6 二氧化鈦薄膜之耐腐蝕特性分析 81 4.6.1 電壓與時間比較 81 4.6.2 鈦與經過微弧氧化後膜層比較 85 第5章 結論 87 參考文獻 89

    [1] H. Y. Wang, R. F. Zhu, Y. P. Lu, G. Y. Xiao, X. N. Ma, and Y. Li, Structures and properties of layered bioceramic coatings on pure titanium using a hybrid technique of sandblasting and micro-arc oxidation, Applied Surface Science. 282 (2013) 271-280.
    [2] A. Salman, B. L. Gabbitas, P. Cao, and D. L. Zhang, The performance of thermally sprayed titanium based composite coatings in molten aluminum, Surface and Coatings Technology. 205 (2011) 5000-5008.
    [3] K. Ishikawa, T. Suzuki, Y. Kitamura, and S. Tobe, Corrosion resistance of thermal sprayed titanium coatings in chloride solution, Journal of Thermal Spray Technology. 8 (1999) 273-278.
    [4] S. D. Cramer, B. S. Covino, Jr., G. R. Holcomb, S. J. Bullard, W. K. Collins, R. D. Govier, R. D. Wilson, and H. M. Laylor, Thermal sprayed titanium anode for cathodic protection of reinforced concrete bridges, Journal of Thermal Spray Technology. 8 (1999) 133-145.
    [5] H. R. Wang, W. Y. Li, L. Ma, J. Wang, and Q. Wang, Corrosion behavior of cold sprayed titanium protective coating on 1Cr13 substrate in seawater, Surface and Coatings Technology. 201 (2007) 5203-5206.
    [6] S. Thongtem, P. Jentrakul, and T. Thongtem, High temperature gas nitridation of thermally sprayed coatings of Ti and Ti containing Ni5Al5Mo, Journal of Materials Processing Technology. 174 (2006) 218-222.
    [7] J. M. Guilemany, J. M. Miguel, S. Vizcaiino, C. Lorenzana, J. Delgado, and J. Sànchez, Role of heat treatments in the improvement of the sliding wear properties of Cr3C2-NiCr coatings, Surface and Coatings Technology. 157 (2002) 207-213.
    [8] J. H. Wang, M. H. Du, F. Z. Han, and J. Yang, Effects of the ratio of anodic and cathodic currents on the characteristics of micro-arc oxidation ceramic coatings on Al alloys, Applied Surface Science. 292 (2014) 658-664.
    [9] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Plasma electrolysis for surface engineering, Surface and Coatings Technology. 122 (1999) 73-93.
    [10] M. Mu, X. Zhou, Q. Xiao, J. Liang, and X. Huo, Preparation and tribological properties of self-lubricatingTiO2/graphite composite coating on Ti–6Al–4V alloy, Applied Surface Science. 258 (2012) 8570-8576.
    [11] A. Sova, D. Pervushin, and I. Smurov, Development of multimaterial coatings by cold spray and gas detonation spraying, Surface and Coatings Technology. 205 (2010) 1108-1114.
    [12] A. Alsaran, G. Purcek, I. Hacisalihoglu, Y. Vangolu, Ö. Bayrak, I. Karaman, and A. Celik, Hydroxyapatite production on ultrafine-grained pure titanium by micro-arc oxidation and hydrothermal treatment, Surface and Coatings Technology. 205 (2011) S537-S542.
    [13] V. Shoaei-Rad, M. R. Bayati, F. Golestani-Fard, H. R. Zargar, and J. Javadpour, Fabrication of ZrO2–Al2O3 hybrid nano-porous layers through micro arc oxidation process, Material Letters. 65 (2011) 1835-1838.
    [14] L. Rama Krishna, A. Sudha Purnima, and G. Sundararajan, A comparative study of tribological behavior of microarc oxidation and hard-anodized coatings, Wear. 261 (2006) 1095-1101.
    [15] J. H. Wang , J. Wang, Y. Lu, M. H. Du, and F. Z. Han, Effects of single pulse energy on the properties of ceramic coating prepared by micro-arc oxidation on Ti alloy, Applied Surface Science. 324 (2015) 405-413.
    [16] Y. M. Wang, B. L. Jiang, L. X. Guo, and T. Q. Lei, Tribological behavior of microarc oxidation coatings formed on titanium alloys against steel in dry and solid lubrication sliding, Applied Surface Science. 252 (2006) 2989-2998.
    [17] R.O. Hussein, X. Nie, and D. O. Northwood, A spectroscopic and microstructural study of oxide coatings produced on a Ti-6Al-4V alloy by plasma electrolytic oxidation, Materials Chemistry and Physics. 134 (2012) 484-492.
    [18] A. L. Yerokhin, L. O. Snizhko, N. L. Gurevina, A. Leyland, A. Pilkington, and A. Matthews, Discharge characterization in plasma electrolytic oxidation of aluminium, Journal of Physics D: Applied Physics. 36 (2003) 2110.
    [19] X. Sun, Z. Jiang, S. Xin, and Z. Yao, Composition and mechanical properties of hard ceramic coating containing α-Al2O3 produced by microarc oxidation on Ti-6Al-4V alloy, Thin Solid Films. 471 (2005) 194-199.
    [20] X. Liu, P. K. Chu, and C. Ding, Surface modification of titanium, titanium alloys, and related materials for biomedical applications, Materials Science and Engineering: R: Reports. 47 (2004) 49-121.
    [21] H. W. Kim, Y. H. Koh, L. H. Li, S. Lee, and H. E. Kim, Hydroxyapatite coating on titanium substrate with titania buffer layer processed by sol-gel method, Biomaterials. 25 (2004) 2533-2538.
    [22] P. Shi, B. Niu, S. E, Y. Chen, and Q. Li, Preparation and characterization of PLA coating and PLA/MAO composite coatings on AZ31 magnesium alloy for improvement of corrosion resistance, Surface and Coatings Technology. 262 (2015) 26-32.
    [23] B. Niu, P. Shi, S. E, Y. Chen, and Q. Li, Preparation and characterization of HA sol-gel coating on MAO coated AZ31 alloy, Surface and Coatings Technology. 286 (2016) 42-48.
    [24] N. Ao, D. Liu, S. Wang, Q. Zhao, and X. Zhang, Microstructure and tribological behavior of a TiO2/hBN composite ceramic coating formed via micro-arc oxidation of Ti-6Al-4V Alloy, Journal of Materials Science and Technology. 32 (2016) 1071-1076.
    [25] J. Jin, X. H. Li, J. W. Wu, and B. Y. Lou, Improving tribological and corrosion resistance of Ti6Al4V alloy by hybrid microarc oxidation/enameling treatments, Rare Metals. 37 (2018) 26-34.
    [26] S. A. Ulasevich, A. I. Kulak, S. K. Poznyak, S. A. Karpushenkov, A. D. Lisenkov, and E. V. Skorb, Deposition of hydroxyapatite-incorporated TiO2 coating on titanium using plasma electrolytic oxidation coupled with electrophoretic deposition, RSC Advanced. 6 (2016) 62540-62544.
    [27] M. Daroonparvar, M. A. M. Yajid, N. M. Yusof, H. R. B. Shi-Rad, E. Hamzah, and T. Mardanikivi, Deposition of duplex MAO layer/nanostructured titanium dioxide composite coatings on Mg-1% Ca alloy using a combined technique of air plasma spraying and micro arc oxidation, Journal of Alloys and Compounds. 649 (2015) 591-605.
    [28] C. H. Chang, M. C. Jeng, C. Y. Su, and C. L. Chang, An investigation of thermal sprayed aluminum/hard anodic composite coating on wear and corrosion resistant performance, Thin Solid Films 517 (2009) 5265-5269.
    [29] S. Durdu, S. L. Aktuğ, K. Korkmaz, Characterization, and mechanical properties of the duplex coatings produced on steel by electro-spark deposition and micro-arc oxidation, Surface and Coatings Technology. 236 (2013) 303-308.
    [30] 洪胤庭(2013)。純鈦及鈦合金特性及製程介紹。中工高雄會刊,第21卷 第1期。中鋼公司新材料研究發展處。
    [31] 王文裕,王竣仟,吳逢彬,曾霈軒,戴愷含,黃建民(2011)。煅燒溫度對二氧化鈦光電催化降解染料之影響。環境工程與管理系,雲林:朝陽科技大學。
    [32] 陳志浩(2014)。水輪機水流面硬化處理以延長機組大修週期及增加發電效益實習。台灣電力公司青山施工處。
    [33] 溶射協會編:《溶射便覧》(1964)。日刊工業新聞社。東京。
    [34] 魏嘉志(2011)。以熔射塗層方式製作染料敏化太陽能電池。國立交通大學理學院 應用科技學程研究所論文,未出版,新竹市。
    [35] 鄭銘章,詹博傑,李世宏,張家華(2010)。熱熔射鈦基塗層之製程及磨潤特性研究。國立中央大學機械工程學系,桃園市。
    [36] L. R. Krishna, A. S. Purnima, N. P. Wasekar, and G. Sundararajan, Kinetics and properties of micro arc oxidation coatings deposited on commercial Al alloys, Metallurgical and Materials Transactions A 38 (2007) 370-378
    [37] R. Arrabal, E. Matykina, T. Hashimoto, P. Skeldon, and G.E. Thompson, Characterization of AC PEO coatings on magnesium alloys, Surface and Coatings Technology. 203 (2009) 2207-2220.
    [38] W. McNiell, and L. L. Gruss, Anodic spark reaction processes and articles, US Patent 3293158 (1966).
    [39] Y. Han, S. H. Hong, and K. W. Xu, Porous nanocrystalline titania films by plasma electrolytic oxidation, Surface and Coatings Technology 154 (2002) 314-318.
    [40] A. L. Yerokhin, X. Nie, A. Leyland, A. Matthews, and S. J. Dowey, Plasma electrolysis for surface engineering, Surface and Coatings Technology 122 (1999) 73-93.
    [41] G. Sundararajan, and L. Rama Krishna, Mechanism underlying the formation of thick alumina coating through the MAO coating technology, Surface and Coatings Technology. 167 (2003) 269-277.
    [42] 劉榮明,郭峰,張妍,李鵬飛(2007)。內蒙古工業大學學報,26,頁101-104。
    [43] S. G. Xin, L. X. Song, R. G. Zhao, and X. F. Hu, Properties of aluminium oxide coating on aluminium alloy produced by micro-arc oxidation, Surface and Coatings Technology. 199 (2005) 184-188.
    [44] Y. Liu, J. Xiu, Y. Gao, Y. Yuan, and C. Gao, Influences of additive on the formation and corrosion resistance of micro-arc oxidation ceramic coating on aluminum alloy, Physics Prodecia. 32 (2012) 107-112.
    [45] P. Wang, T. Wu, X. Y. Guo, and Y. Peng, Effects of current density on the properties of micro-arc oxidation coatings formed on aluminum alloy in Silicate-Na2MoO4 electrolyte, Materials Science Forum. 814 (2015) 398-403.
    [46] 薛涵覺(2010)。微弧氧化生長銳鈦礦氧化鈦薄膜於鈦金屬板之研究及其光觸媒效能之研究。國立台北科技大學材料科學與工程研究所碩士論文,未出版,台北市。
    [47] S. Cheng, D. Wei, and Y. Zhou, The effect of oxidation time on the micro-arc titanium dioxide surface coating containing Si,Ca and Na, Applied Surface Science. 27 (2012) 713-717
    [48] Z. Wu, Y. Xia, G. Li, and F. Xu, Structure and mechanical properties of ceramic coatings fabricatedby plasma electrolytic oxidation on aluminized steel, Applied Surface Science. 253 (2007) 8398-8403.
    [49] Y. L. Wong, Z. H. Jiang, X. R. Liu, and Z. P. Yao, Influence of treating frequency on microstructure and properties of Al2O3 coating on 304 stainless steel by cathodic plasma electrolytic deposition, Applied Surface Science. 255 (2009) 8836-8840.
    [50] 張帆(2014)。微弧氧化對純鋁及熱浸鍍鋁低碳鋼表面改質之影響。國立台灣科技大學機械工程研究所碩士論文,台北(2014).
    [51] 陳宥任,熱浸鍍鋁中碳鋼之微弧氧化鍍膜特性分析,國立台灣科技大學機械工程研究所,碩士學位論文,未出版,台北市。
    [52] 楊聰仁。腐蝕電化學分析。材料基礎實驗(二)腐蝕電化學實驗。台中:逢甲大學。
    [53] F. J. Mecuson, T. Czerwiec, G. Henrion, T. Belmonte, L. Duiardin, A. Viola, and J. Beauvir, Tailored aluminium oxide layers by bipolar current adjustment in the Plasma Electrolytic Oxidation (PEO) process, Surface and Coatings Technology. 201 (2007) 8677-8682.
    [54] 楊尊越(2018)。探討純鈦在不同微弧氧化時間對耐腐蝕性質之研究。國立台灣科技大學機械工程研究所碩士論文,未出版,台北市。
    [55] Z. Xing, P. F. Zhai, J. Zhang, and X. Zhang, Study on the surface carburization of low-carbon steel and its wear-resisting property, Shanaci Agricultural University, Natural Science Edition 32 (2012) 81-85.
    [56] 熱噴塗介紹。台灣柯敏科技股份有限公司,取自http://www.versa-tech.com.tw/.
    [57] 曾國輝,李九龍。鋁合金微弧氧化陶瓷膜層性質之研究。桃園市:龍華科技大學化工與材料工程系。
    [58] 韓傑閣,陳蔚澤,張浩(2018)。鈦合金表面耐磨性能及抗氧化性能的研究現狀。湖北省武漢市:華中科技大學材料成型與模具設計國家重點實驗室。

    無法下載圖示 全文公開日期 2024/08/13 (校內網路)
    全文公開日期 2024/08/13 (校外網路)
    全文公開日期 2024/08/13 (國家圖書館:臺灣博碩士論文系統)
    QR CODE