簡易檢索 / 詳目顯示

研究生: 吳承威
Cheng-Wei Wu
論文名稱: A位址陽離子比例對鈣鈦礦太陽能電池 遲滯效應的影響
The Influence of A Site Cation Ratio on The Hysteresis of Perovskite Solar Cell
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 190
中文關鍵詞: 氧化錫氯化銨介面修飾甲脒遲滯效應
外文關鍵詞: tin oxide, ammonium chloride, interfacial passivation, formamidine, hysteresis effect
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用一步法旋塗有機-無機混合鹵素鈣鈦礦前驅溶液製備鈣鈦礦太陽能電池,並使用高電子遷移率、化學穩定性佳、穿透度高、可低溫製備的氧化錫作為電子傳輸層。在此氧化錫電子傳輸層的結構設計上,利用溶膠-凝膠法與商售氧化錫膠體分散液製備雙層氧化錫結構層,作為電子傳輸層進行相關研究探討。首先,為了改善金屬氧化錫電子傳輸層與甲基碘鉛鈣鈦礦間異質接面的問題,添加氯化銨在氧化錫膠體分散液內,藉此修飾氧化錫與鈣鈦礦層間的接面性質,光電轉換效率可達14.76 %且遲滯因子降低至0.24。接著,為了探討鈣鈦礦太陽能電池在量測時所觀察到的遲滯效應,在本研究中藉由改變鈣鈦礦結構中A位址陽離子甲胺與甲脒比例構成太陽能電池的吸光層。在甲脒為主的鈣鈦礦吸光層所製備的太陽能電池,載子傳輸效果提升並降低在結合機率,因此,遲滯因子降低至0.05,光電轉換效率至15.34 %。最後,探討在甲脒為主的鈣鈦礦吸光層中添加甲基氯化胺,藉此增大鈣鈦礦晶粒,光電轉換效率提升至16.71 %,遲滯因子為0.076;若共同添加甲基氯化胺與氯化銫,可同時增大鈣鈦礦晶粒並降低碘化鉛殘留,提升元件開路電壓與填充因子,將光電轉換效率提升至18.18%,遲滯因子0.073。


    In this study, organic-inorganic hybrid perovskite solar cells (OIH-PSCs) were fabricated by one-step solution process. Tin oxide (SnO2) was used as the electron transport layer (ETL) due to its high electron mobility, good chemical stability, high light transmittance, and low temperature fabrication process. Herein, a sol-gel method and a commercial tin oxide colloidal solution were employed to prepare tin oxide bi-layer as ETL for studying solar cell performance. Firstly, inorganic ammonium chloride (NH4Cl) was added into tin oxide colloid solution to passivate the heterojunction properties between tin oxide ETL and methyammonium lead triiodide perovskite layer. In addition, ammonium chloride (NH4Cl) was added to increase average perovskite grain size and to reduce the trap densities. The power conversion efficiency (PCE) of OIP-PSC could achieve 14.76%. and the hysteresis index (HI) could reduce to 0.24. In the next, the ratio of methylamine (MA) to formamidine (FA) in the A-site of perovskite structure was studied for discussion the hysteresis behavior during performance analysis, According to analysis results, formamidine-rich perovskite light-harvesting solar cells, owned high carrier transport property and low recombination rate. Therefore, the HI and PCE of OIH-PSCs could achieve 0.05 and 15.34%, respectively. Finally, methylamine chloride (MACl) was added into formamidine-rich perovskite to increase the perovskite grain size furthermore. The PCE and HI could achieve 16.71 % and 0.076. When MACl and the cesium chloride (CsCl) were co-added into formamidine-rich perovskite layer, perovskite grain size could be enlarged and residual lead iodide (PbI2) could be reduced for enhancing the open-circuit voltage (Voc) and fill factor (FF) of OIH-PSCs. The PCE and HI could improve as 18.18 % and 0.073.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 3 第二章、 理論基礎與文獻回顧 5 2-1 半導體簡介 5 2-1-1 半導體特性 5 2-1-2 p-n接面(p-n junction) 7 2-2 鈣鈦礦材料 9 2-2-1 鈣鈦礦結構 9 2-2-2 鈣鈦礦之能隙調控工程 12 2-2-3 鈣鈦礦結構與相變溫度關係 15 2-3 遲滯效應 19 2-3-1 鈣鈦礦內部缺陷 21 2-3-2 鐵電效應 23 2-3-3 離子遷移 26 2-4 SnO2材料優勢及結構應用 30 2-4-1 電子傳輸材料SnO2與TiO2之差異 30 2-4-2 平面結構 34 2-4-3 介孔結構 35 2-5 SnO2層製備方式 39 2-5-1 原子層沉積法(Atomic layer deposition,ALD) 39 2-5-2 化學浴沉積法(Chemical bath deposition,CBM) 41 2-5-3 溶液旋塗法 42 2-5-4 SnO2層之退火溫度影響 43 2-6 SnO2與鈣鈦礦之介面修飾 46 2-6-1 自組裝單分子層 46 2-6-2 高分子修飾 48 2-6-3 有機與無機化合物添加 49 2-7 鈣鈦礦吸光層探討 51 第三章、 實驗方法與步驟 54 3-1 實驗流程 54 3-2 實驗藥品與儀器設備 55 3-2-1 實驗藥品 55 3-2-2 實驗設備 58 3-2-3 分析儀器 61 3-3 實驗步驟 72 3-3-1 蝕刻及清洗基板並定義工作面積 72 3-3-2 二氧化錫溶膠-凝膠層及奈米結構層製備 73 3-3-3 鈣鈦礦層製備 74 3-3-4 電洞傳輸層製備 77 3-3-5 熱蒸鍍銀電極 78 第四章、 結果與討論 80 4-1 以SnO2為電子傳輸層進行鈣鈦礦太陽能電池之研究 80 4-1-1 SnO2電子傳輸層進行鈣鈦礦太陽能電池之最佳製程條件探討 80 4-1-2 探討添加NH4Cl至SnO2層對鈣鈦礦太陽能電池效能之影響 89 4-2 探討FA陽離子對鈣鈦礦太陽能電池效能之影響 108 4-3 探討不同氯離子對鈣鈦礦太陽能電池效能之影響 122 4-3-1 探討添加MACl對鈣鈦礦太陽能電池效能之影響 122 4-3-2 探討共同添加MACl與CsCl對鈣鈦礦太陽能電池效能之影響 132 第五章、 結論 144 第六章、 參考文獻 146

    1. S. Nalley and A. LaRose, U.S Energy Imformation Administration, Annual Energy Outlook (2021).
    2. Best Research-Cell Efficiency Chart, National Renewable Energy Laboratory (2021).
    3. S. A. Kulkarni, T. Baikie, P. P. Boix, N. Yantara, N. Mathews and S. Mhaisalkar, Band-Gap Tuning of Lead Halide Perovskites Using a Sequential Deposition Process, Journal of Materials Chemistry A 2 (24), 9221-9225 (2014).
    4. G. E. Eperon, S. D. Stranks, C. Menelaou, M. B. Johnston, L. M. Herz and H. J. Snaith, Formamidinium Lead Trihalide: A Broadly Tunable Perovskite for Efficient Planar Heterojunction Solar Cells, Energy Environmental Science 7 (3), 982-988 (2014).
    5. J. H. Noh, S. H. Im, J. H. Heo, T. N. Mandal and S. I. Seok, Chemical Management for Colorful, Efficient, and Stable Inorganic-Organic Hybrid Nanostructured Solar Cells, Nano Letters 13 (4), 1764-1769 (2013).
    6. S. De Wolf, J. Holovsky, S.-J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.-J. Haug, J.-H. Yum and C. Ballif, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and its Relation to Photovoltaic Performance, The Journal of Physical Chemistry Letters 5 (6), 1035-1039 (2014).
    7. S. D. Stranks, G. E. Eperon, G. Grancini, C. Menelaou, M. J. Alcocer, T. Leijtens, L. M. Herz, A. Petrozza and H. J. Snaith, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science 342 (6156), 341-344 (2013).
    8. J. Yang, B. D. Siempelkamp, E. Mosconi, F. De Angelis and T. L. Kelly, Origin of the Thermal Instability in CH3NH3PbI3 Thin Films Deposited on ZnO, Chemistry of Materials 27 (12), 4229-4236 (2015).
    9. Y. Cheng, Q.-D. Yang, J. Xiao, Q. Xue, H.-W. Li, Z. Guan, H.-L. Yip and S.-W. Tsang, Decomposition of Organometal Halide Perovskite Films on Zinc Oxide Nanoparticles, ACS Applied Materials & Interfaces 7 (36), 19986-19993 (2015).
    10. T. Leijtens, G. E. Eperon, S. Pathak, A. Abate, M. M. Lee and H. J. Snaith, Overcoming Ultraviolet Light Instability of Sensitized TiO2 with Meso-Superstructured Organometal Tri-Halide Perovskite Solar Cells, Nature communications 4 (1), 1-8 (2013).
    11. B. Roose, J.-P. C. Baena, K. C. Gödel, M. Graetzel, A. Hagfeldt, U. Steiner and A. Abate, Mesoporous SnO2 Electron Selective Contact Enables UV-Stable Perovskite Solar Cells, Nano Energy 30, 517-522 (2016).
    12. P. Tiwana, P. Docampo, M. B. Johnston, H. J. Snaith and L. M. Herz, Electron Mobility and Injection Dynamics in Mesoporous ZnO, SnO2, and TiO2 Films Used in Dye-Sensitized Solar Cells, ACS Nano 5 (6), 5158-5166 (2011).
    13. A. F. Khan, M. Mehmood, M. Aslam and M. Ashraf, Characteristics of Electron Beam Evaporated Nanocrystalline SnO2 Thin Films Annealed in Air, Applied Surface Science 256 (7), 2252-2258 (2010).
    14. W. Ke, G. Fang, Q. Liu, L. Xiong, P. Qin, H. Tao, J. Wang, H. Lei, B. Li and J. Wan, Low-Temperature Solution-Processed Tin Oxide as an Alternative Electron Transporting Layer for Efficient Perovskite Solar Cells, Journal of the American Chemical Society 137 (21), 6730-6733 (2015).
    15. S. Lin, B. Yang, X. Qiu, J. Yan, J. Shi, Y. Yuan, W. Tan, X. Liu, H. Huang and Y. Gao, Efficient and Stable Planar Hole-Transport-Material-Free Perovskite Solar Cells Using Low Temperature Processed SnO2 as Electron Transport Material, Organic Electronics 53, 235-241 (2018).
    16. S.-H. Turren-Cruz, A. Hagfeldt and M. Saliba, Methylammonium-Free, High-Performance, and Stable Perovskite Solar Cells on a Planar Architecture, Science 362 (6413), 449-453 (2018).
    17. M. A. Green, A. Ho-Baillie and H. J. Snaith, The Emergence of Perovskite Solar Cells, Nature Photonics 8 (7), 506-514 (2014).
    18. V. M. Goldschmidt, Die Gesetze der Krystallochemie, Naturwissenschaften 14 (21), 477-485 (1926).
    19. W. Travis, E. Glover, H. Bronstein, D. Scanlon and R. Palgrave, On the Application of the Tolerance Factor to Inorganic and Hybrid Halide Perovskites: A Revised System, Chemical Science 7 (7), 4548-4556 (2016).
    20. M. Ouafi, B. Jaber, L. Atourki, R. Bekkari and L. Laânab, Improving UV Stability of MAPbI3 Perovskite Thin Films by Bromide Incorporation, Journal of Alloys and Compounds 746, 391-398 (2018).
    21. T. C. Wei, H. P. Wang, T. Y. Li, C. H. Lin, Y. H. Hsieh, Y. H. Chu and J. H. He, Photostriction of CH3NH3PbBr3 Perovskite Crystals, Advanced Materials 29 (35) (2017).
    22. B. Li, Y. Li, C. Zheng, D. Gao and W. Huang, Advancements in the Stability of Perovskite Solar Cells: Degradation Mechanisms and Improvement Approaches, RSC Advances 6 (44), 38079-38091 (2016).
    23. D. A. Egger and L. Kronik, Role of Dispersive Interactions in Determining Structural Properties of Organic-Inorganic Halide Perovskites: Insights from First-Principles Calculations, The Journal of Physical Chemistry Letters 5 (15), 2728-2733 (2014).
    24. R. Long, J. Liu and O. V. Prezhdo, Unravelling the Effects of Grain Boundary and Chemical Doping on Electron-Hole Recombination in CH3NH3PbI3 Perovskite by Time-Domain Atomistic Simulation, Journal of the American Chemical Society 138 (11), 3884-3890 (2016).
    25. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Grätzel, Mixed‐Organic‐Cation Perovskite Photovoltaics for Enhanced Solar‐Light Harvesting, Angewandte Chemie 126 (12), 3215-3221 (2014).
    26. A. Maqsood, Y. Li, J. Meng, D. Song, B. Qiao, S. Zhao and Z. Xu, Perovskite Solar Cells Based on Compact, Smooth FA0.1MA0.9PbI3 Film with Efficiency Exceeding 22%, Nanoscale research letters 15, 1-9 (2020).
    27. X. X. Gao, W. Luo, Y. Zhang, R. Hu, B. Zhang, A. Züttel, Y. Feng and M. K. Nazeeruddin, Stable and High‐Efficiency Methylammonium‐Free Perovskite Solar Cells, Advanced Materials 32 (9), 1905502 (2020).
    28. Z. Song, S. C. Watthage, A. B. Phillips, B. L. Tompkins, R. J. Ellingson and M. J. Heben, Impact of Processing Temperature and Composition on the Formation of Methylammonium Lead Iodide Perovskites, Chemistry of Materials 27 (13), 4612-4619 (2015).
    29. X. Guo, C. McCleese, C. Kolodziej, A. C. Samia, Y. Zhao and C. Burda, Identification and Characterization of the Intermediate Phase in Hybrid Organic-Inorganic MAPbI3 Perovskite, Dalton Trans 45 (9), 3806-3813 (2016).
    30. Y. Chen, X. Zuo, Y. He, F. Qian, S. Zuo, Y. Zhang, L. Liang, Z. Chen, K. Zhao and Z. Liu, Dual Passivation of Perovskite and SnO2 for High‐Efficiency MAPbI3 Perovskite Solar Cells, Advanced Science 8 (5), 2001466 (2021).
    31. V. L. Pool, B. Dou, D. G. Van Campen, T. R. Klein-Stockert, F. S. Barnes, S. E. Shaheen, M. I. Ahmad, M. F. van Hest and M. F. Toney, Thermal Engineering of FAPbI3 Perovskite Material via Radiative Thermal Annealing and In Situ XRD, Nature communications 8, 14075 (2017).
    32. A. Binek, F. C. Hanusch, P. Docampo and T. Bein, Stabilization of the Trigonal High-Temperature Phase of Formamidinium Lead Iodide, The Journal of Physical Chemistry Letters 6 (7), 1249-1253 (2015).
    33. M. Saliba, T. Matsui, J. Y. Seo, K. Domanski, J. P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel, Cesium-Containing Triple Cation Perovskite Solar Cells: Improved Stability, Reproducibility and High Efficiency, Energy & Environmental Science 9 (6), 1989-1997 (2016).
    34. L. Shi, M. P. Bucknall, T. L. Young, M. Zhang, L. Hu, J. Bing, D. S. Lee, J. Kim, T. Wu, N. Takamure, D. R. McKenzie, S. Huang, M. A. Green and A. W. Y. Ho-Baillie, Gas Chromatography–Mass Spectrometry Aalyses of Encapsulated Stable Perovskite Solar Cells, Science 368 (6497) (2020).
    35. C. Wang, C. Zhang, S. Wang, G. Liu, H. Xia, S. Tong, J. He, D. Niu, C. Zhou, K. Ding, Y. Gao and J. Yang, Low‐Temperature Processed, Efficient, and Highly Reproducible Cesium‐Doped Triple Cation Perovskite Planar Heterojunction Solar Cells, Solar RRL 2 (2) (2018).
    36. P. Tiwana, P. Docampo, M. B. Johnston, L. M. Herz and H. J. Snaith, The Origin of an Efficiency Improving “Light Soaking” Effect in SnO2 Based Solid-State Dye-Sensitized Solar Cells, Energy Environmental Science 5 (11), 9566-9573 (2012).
    37. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T.-W. Wang, K. Wojciechowski and W. Zhang, Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters 5 (9), 1511-1515 (2014).
    38. H.-S. Kim, I. Mora-Sero, V. Gonzalez-Pedro, F. Fabregat-Santiago, E. J. Juarez-Perez, N.-G. Park and J. Bisquert, Mechanism of Carrier Accumulation in Perovskite Thin-Absorber Solar Cells, Nature Communications 4 (1), 1-7 (2013).
    39. C. C. Stoumpos, C. D. Malliakas and M. G. Kanatzidis, Semiconducting Tin and Lead Iodide Perovskites with Organic Cations: Phase Transitions, High Mobilities, and Near-Infrared Photoluminescent Properties, Inorganic Chemistry 52 (15), 9019-9038 (2013).
    40. S. A. Weber, I. M. Hermes, S.-H. Turren-Cruz, C. Gort, V. W. Bergmann, L. Gilson, A. Hagfeldt, M. Graetzel, W. Tress and R. Berger, How the Formation of Interfacial Charge Causes Hysteresis in Perovskite Solar Cells, Energy Environmental Science 11 (9), 2404-2413 (2018).
    41. Q. Chen, H. Zhou, T.-B. Song, S. Luo, Z. Hong, H.-S. Duan, L. Dou, Y. Liu and Y. Yang, Controllable Self-Induced Passivation of Hybrid Lead Iodide Perovskites Toward High Performance Solar Cells, Nano Letters 14 (7), 4158-4163 (2014).
    42. H. Uratani and K. Yamashita, Charge Carrier Trapping at Surface Defects of Perovskite Solar Cell Absorbers: A First-Principles Study, The Journal of Physical Chemistry Letters 8 (4), 742-746 (2017).
    43. J. Cao, X. Jing, J. Yan, C. Hu, R. Chen, J. Yin, J. Li and N. Zheng, Identifying the Molecular Structures of Intermediates for Optimizing the Fabrication of High-Quality Perovskite Films, Journal of the American Chemical Society 138 (31), 9919-9926 (2016).
    44. N. Ahn, D. Y. Son, I. H. Jang, S. M. Kang, M. Choi and N. G. Park, Highly Reproducible Perovskite Solar Cells with Average Efficiency of 18.3% and Best Efficiency of 19.7% Fabricated via Lewis Base Adduct of Lead(II) Iodide, Journal of the American Chemical Society 137 (27), 8696-8699 (2015).
    45. Y. Guo, S. Yuan, D. Zhu, M. Yu, H. Y. Wang, J. Lin, Y. Wang, Y. Qin, J. P. Zhang and X. C. Ai, Influence of the MACl additive on grain boundaries, trap-state properties, and charge dynamics in perovskite solar cells, Phys Chem Chem Phys 23 (10), 6162-6170 (2021).
    46. F. Ye, J. Ma, C. Chen, H. Wang, Y. Xu, S. Zhang, T. Wang, C. Tao and G. Fang, Roles of MACl in Sequentially Deposited Bromine-Free Perovskite Absorbers for Efficient Solar Cells, Advanced Materials 33 (3), e2007126 (2021).
    47. J. Wei, Y. Zhao, H. Li, G. Li, J. Pan, D. Xu, Q. Zhao and D. Yu, Hysteresis Analysis Based on the Ferroelectric Effect in Hybrid Perovskite Solar Cells, The Journal of Physical Chemistry Letters 5 (21), 3937-3945 (2014).
    48. H. S. Kim, S. K. Kim, B. J. Kim, K. S. Shin, M. K. Gupta, H. S. Jung, S. W. Kim and N. G. Park, Ferroelectric Polarization in CH3NH3PbI3 Perovskite, The Journal of Physical Chemistry Letters 6 (9), 1729-1735 (2015).
    49. J. M. Frost, K. T. Butler, F. Brivio, C. H. Hendon, M. van Schilfgaarde and A. Walsh, Atomistic Origins of High-Performance in Hybrid Halide Perovskite Solar Cells, Nano Letters 14 (5), 2584-2590 (2014).
    50. A. M. Leguy, J. M. Frost, A. P. McMahon, V. G. Sakai, W. Kochelmann, C. Law, X. Li, F. Foglia, A. Walsh, B. C. O'Regan, J. Nelson, J. T. Cabral and P. R. Barnes, The Dynamics of Methylammonium Ions in Hybrid Organic-Inorganic Perovskite Solar Cells, Nature Communications 6, 7124 (2015).
    51. T. S. Sherkar and L. J. Koster, Can Ferroelectric Polarization Explain the High Performance of Hybrid Halide Perovskite Solar Cells?, Physical Chemistry Chemical Physics 18 (1), 331-338 (2016).
    52. B. Kim, J. Kim and N. Park, First-Principles Identification of the Charge-Shifting Mechanism and Ferroelectricity in Hybrid Halide Perovskites, Scientific Reports 10 (1), 19635 (2020).
    53. G. Yang, H. Lei, H. Tao, X. Zheng, J. Ma, Q. Liu, W. Ke, Z. Chen, L. Xiong, P. Qin, Z. Chen, M. Qin, X. Lu, Y. Yan and G. Fang, Reducing Hysteresis and Enhancing Performance of Perovskite Solar Cells Using Low-Temperature Processed Y-Doped SnO2 Nanosheets as Electron Selective Layers, Small 13 (2) (2017).
    54. X. Cao, Y. Li, C. Li, F. Fang, Y. Yao, X. Cui and J. Wei, Modulating Hysteresis of Perovskite Solar Cells by a Poling Voltage, The Journal of Physical Chemistry C 120 (40), 22784-22792 (2016).
    55. B. Chen, M. Yang, X. Zheng, C. Wu, W. Li, Y. Yan, J. Bisquert, G. Garcia-Belmonte, K. Zhu and S. Priya, Impact of Capacitive Effect and Ion Migration on the Hysteretic Behavior of Perovskite Solar Cells, The Journal of Physical Chemistry Letters 6 (23), 4693-4700 (2015).
    56. B. C. O'Regan, P. R. Barnes, X. Li, C. Law, E. Palomares and J. M. Marin-Beloqui, Optoelectronic Studies of Methylammonium Lead Iodide Perovskite Solar Cells with Mesoporous TiO(2): Separation of Electronic and Chemical Charge Storage, Understanding Two Recombination Lifetimes, and the Evolution of Band Offsets during J-V Hysteresis, Journal of the American Chemical Society 137 (15), 5087-5099 (2015).
    57. S. van Reenen, M. Kemerink and H. J. Snaith, Modeling Anomalous Hysteresis in Perovskite Solar Cells, The Journal of Physical Chemistry Letters 6 (19), 3808-3814 (2015).
    58. D. C. Look, D. C. Reynolds, J. Sizelove, R. Jones, C. W. Litton, G. Cantwell and W. Harsch, Electrical Properties of Bulk ZnO, Solid State Communications 105 (6), 399-401 (1998).
    59. E. Yagi, R. R. Hasiguti and M. Aono, Electronic Conduction Above 4 K of Slightly Reduced Oxygen-Deficient Rutile TiO2−x, Physical Review B 54 (11), 7945 (1996).
    60. D. Jousse, C. Constantino and I. Chambouleyron, Highly Conductive and Transparent Amorphous Tin Oxide, Journal of Applied Physics 54 (1), 431-434 (1983).
    61. Z. Jarzebski and J. Marton, Physical Properties of SnO2 Materials: II. Electrical Properties, Journal of the Electrochemical Society 123 (9), 299C (1976).
    62. B. Roose, C. M. Johansen, K. Dupraz, T. Jaouen, P. Aebi, U. Steiner and A. Abate, A Ga-Doped SnO2 Mesoporous Contact for UV Stable Highly Efficient Perovskite Solar Cells, Journal of Materials Chemistry A 6 (4), 1850-1857 (2018).
    63. G. Yang, Z. Yan and T. Xiao, Preparation and Characterization of SnO2/ZnO/TiO2 Composite Semiconductor with Enhanced Photocatalytic Activity, Applied Surface Science 258 (22), 8704-8712 (2012).
    64. A. Janotti and C. G. Van de Walle, LDA+U and Hybrid Functional Calculations for Defects in ZnO, SnO2, and TiO2, Physica Status Solidi 248 (4), 799-804 (2011).
    65. H. J. Snaith and C. Ducati, SnO2-Based Dye-Sensitized Hybrid Solar Cells Exhibiting Near Unity Absorbed Photon-to-Electron Conversion Efficiency, Nano Letters 10 (4), 1259-1265 (2010).
    66. Q. Jiang, L. Zhang, H. Wang, X. Yang, J. Meng, H. Liu, Z. Yin, J. Wu, X. Zhang and J. You, Enhanced Electron Extraction Using SnO2 for High-Efficiency Planar-Structure HC(NH2)2PbI3-Based Perovskite Solar Cells, Nature Energy 2 (1), 1-7 (2016).
    67. S. Song, G. Kang, L. Pyeon, C. Lim, G.-Y. Lee, T. Park and J. Choi, Systematically Optimized Bilayered Electron Transport Layer for Highly Efficient Planar Perovskite Solar Cells (η= 21.1%), ACS Energy Letters 2 (12), 2667-2673 (2017).
    68. J. P. C. Baena, L. Steier, W. Tress, M. Saliba, S. Neutzner, T. Matsui, F. Giordano, T. J. Jacobsson, A. R. S. Kandada and S. M. Zakeeruddin, Highly Efficient Planar Perovskite Solar Cells Through Band Alignment Engineering, Energy Environmental Science 8 (10), 2928-2934 (2015).
    69. Y. Li, Y. Zhao, Q. Chen, Y. Yang, Y. Liu, Z. Hong, Z. Liu, Y.-T. Hsieh, L. Meng and Y. Li, Multifunctional Fullerene Derivative for Interface Engineering in Perovskite Solar Cells, Journal of the American Chemical Society 137 (49), 15540-15547 (2015).
    70. L. Meng, J. You, T. F. Guo and Y. Yang, Recent Advances in the Inverted Planar Structure of Perovskite Solar Cells, Accounts of Chemical Research 49 (1), 155-165 (2016).
    71. G. Yang, C. Chen, F. Yao, Z. Chen, Q. Zhang, X. Zheng, J. Ma, H. Lei, P. Qin, L. Xiong, W. Ke, G. Li, Y. Yan and G. Fang, Effective Carrier-Concentration Tuning of SnO2 Quantum Dot Electron-Selective Layers for High-Performance Planar Perovskite Solar Cells, Advanced Materials 30 (14), e1706023 (2018).
    72. J. Ma, G. Yang, M. Qin, X. Zheng, H. Lei, C. Chen, Z. Chen, Y. Guo, H. Han, X. Zhao and G. Fang, MgO Nanoparticle Modified Anode for Highly Efficient SnO2-Based Planar Perovskite Solar Cells, Advanced Science 4 (9), 1700031 (2017).
    73. D. Wang, C. Wu, W. Luo, X. Guo, B. Qu, L. Xiao and Z. Chen, ZnO/SnO2 Double Electron Transport Layer Guides Improved Open Circuit Voltage for Highly Efficient CH3NH3PbI3-Based Planar Perovskite Solar Cells, ACS Applied Energy Materials 1 (5), 2215-2221 (2018).
    74. M. A. Green and S. P. Bremner, Energy Conversion Approaches and Materials for High-Efficiency Photovoltaics, Nature Materials 16 (1), 23-34 (2016).
    75. J. Chen and N. G. Park, Causes and Solutions of Recombination in Perovskite Solar Cells, Advanced Materials 31 (47), e1803019 (2019).
    76. Z. Liu, K. Deng, J. Hu and L. Li, Coagulated SnO2 Colloids for High-Performance Planar Perovskite Solar Cells with Negligible Hysteresis and Improved Stability, Angewandte Chemie 58 (33), 11497-11504 (2019).
    77. J. Chen, X. Zhao, S. G. Kim and N. G. Park, Multifunctional Chemical Linker Imidazoleacetic Acid Hydrochloride for 21% Efficient and Stable Planar Perovskite Solar Cells, Advanced Materials 31 (39), e1902902 (2019).
    78. K. Jung, W.-S. Chae, Y. C. Park, N.-G. Park and M.-J. Lee, Amorphous AlO6-SnO2 Nanocomposite Electron-Selective Layers Yielding Over 21% Efficiency in Ambient-Air-Processed MAPbI3-Based Planar Solar Cells, Chemical Engineering Journal 409, 128215 (2021).
    79. H. Xie, X. Yin, J. Liu, Y. Guo, P. Chen, W. Que, G. Wang and B. Gao, Low Temperature Solution-Derived TiO2-SnO2 Bilayered Electron Transport Layer for High Performance Perovskite Solar Cells, Applied Surface Science 464, 700-707 (2019).
    80. K. Wojciechowski, S. D. Stranks, A. Abate, G. Sadoughi, A. Sadhanala, N. Kopidakis, G. Rumbles, C.-Z. Li, R. H. Friend and A. K.-Y. Jen, Heterojunction Modification for Highly Efficient Organic–Inorganic Perovskite Solar Cells, ACS Nano 8 (12), 12701-12709 (2014).
    81. J. H. Heo, S. H. Im, J. H. Noh, T. N. Mandal, C.-S. Lim, J. A. Chang, Y. H. Lee, H.-j. Kim, A. Sarkar and M. K. Nazeeruddin, Efficient Inorganic-Organic Hybrid Heterojunction Solar Cells Containing Perovskite Compound and Polymeric Hole Conductors, Nature Photonics 7 (6), 486-491 (2013).
    82. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Compositional Engineering of Perovskite Materials for High-Performance Solar Cells, Nature Communications 517 (7535), 476-480 (2015).
    83. Y. Zhou, A. L. Vasiliev, W. Wu, M. Yang, S. Pang, K. Zhu and N. P. Padture, Crystal Morphologies of Organolead Trihalide in Mesoscopic/Planar Perovskite Solar Cells, The Journal of Physical Chemistry Letters 6 (12), 2292-2297 (2015).
    84. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, High-Performance Photovoltaic Perovskite Layers Fabricated Through Intramolecular Exchange, Science 348 (6240), 1234-1237 (2015).
    85. S. H. Joo, J. Y. Park, C.-K. Tsung, Y. Yamada, P. Yang and G. A. Somorjai, Thermally Stable Pt/Mesoporous Silica Core-Shell Nanocatalysts for High-Temperature Reactions, Nature Materials 8 (2), 126-131 (2009).
    86. Z. Zhang, Y. Han, L. Zhu, R. Wang, Y. Yu, S. Qiu, D. Zhao and F. S. Xiao, Strongly Acidic and High‐Temperature Hydrothermally Stable Mesoporous Aluminosilicates with Ordered Hexagonal Structure, Angewandte Chemie 40 (7), 1258-1262 (2001).
    87. Y. Li, J. Zhu, Y. Huang, F. Liu, M. Lv, S. Chen, L. Hu, J. Tang, J. Yao and S. Dai, Mesoporous SnO2 Nanoparticle Films as Electron-Transporting Material in Perovskite Solar Cells, RSC Advances 5 (36), 28424-28429 (2015).
    88. Z. Zhu, X. Zheng, Y. Bai, T. Zhang, Z. Wang, S. Xiao and S. Yang, Mesoporous SnO2 Single Crystals as an Effective Electron Collector for Perovskite Solar Cells, Physical Chemistry Chemical Physics 17 (28), 18265-18268 (2015).
    89. Q. Dong, Y. Shi, K. Wang, Y. Li, S. Wang, H. Zhang, Y. Xing, Y. Du, X. Bai and T. Ma, Insight into Perovskite Solar Cells Based on SnO2 Compact Electron-Selective Layer, The Journal of Physical Chemistry C 119 (19), 10212-10217 (2015).
    90. F. E. Akkad and S. Joseph, Physicochemical Characterization of Point Defects in Fluorine Doped Tin Oxide Films, Journal of Applied Physics 112 (2) (2012).
    91. L. Xiong, M. Qin, C. Chen, J. Wen, G. Yang, Y. Guo, J. Ma, Q. Zhang, P. Qin, S. Li and G. Fang, Fully High-Temperature-Processed SnO2 as Blocking Layer and Scaffold for Efficient, Stable, and Hysteresis-Free Mesoporous Perovskite Solar Cells, Advanced Functional Materials 28 (10) (2018).
    92. Q. Liu, M. C. Qin, W. J. Ke, X. L. Zheng, Z. Chen, P. L. Qin, L. B. Xiong, H. W. Lei, J. W. Wan and J. Wen, Enhanced Stability of Perovskite Solar Cells with Low‐Temperature Hydrothermally Grown SnO2 Electron Transport Layers, Advanced Functional Materials 26 (33), 6069-6075 (2016).
    93. J. Chung, S. S. Shin, K. Hwang, G. Kim, K. W. Kim, D. S. Lee, W. Kim, B. S. Ma, Y.-K. Kim, T.-S. Kim and J. Seo, Record-Efficiency Flexible Perovskite Solar Cell and Module Enabled by a Porous-Planar Structure as an Electron Transport Layer, Energy & Environmental Science 13 (12), 4854-4861 (2020).
    94. Q. Wang, C. Peng, L. Du, H. Li, W. Zhang, J. Xie, H. Qi, Y. Li, L. Tian and Y. Huang, Enhanced Performance of Perovskite Solar Cells via Low‐Temperature‐Processed Mesoporous SnO2, Advanced Materials Interfaces 7 (4) (2020).
    95. X. Meng, Y. Zhang, S. Sun, R. Li and X. Sun, Three Growth Modes and Mechanisms for Highly Structure-Tunable SnO2 Nanotube Arrays of Template-Directed Atomic Layer Deposition, Journal of Materials Chemistry A 21 (33), 12321-12330 (2011).
    96. Y. Lee, S. Lee, G. Seo, S. Paek, K. T. Cho, A. J. Huckaba, M. Calizzi, D. w. Choi, J. S. Park and D. Lee, Efficient Planar Perovskite Solar Cells Using Passivated Tin Oxide as an Electron Transport Layer, Advanced Science 5 (6), 1800130 (2018).
    97. C. Wang, D. Zhao, C. R. Grice, W. Liao, Y. Yu, A. Cimaroli, N. Shrestha, P. J. Roland, J. Chen and Z. Yu, Low-Temperature Plasma-Enhanced Atomic Layer Deposition of Tin Oxide Electron Selective Layers for Highly Efficient Planar Perovskite Solar Cells, Journal of Materials Chemistry A 4 (31), 12080-12087 (2016).
    98. D. P. McMeekin, G. Sadoughi, W. Rehman, G. E. Eperon, M. Saliba, M. T. Hörantner, A. Haghighirad, N. Sakai, L. Korte and B. Rech, A Mixed-Cation Lead Mixed-Halide Perovskite Absorber for Tandem Solar Cells, Science 351 (6269), 151-155 (2016).
    99. E. H. Anaraki, A. Kermanpur, L. Steier, K. Domanski, T. Matsui, W. Tress, M. Saliba, A. Abate, M. Grätzel and A. Hagfeldt, Highly Efficient and Stable Planar Perovskite Solar Cells by Solution-Processed Tin Oxide, Energy Environmental Science 9 (10), 3128-3134 (2016).
    100. Q. Dong, J. Li, Y. Shi, M. Chen, L. K. Ono, K. Zhou, C. Zhang, Y. Qi, Y. Zhou and N. P. Padture, Improved SnO2 Electron Transport Layers Solution‐Deposited at Near Room Temperature for Rigid or Flexible Perovskite Solar Cells with High Efficiencies, Advanced Energy Materials 9 (26), 1900834 (2019).
    101. G. Yang, C. Wang, H. Lei, X. Zheng, P. Qin, L. Xiong, X. Zhao, Y. Yan and G. Fang, Interface Engineering in Planar Perovskite Solar Cells: Energy Level Alignment, Perovskite Morphology Control and High Performance Achievement, Journal of Materials Chemistry A 5 (4), 1658-1666 (2017).
    102. L. Huang, X. Sun, C. Li, J. Xu, R. Xu, Y. Du, J. Ni, H. Cai, J. Li, Z. Hu and interfaces, UV-Sintered Low-Temperature Solution-Processed SnO2 as Robust Electron Transport Layer for Efficient Planar Heterojunction Perovskite Solar Cells, ACS Applied Materials & Interfaces 9 (26), 21909-21920 (2017).
    103. J. Wei, F. Guo, X. Wang, K. Xu, M. Lei, Y. Liang, Y. Zhao and D. Xu, SnO2‐in‐Polymer Matrix for High‐Efficiency Perovskite Solar Cells wth Improved Reproducibility and Stability, Advanced Materials 30 (52), 1805153 (2018).
    104. X. Shi, R. Chen, T. Jiang, S. Ma, X. Liu, Y. Ding, M. Cai, J. Wu and S. Dai, Regulation of Interfacial Charge Transfer and Recombination for Efficient Planar Perovskite Solar Cells, Solar RRL 4 (2), 1900198 (2020).
    105. A. J. Yun, J. Kim, T. Hwang and B. Park, Origins of Efficient Perovskite Solar Cells with Low-Temperature Processed SnO2 Electron Transport Layer, ACS Applied Energy Materials 2 (5), 3554-3560 (2019).
    106. W. Ke, D. Zhao, A. J. Cimaroli, C. R. Grice, P. Qin, Q. Liu, L. Xiong, Y. Yan and G. Fang, Effects of Annealing Temperature of Tin Oxide Electron Selective Layers on the Performance of Perovskite Solar Cells, Journal of Materials Chemistry A 3 (47), 24163-24168 (2015).
    107. L. Xiong, M. Qin, G. Yang, Y. Guo, H. Lei, Q. Liu, W. Ke, H. Tao, P. Qin and S. Li, Performance Enhancement of High Temperature SnO2-Based Planar Perovskite Solar Cells: Electrical Characterization and Understanding of the Mechanism, Journal of Materials Chemistry A 4 (21), 8374-8383 (2016).
    108. M. F. Aygüler, A. G. Hufnagel, P. Rieder, M. Wussler, W. Jaegermann, T. Bein, V. Dyakonov, M. L. Petrus, A. Baumann and P. Docampo, Influence of Fermi Level Alignment with Tin Oxide on the Hysteresis of Perovskite Solar Cells, ACS Applied Materials Interfaces 10 (14), 11414-11419 (2018).
    109. X. Ren, Y. Liu, D. G. Lee, W. B. Kim, G. S. Han, H. S. Jung and S. Liu, Chlorine‐Modified SnO2 Electron Transport Layer for High‐Efficiency Perovskite Solar Cells, InfoMat 2 (2), 401-408 (2019).
    110. C. Wang, C. Zhang, Y. Huang, S. Tong, H. Wu, J. Zhang, Y. Gao and J. Yang, Degradation Behavior of Planar Heterojunction CH3NH3PbI3 Perovskite Solar Cells, Synthetic Metals 227, 43-51 (2017).
    111. J. W. Lee, D. H. Kim, H. S. Kim, S. W. Seo, S. M. Cho and N. G. Park, Formamidinium and Cesium Hybridization for Photo‐and Moisture‐Stable Perovskite Solar Cell, Advanced Energy Materials 5 (20), 1501310 (2015).
    112. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca and E. Mosconi, Intrinsic Thermal Instability of Methylammonium Lead Trihalide Perovskite, Advanced Energy Materials 5 (15), 1500477 (2015).
    113. J.-W. Lee, S.-G. Kim, S.-H. Bae, D.-K. Lee, O. Lin, Y. Yang and N.-G. Park, The Interplay Between Trap Density and Hysteresis in Planar Heterojunction Perovskite Solar Cells, Nano Letters 17 (7), 4270-4276 (2017).
    114. J.-P. Correa-Baena, A. Abate, M. Saliba, W. Tress, T. J. Jacobsson, M. Grätzel and A. Hagfeldt, The Rapid Evolution of Highly Efficient Perovskite Solar Cells, Energy Environmental Science 10 (3), 710-727 (2017).
    115. H. B. Lee, M. K. Jeon, N. Kumar, B. Tyagi and J. W. Kang, Boosting the Efficiency of SnO2‐Triple Cation Perovskite System Beyond 20% Using Nonhalogenated Antisolvent, Advanced Functional Materials 29 (32), 1903213 (2019).
    116. C. Yi, J. Luo, S. Meloni, A. Boziki, N. Ashari-Astani, C. Grätzel, S. M. Zakeeruddin, U. Röthlisberger and M. Grätzel, Entropic Stabilization of Mixed A-Cation ABX3 Metal Halide Perovskites for High Performance Perovskite Solar Cells, Energy Environmental Science 9 (2), 656-662 (2016).
    117. I. S. Yang and N. G. Park, Dual Additive for Simultaneous Improvement of Photovoltaic Performance and Stability of Perovskite Solar Cell, Advanced Functional Materials 31 (20), 2100396 (2021).
    118. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel and J. Y. Kim, Pseudo-Halide Anion Engineering for Alpha-FAPbI3 Perovskite Solar Cells, Nature 592 (7854), 381-385 (2021).
    119. G. Tong, D.-Y. Son, L. K. Ono, H.-B. Kang, S. He, L. Qiu, H. Zhang, Y. Liu, J. Hieulle and Y. Qi, Removal of Residual Compositions by Powder Engineering for High Efficiency Formamidinium-Based Perovskite Solar Cells with Operation Lifetime over 2000 h, Nano Energy 87, 106152 (2021).
    120. Y. Zhang, S. Seo, S. Y. Lim, Y. Kim, S.-G. Kim, D.-K. Lee, S.-H. Lee, H. Shin, H. Cheong and N.-G. Park, Achieving Reproducible and High-Efficiency (>21%) Perovskite Solar Cells with a Presynthesized FAPbI3 Powder, ACS Energy Letters 5 (2), 360-366 (2019).
    121. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li and S. F. Liu, Polymer Doping for High-Efficiency Perovskite Solar Cells with Improved Moisture Stability, Advanced Energy Materials 8 (3) (2018).
    122. H. Yi, D. Wang, M. A. Mahmud, F. Haque, M. B. Upama, C. Xu, L. Duan and A. Uddin, Bilayer SnO2 as Electron Transport Layer for Highly Efficient Perovskite Solar Cells, ACS Applied Energy Materials 1 (11), 6027-6039 (2018).
    123. J. Dou, D. Shen, Y. Li, A. Abate and M. Wei, Highly Efficient Perovskite Solar Cells Based on a Zn2SnO4 Compact Layer, ACS Applied Materials & Interfaces 11 (40), 36553-36559 (2019).
    124. M. Kwoka, L. Ottaviano, M. Passacantando, S. Santucci, G. Czempik and J. Szuber, XPS Study of the Surface Chemistry of L-CVD SnO2 Thin Films after Oxidation, Thin Solid Films 490 (1), 36-42 (2005).
    125. T. N. T. Pham and Y. S. Yoon, Development of Nanosized Mn3O4-Co3O4 on Multiwalled Carbon Nanotubes for Cathode Catalyst in Urea Fuel Cell, Energies 13 (9) (2020).
    126. J. Wang, H. Li, S. Meng, X. Ye, X. Fu and S. Chen, Controlled Synthesis of Sn-Based Oxides via a Hydrothermal Method and Their Visible Light Photocatalytic Performances, RSC Advances 7 (43), 27024-27032 (2017).
    127. A. S. Subbiah, N. Mathews, S. Mhaisalkar and S. K. Sarkar, Novel Plasma-Assisted Low-Temperature-Processed SnO2 Thin Films for Efficient Flexible Perovskite Photovoltaics, ACS Energy Letters 3 (7), 1482-1491 (2018).
    128. M. Setka, R. Calavia, L. Vojkuvka, E. Llobet, J. Drbohlavova and S. Vallejos, Raman and XPS Studies of Ammonia Sensitive Polypyrrole Nanorods and Nanoparticles, Scientific Reports 9 (1), 8465 (2019).
    129. S. Maeda and S. P. Ames, Preparation and Characterization of Polypyrrole-Tin (IV) Oxide Nanocomposite Colloids, Chemistry of materials 7 (1), 171-178 (1995).
    130. M. Mateen, Z. Arain, Y. Yang, X. Liu, S. Ma, C. Liu, Y. Ding, X. Ding, M. Cai and S. Dai, MACl-Induced Intermediate Engineering for High-Performance Mixed-Cation Perovskite Solar Cells, ACS Applied Materials & Interfaces 12 (9), 10535-10543 (2020).
    131. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Influence of Electrolyte in Transport and Recombination in Dye-Sensitized Solar Cells Studied by Impedance Spectroscopy, Solar Energy Materials and Solar Cells 87 (1-4), 117-131 (2005).
    132. H. S. Kim, J. W. Lee, N. Yantara, P. P. Boix, S. A. Kulkarni, S. Mhaisalkar, M. Gratzel and N. G. Park, High Efficiency Solid-State Sensitized Solar Cell-Based on Submicrometer Rutile TiO2 Nanorod and CH3NH3PbI3 Perovskite Sensitizer, Nano Letters 13 (6), 2412-2417 (2013).
    133. V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, General Working Principles of CH3NH3PbX3 Perovskite Solar Cells, Nano Letters 14 (2), 888-893 (2014).

    無法下載圖示 全文公開日期 2026/10/28 (校內網路)
    全文公開日期 2026/10/28 (校外網路)
    全文公開日期 2026/10/28 (國家圖書館:臺灣博碩士論文系統)
    QR CODE