簡易檢索 / 詳目顯示

研究生: 蔡亞恩
Ya-En Tsai
論文名稱: 以預合成δ-相甲脒鉛碘粉末進行鈣鈦礦太陽能電池之效能研究
Efficiency Study of Perovskite Solar Cells using Pre-synthesized δ-phase Formamidine Lead Iodine Powder
指導教授: 陳良益
Liang-Yih Chen
口試委員: 陳貞夙
Jen-Sue Chen
吳季珍
Jih-Jen Wu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 181
中文關鍵詞: 預合成粉末甲脒碘化鉛鈣鈦礦無遲滯效應共添加穩定性
外文關鍵詞: pre-synthetic powder, formamidine lead iodine perovskite, no hysteresis effect, co-adding, stability
相關次數: 點閱:215下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究使用預先合成粉末法製備甲脒鉛碘鈣鈦礦粉末,對比文獻中常見的前驅物溶液法容易因化學劑量造成大量缺陷、低質量且再現性差之問題。預合成粉末法則能提拱精確的化學劑量比例,進而製備出高質量、高再現性之鈣鈦礦太陽能電池。並以醋酸甲脒、氯化甲脒及溴進一步優化元件。由實驗結果發現:以預先合成粉末法所製備之元件內部缺陷密度較低,其平均效率從12.5%提升至13.5%,且幾乎無遲滯效應產生(遲滯<0.03)。為了提升整體效率,本文以預先合成粉末法最為基礎,將醋酸甲脒粉末添加進鈣鈦礦溶液中,成功消除裂痕將效率提升至14.4%。接著再以氯化甲脒進行共添加,製備份出高結晶度的鈣鈦礦薄膜,使傳輸阻力下降,進一步使元件效率提升至17.2%。以醋酸甲脒/氯化甲脒共添加元件雖然有17%的效率,但未封裝狀態下6小時後效率開始下降,因此本文以預合成粉末的方式將溴取代部的碘,成功將穩定時間提升了16倍,且效率同樣達到17%。


    In this study, the pre-synthetic powder method was used to prepare formamidinium lead iodide perovskite. The common precursor solution method in the literature tended to cause a lot of defects, low quantity and poor reproducibility in comparison with pre-synthetic method because of chemical dosing. The pre-synthetic powder method can make chemical dose ratios more precisely to prepare high-quality and high-reproducibility perovskite solar cells. Further, it can optimize the components with formamidine acetate (FAAc), formamidinium chloride (FACl) and bromide (Br). According to the experimental results, the components prepared by the pre-synthetic powder method had the property of lower internal defect density. This method enhanced the efficiency from 12.5% to 13.5% and almost no hysteresis effect generated (hysteresis<0.03). In order to enhance overall efficiency, this study added FAAc powder into our perovskite solution based on pre-synthetic powder method and successfully eliminated the cracks and increased the efficiency to 14.4%. Then, co-added FACl to fabricate perovskite thin film with high crystallinity, drcrease the transmission resistance and improve the efficiency to 17.2%. Although the co-addition of components with FAAc/FACl has 17% efficiency, the efficiency would decrease after 6 hours without encapsulating. Therefore, this study used the pre-synthetic powder method in substituting bromide for part of the iodine. It successfully increased the stabilization time by 16 times, and the efficiency also reach 17%.

    中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVI 第一章、緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、理論基礎與回顧 4 2-1太陽能電池 4 2-1-1半導體簡介 4 2-1-2太陽能電池基本原理 7 2-2鈣鈦礦材料 11 2-2-1鈣鈦礦結構 11 2-2-2鈣鈦礦能系特性 14 2-3 FAPbI3鈣鈦礦太陽能電池材料 17 2-3-1 FAPbI3結構 17 2-3-2 FAPbI3特性 20 2-4 FAPbI3鈣鈦礦製備 25 2-4-1兩步沉積法(two-step deposition) 25 2-4-2陽離子交換法 27 2-4-3粉末合成法 29 2-4-4雙面沖壓法(Bifacial stamping) 31 2-5 α-FAPbI3鈣鈦礦相的維持 32 2-5-1添加工程(Additive engineering) 32 2-5-2組合工程(Composition engineering) 38 2-5-3界面工程(Interfacial engineering) 40 2-5-4 以FA為主體的太陽能電池文獻效率整理 43 第三章、實驗設計 45 3-1 實驗流程圖 45 3-2 實驗藥品 46 3-3 實驗設備與分析儀器 50 3-3-1實驗設備 50 3-3-2 紫外光-可見光光譜儀(UV/visible Spectrophotometer) 53 3-3-3 X光繞射分析儀(X-ray diffraction,XRD) 55 3-3-4 時間解析光致發光測量系統(time-resolved photoluminescence,TRPL) 57 3-3-5 高解析度場發射型掃描式電子顯微鏡 (high resolution field-emission scanning electron microscope,FE-SEM) 58 3-3-6電化學阻抗頻譜儀 (electrochemical impedance spectroscopy,EIS) 59 3-3-7 太陽光模擬系統 62 3-3-8 分光效率光譜儀 (monochromatic incident photo-to-electron conversion efficiency,IPCE) 64 3-4 實驗步驟 66 3-4-1 FAPbI3粉末合成 66 3-4-2 FAPb(IxBr1-x)3粉末合成 67 3-4-3 元件製備 68 3-4-4 電子主導元件製備(electron only device) 75 第四章、結果與討論 76 4-1 以預先合成FAPbI3粉末製備鈣鈦礦太陽能電池之研究 76 4-1-1 以前驅物溶液法製備FAPbI3薄膜太陽能電池 76 4-1-2 以預合成FAPbI3粉末法製備薄膜太陽能電池 85 4-2探討添加物對FAPbI3鈣鈦礦太陽能電池之引響 97 4-2-1 以FAAc作為結晶輔助劑進行最佳添加比例之探討 97 4-2-2 以FAAc及FACl共添加進行最佳添加比例之探討 107 4-3 探討添加溴對FAPbI3太陽能電池之影響 117 4-3-1 添加溴後對太陽能電池性質之分析 117 4-3-2 以FAAc/FACl共添加進行最佳添加比例之探討 131 第五章、結論 146 第六章、參考文獻 148

    1. A. Amat, E. Mosconi, E. Ronca, C. Quarti, P. Umari, M. K. Nazeeruddin, M. Gratzel and F. De Angelis, Cation-induced band-gap tuning in organohalide perovskites: interplay of spin-orbit coupling and octahedra tilting, Nano Letters 14 (6), 3608-3616 (2014).
    2. G. Meng, C. Hao, M. Ji and Y. Shi, Theoretical insights into the carrier mobility anisotropy of organic–inorganic perovskite ABI3 (A = CH3NH3 and HC(NH2)2; B = Pb and Sn), The Journal of Physical Chemistry C 125 (41), 22446-22456 (2021).
    3. Q. Dong, Y. Fang, Y. Shao, P. Mulligan, J. Qiu, L. Cao and J. Huang, Electron-hole diffusion lengths> 175 μm in solution-grown CH3NH3PbI3 single crystals, Science 347 (6225), 967-970 (2015).
    4. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    5. H.-J. Feng and Q. Zhang, Predicting efficiencies >25% A3MX3 photovoltaic materials and Cu ion implantation modification, Applied Physics Letters 118 (11), 111902 (2021).
    6. N.-G. Park, Perovskite solar cells: an emerging photovoltaic technology, Materials Today 18 (2), 65-72 (2015).
    7. D. M. Jang, K. Park, D. H. Kim, J. Park, F. Shojaei, H. S. Kang, J. P. Ahn, J. W. Lee and J. K. Song, Reversible halide exchange reaction of organometal trihalide perovskite colloidal nanocrystals for full-range band gap tuning, Nano Letters 15 (8), 5191-5199 (2015).
    8. T. M. Koh, K. Fu, Y. Fang, S. Chen, T. C. Sum, N. Mathews, S. G. Mhaisalkar, P. P. Boix and T. Baikie, Formamidinium-containing metal-halide: an alternative material for near-IR absorption perovskite solar cells, The Journal of Physical Chemistry C 118 (30), 16458-16462 (2013).
    9. O. D. Miller, E. Yablonovitch and S. R. Kurtz, Strong internal and external luminescence as solar cells approach the Shockley–Queisser limit, IEEE Journal of Photovoltaics 2 (3), 303-311 (2012).
    10. Q. Han, S. H. Bae, P. Sun, Y. T. Hsieh, Y. M. Yang, Y. S. Rim, H. Zhao, Q. Chen, W. Shi, G. Li and Y. Yang, Single crystal formamidinium lead iodide (FAPbI3) insight into the structural, optical, and plectrical properties, Advanced Materials 28 (11), 2253-2258 (2016).
    11. M. T. Weller, O. J. Weber, J. M. Frost and A. Walsh, Cubic perovskite structure of black formamidinium lead Iodide, α-[HC(NH2)2]PbI3, at 298 K, The Journal of Physical Chemistry Letters 6 (16), 3209-3212 (2015).
    12. S. Masi, A. F. Gualdrón-Reyes and I. Mora-Seró, Stabilization of black perovskite phase in FAPbI3 and CsPbI3, ACS Energy Letters 5 (6), 1974-1985 (2020).
    13. G. Li, T. Zhang, F. Xu and Y. Zhao, A facile deposition of large grain and phase pure α-FAPbI3 for perovskite solar cells via a flash crystallization, Materials Today Energy 5, 293-298 (2017).
    14. M. Kim, G.-H. Kim, T. K. Lee, I. W. Choi, H. W. Choi, Y. Jo, Y. J. Yoon, J. W. Kim, J. Lee, D. Huh, H. Lee, S. K. Kwak, J. Y. Kim and D. S. Kim, Methylammonium chloride induces intermediate phase stabilization for efficient perovskite solar cells, Joule 3 (9), 2179-2192 (2019).
    15. S.-H. Turren-Cruz, A. Hagfeldt and M. Saliba, Methylammonium-free, high-performance, and stable perovskite solar cells on a planar architecture, Science 362 (6413), 449-453 (2018).
    16. M. Long, T. Zhang, W. Xu, X. Zeng, F. Xie, Q. Li, Z. Chen, F. Zhou, K. S. Wong, K. Yan and J. Xu, Large-grain formamidinium PbI3-xBrx for high-performance perovskite solar cells via intermediate halide exchange, Advanced Energy Materials 7 (12), 1601882 (2017).
    17. T. Dai, Q. Cao, L. Yang, M. Aldamasy, M. Li, Q. Liang, H. Lu, Y. Dong and Y. Yang, Strategies for high-performance large-area perovskite solar cells toward commercialization, Crystals 11 (3), 295 (2021).
    18. V. M. Goldschmidt, Die gesetze der krystallochemie, Naturwissenschaften 14 (21), 477-485 (1926).
    19. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Stabilizing perovskite structures by tuning tolerance factor: formation of formamidinium and cesium lead oodide solid-state alloys, Chemistry of Materials 28 (1), 284-292 (2015).
    20. W. Travis, E. N. K. Glover, H. Bronstein, D. O. Scanlon and R. G. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chemical Science 7 (7), 4548-4556 (2016).
    21. M. Anaya, G. Lozano, M. E. Calvo and H. Míguez, ABX3 perovskites for tandem solar cells, Joule 1 (4), 769-793 (2017).
    22. U.-G. Jong, C.-J. Yu, J.-S. Ri, N.-H. Kim and G.-C. Ri, Influence of halide composition on the structural, electronic, and optical properties of mixedCH3NH3Pb(I1−xBrx)3perovskites calculated using the virtual crystal approximation method, Physical Review B 94 (12), 125139 (2016).
    23. N. Pellet, P. Gao, G. Gregori, T. Y. Yang, M. K. Nazeeruddin, J. Maier and M. Gratzel, Mixed-organic-cation perovskite photovoltaics for enhanced solar-light harvesting, Angewandte Chemie International Edition 53 (12), 3151-3157 (2014).
    24. M. Liu, Z. Chen, Q. Xue, S. H. Cheung, S. K. So, H.-L. Yip and Y. Cao, High performance low-bandgap perovskite solar cells based on a high-quality mixed Sn–Pb perovskite film prepared by vacuum-assisted thermal annealing, Journal of Materials Chemistry A 6 (34), 16347-16354 (2018).
    25. P. Würfel and U. Würfel, Physics of Solar Cells: From Basic Principles to Advanced Concepts, 3rd Edition, John Wiley & Sons, (2016).
    26. G. Chen, Nanoscale Energy Transport and Conversion: A Parallel Treatment of Electrons, Molecules, Phonons, and Photons, New York, Oxford university press, (2005).
    27. F. F. Targhi, Y. S. Jalili and F. Kanjouri, MAPbI3 and FAPbI3 perovskites as solar cells: Case study on structural, electrical and optical properties, Results in Physics 10, 616-627 (2018).
    28. M. R. Filip, G. E. Eperon, H. J. Snaith and F. Giustino, Steric engineering of metal-halide perovskites with tunable optical band gaps, Nature Communications 5, 5757 (2014).
    29. Y. Li, F. Z. Liu, M. Waqas, T. L. Leung, H. W. Tam, X. Q. Lan, B. Tu, W. Chen, A. B. Djurišić and Z. B. He, Formamidinium-based lead halide perovskites: structure, properties, and fabrication methodologies, Small Methods 2 (7), 1700387 (2018).
    30. D. H. Fabini, C. C. Stoumpos, G. Laurita, A. Kaltzoglou, A. G. Kontos, P. Falaras, M. G. Kanatzidis and R. Seshadri, Reentrant structural and optical properties and large positive thermal expansion in perovskite formamidinium lead iodide, Angewandte Chemie International Edition 55 (49), 15392-15396 (2016).
    31. Y. Liu, Z. Yang, D. Cui, X. Ren, J. Sun, X. Liu, J. Zhang, Q. Wei, H. Fan, F. Yu, X. Zhang, C. Zhao and S. F. Liu, Two-inch-sized perovskite CH3NH3 PbX3 (X = Cl, Br, I) crystals: growth and characterization, Advanced Materials 27 (35), 5176-5183 (2015).
    32. D. Shi, V. Adinolfi, R. Comin, M. Yuan, E. Alarousu, A. Buin, Y. Chen, S. Hoogland, A. Rothenberger, K. Katsiev, Y. Losovyj, X. Zhang, P. A. Dowben, O. F. Mohammed, E. H. Sargent and O. M. Bakr, Low trap-state density and long carrier diffusion in organolead trihalide perovskite single crystals, Science 347 (6221), 519-522 (2015).
    33. Y. Zhang, S. Seo, S. Y. Lim, Y. Kim, S.-G. Kim, D.-K. Lee, S.-H. Lee, H. Shin, H. Cheong and N.-G. Park, Achieving reproducible and high-efficiency (>21%) perovskite solar cells with a presynthesized FAPbI3 powder, ACS Energy Letters 5 (2), 360-366 (2019).
    34. J.-W. Lee and N.-G. Park, Two-step deposition method for high-efficiency perovskite solar cells, MRS Bulletin 40 (8), 654-659 (2015).
    35. Y. H. Lee, J. Luo, R. Humphry-Baker, P. Gao, M. Grätzel and M. K. Nazeeruddin, Unraveling the reasons for efficiency loss in perovskite solar cells, Advanced Functional Materials 25 (25), 3925-3933 (2015).
    36. Y. Jo, K. S. Oh, M. Kim, K.-H. Kim, H. Lee, C.-W. Lee and D. S. Kim, High performance of planar perovskite solar cells produced from PbI2(DMSO) and PbI2(NMP) complexes by intramolecular exchange, Advanced Materials Interfaces 3 (10), 1500768 (2016).
    37. W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Science 348 (6240), 1234-1237 (2015).
    38. S. Adjokatse, H. H. Fang, H. Duim and M. A. Loi, Scalable fabrication of high-quality crystalline and stable FAPbI3 thin films by combining doctor-blade coating and the cation exchange reaction, Nanoscale 11 (13), 5989-5997 (2019).
    39. P. Shi, Y. Ding, Y. Ren, X. Shi, Z. Arain, C. Liu, X. Liu, M. Cai, G. Cao, M. K. Nazeeruddin and S. Dai, Template-assisted formation of high-quality alpha-phase HC(NH2)2PbI3 perovskite solar cells, Advanced Science 6 (21), 1901591 (2019).
    40. Y. Zhou, M. Yang, S. Pang, K. Zhu and N. P. Padture, Exceptional morphology-preserving evolution of formamidinium lead triiodide perovskite thin films via organic-cation displacement, Journal of the American Chemical Society 138 (17), 5535-5538 (2016).
    41. Y. Zhang, S. G. Kim, D. K. Lee and N. G. Park, CH3NH3PbI3 and HC(NH2 )2 PbI3 powders synthesized from low-grade PbI2 : single precursor for high-efficiency perovskite solar cells, Chemistry Sustainability Energy Materials 11 (11), 1813-1823 (2018).
    42. R. Singh, S. Sandhu, H. Yadav and J. J. Lee, Stable triple-cation (Cs(+)-MA(+)-FA(+)) perovskite powder formation under ambient conditions for hysteresis-free high-efficiency solar cells, ACS Applied Materials & Interfaces 11 (33), 29941-29949 (2019).
    43. V. D'Innocenzo, A. R. Srimath Kandada, M. De Bastiani, M. Gandini and A. Petrozza, Tuning the light emission properties by band gap engineering in hybrid lead halide perovskite, Journal of the American Chemical Society 136 (51), 17730-17733 (2014).
    44. S. Rahimnejad, A. Kovalenko, S. M. Fores, C. Aranda and A. Guerrero, Coordination chemistry dictates the structural defects in lead halide perovskites, Chemistry Sustainability Energy Materials 17 (18), 2795-2798 (2016).
    45. G. S. Shin, Y. Zhang and N. G. Park, Stability of precursor solution for perovskite solar cell: mixture (FAI + PbI2) versus synthetic FAPbI3 crystal, ACS Applied Materials & Interfaces 12 (13), 15167-15174 (2020).
    46. Y. Zhang, S.-G. Kim, D. Lee, H. Shin and N.-G. Park, Bifacial stamping for high efficiency perovskite solar cells, Energy & Environmental Science 12 (1), 308-321 (2019).
    47. Z. Wang, Y. Zhou, S. Pang, Z. Xiao, J. Zhang, W. Chai, H. Xu, Z. Liu, N. P. Padture and G. Cui, Additive-modulated evolution of HC(NH2)2PbI3 black polymorph for mesoscopic perovskite solar cells, Chemistry of Materials 27 (20), 7149-7155 (2015).
    48. Y. Chen, Y. Zhao and Z. Liang, Non-thermal annealing fabrication of efficient planar perovskite solar cells with inclusion of NH4Cl, Chemistry of Materials 27 (5), 1448-1451 (2015).
    49. F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang and L. Han, Vertical recrystallization for highly efficient and stable formamidinium-based inverted-structure perovskite solar cells, Energy & Environmental Science 10 (9), 1942-1949 (2017).
    50. T. Zhang, Q. Xu, F. Xu, Y. Fu, Y. Wang, Y. Yan, L. Zhang and Y. Zhao, Spontaneous low-temperature crystallization of α-FAPbI3 for highly efficient perovskite solar cells, Science Bulletin 64 (21), 1608-1616 (2019).
    51. T. A. Doherty, S. Nagane, D. J. Kubicki, Y.-K. Jung, D. N. Johnstone, A. N. Iqbal, D. Guo, K. Frohna, M. Danaie and E. M. Tennyson, Stabilized tilted-octahedra halide perovskites inhibit local formation of performance-limiting phases, Science 374 (6575), 1598-1605 (2021).
    52. B. Conings, J. Drijkoningen, N. Gauquelin, A. Babayigit, J. D'Haen, L. D'Olieslaeger, A. Ethirajan, J. Verbeeck, J. Manca, E. Mosconi, F. D. Angelis and H.-G. Boyen, Intrinsic thermal instability of methylammonium lead trihalide perovskite, Advanced Energy Materials 5 (15), 1500477 (2015).
    53. M. Lyu and N.-G. Park, Effect of additives AX (A = FA, MA, Cs, Rb, NH4 , X = Cl, Br, I) in FAPbI3 on photovoltaic parameters of perovskite solar cells, Solar Rapid Research Letters 4 (10), 2000331 (2020).
    54. H. H. Fang, S. Adjokatse, S. Shao, J. Even and M. A. Loi, Long-lived hot-carrier light emission and large blue shift in formamidinium tin triiodide perovskites, Nature Communications 9 (1), 243 (2018).
    55. J.-W. Lee, D.-H. Kim, H.-S. Kim, S.-W. Seo, S. M. Cho and N.-G. Park, Formamidinium and cesium hybridization for photo- and moisture-stable perovskite solar cell, Advanced Energy Materials 5 (20), 1501310 (2015).
    56. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate and A. Hagfeldt, Incorporation of rubidium cations into perovskite solar cells improves photovoltaic performance, Science 354 (6309), 206-209 (2016).
    57. G. Fisicaro, A. La Magna, A. Alberti, E. Smecca, G. Mannino and I. Deretzis, Local order and rotational dynamics in mixed a-cation lead iodide perovskites, The Journal of Physical Chemistry Letters 11 (3), 1068-1074 (2020).
    58. J. W. Xiao, L. Liu, D. Zhang, N. De Marco, J. W. Lee, O. Lin, Q. Chen and Y. Yang, The emergence of the mixed perovskites and their applications as solar cells, Advanced Energy Materials 7 (20), 1700491 (2017).
    59. A. Binek, F. C. Hanusch, P. Docampo and T. Bein, Stabilization of the trigonal high-temperature phase of formamidinium lead iodide, The Journal of Physical Chemistry Letters 6 (7), 1249-1253 (2015).
    60. N. J. Jeon, J. H. Noh, W. S. Yang, Y. C. Kim, S. Ryu, J. Seo and S. I. Seok, Compositional engineering of perovskite materials for high-performance solar cells, Nature 517 (7535), 476-480 (2015).
    61. L. Q. Xie, L. Chen, Z. A. Nan, H. X. Lin, T. Wang, D. P. Zhan, J. W. Yan, B. W. Mao and Z. Q. Tian, Understanding the cubic phase stabilization and crystallization kinetics in mixed cations and halides perovskite single crystals, Journal of the American Chemical Society 139 (9), 3320-3323 (2017).
    62. F. Wang, W. Geng, Y. Zhou, H. H. Fang, C. J. Tong, M. A. Loi, L. M. Liu and N. Zhao, Phenylalkylamine passivation of organolead halide perovskites enabling high-efficiency and air-stable photovoltaic cells, Advanced Materials 28 (45), 9986-9992 (2016).
    63. H. J. Snaith, A. Abate, J. M. Ball, G. E. Eperon, T. Leijtens, N. K. Noel, S. D. Stranks, J. T. Wang, K. Wojciechowski and W. Zhang, Anomalous hysteresis in perovskite solar cells, The Journal of Physical Chemistry Letters 5 (9), 1511-1515 (2014).
    64. J. H. Heo, D. H. Song, H. J. Han, S. Y. Kim, J. H. Kim, D. Kim, H. W. Shin, T. K. Ahn, C. Wolf, T. W. Lee and S. H. Im, Planar CH3NH3PbI3 perovskite solar cells with constant 17.2% average power conversion efficiency irrespective of the scan rate, Advanced Materials 27 (22), 3424-3430 (2015).
    65. Q. Jiang, Y. Zhao, X. Zhang, X. Yang, Y. Chen, Z. Chu, Q. Ye, X. Li, Z. Yin and J. You, Surface passivation of perovskite film for efficient solar cells, Nature Photonics 13 (7), 460-466 (2019).
    66. H.-S. Yoo and N.-G. Park, Post-treatment of perovskite film with phenylalkylammonium iodide for hysteresis-less perovskite solar cells, Solar Energy Materials and Solar Cells 179, 57-65 (2018).
    67. X. Li, D. Bi, C. Yi, J.-D. Décoppet, J. Luo, S. M. Zakeeruddin, A. Hagfeldt and M. Grätzel, A vacuum flash assisted solution process for high-efficiency large-area perovskite solar cells, Science 353 (6294), 58-62 (2016).
    68. N. K. Noel, A. Abate, S. D. Stranks, E. S. Parrott, V. M. Burlakov, A. Goriely and H. J. Snaith, Enhanced photoluminescence and solar cell performance via Lewis base passivation of organic–inorganic lead halide perovskites, ACS Nano 8 (10), 9815-9821 (2014).
    69. Y. Zhang, Y. Li, L. Zhang, H. Hu, Z. Tang, B. Xu and N. G. Park, Propylammonium chloride additive for efficient and stable FAPbI3 perovskite solar cells, Advanced Energy Materials, 2102538 (2021).
    70. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer, M. Kim, Y. J. Yoon, I. W. Choi, B. P. Darwich, S. J. Choi, Y. Jo, J. H. Lee, B. Walker, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, A. Hagfeldt, D. S. Kim, M. Gratzel and J. Y. Kim, Pseudo-halide anion engineering for alpha-FAPbI3 perovskite solar cells, Nature 592 (7854), 381-385 (2021).
    71. G. Tong, D.-Y. Son, L. K. Ono, H.-B. Kang, S. He, L. Qiu, H. Zhang, Y. Liu, J. Hieulle and Y. Qi, Removal of residual compositions by powder engineering for high efficiency formamidinium-based perovskite solar cells with operation lifetime over 2000 h, Nano Energy 87, 106152 (2021).
    72. P. Wang, R. Li, B. Chen, F. Hou, J. Zhang, Y. Zhao and X. Zhang, Gradient energy alignment engineering for planar perovskite solar cells with efficiency over 23, Advanced Materials 32 (6), 1905766 (2020).
    73. N. J. Jeon, H. Na, E. H. Jung, T.-Y. Yang, Y. G. Lee, G. Kim, H.-W. Shin, S. Il Seok, J. Lee and J. Seo, A fluorene-terminated hole-transporting material for highly efficient and stable perovskite solar cells, Nature Energy 3 (8), 682-689 (2018).
    74. T. S. Su, F. T. Eickemeyer, M. A. Hope, F. Jahanbakhshi, M. Mladenovic, J. Li, Z. Zhou, A. Mishra, J. H. Yum, D. Ren, A. Krishna, O. Ouellette, T. C. Wei, H. Zhou, H. H. Huang, M. D. Mensi, K. Sivula, S. M. Zakeeruddin, J. V. Milic, A. Hagfeldt, U. Rothlisberger, L. Emsley, H. Zhang and M. Gratzel, Crown ether modulation enables over 23% efficient formamidinium-based perovskite solar cells, Journal of the American Chemical Society 142 (47), 19980-19991 (2020).
    75. Y. Ai, Y. Zhang, J. Song, T. Kong, Y. Li, H. Xie and D. Bi, In situ perovskitoid engineering at SnO2 interface toward highly efficient and stable formamidinium lead triiodide perovskite solar cells, The Journal of Physical Chemistry Letters 12 (43), 10567-10573 (2021).
    76. H. Lu, Y. Liu, P. Ahlawat, A. Mishra, W. R. Tress, F. T. Eickemeyer, Y. Yang, F. Fu, Z. Wang, C. E. Avalos, B. I. Carlsen, A. Agarwalla, X. Zhang, X. Li, Y. Zhan, S. M. Zakeeruddin, L. Emsley, U. Rothlisberger, L. Zheng, A. Hagfeldt and M. Grätzel, Vapor-assisted deposition of highly efficient, stable black-phase FAPbI perovskite solar cells, Science 370 (6512), eabb8985 (2020).
    77. Y. Yamada, T. Yamada, Q. Phuong le, N. Maruyama, H. Nishimura, A. Wakamiya, Y. Murata and Y. Kanemitsu, Dynamic Optical Properties of CH(3)NH(3)PbI(3) Single Crystals As Revealed by One- and Two-Photon Excited Photoluminescence Measurements, Journal of The American Chemical Society 137 (33), 10456-10459 (2015).
    78. V. Gonzalez-Pedro, E. J. Juarez-Perez, W. S. Arsyad, E. M. Barea, F. Fabregat-Santiago, I. Mora-Sero and J. Bisquert, General working principles of CH3NH3PbX3 perovskite solar cells, Nano Letters 14 (2), 888-893 (2014).
    79. J. Bisquert, Influence of the boundaries in the impedance of porous film electrodes, Physical Chemistry Chemical Physics 2 (18), 4185-4192 (2000).
    80. J. Jiang, Q. Wang, Z. Jin, X. Zhang, J. Lei, H. Bin, Z.-G. Zhang, Y. Li and S. F. Liu, Polymer doping for high-efficiency perovskite solar cells with improved moisture stability, Advanced Energy Materials 8 (3), 1701757 (2018).
    81. Q. Wang, C. Peng, L. Du, H. Li, W. Zhang, J. Xie, H. Qi, Y. Li, L. Tian and Y. Huang, Enhanced performance of perovskite solar cells via low‐temperature‐processed mesoporous SnO2, Advanced Materials Interfaces 7 (4), 1901866 (2020).
    82. X. Li, W. Li, Y. Yang, X. Lai, Q. Su, D. Wu, G. Li, K. Wang, S. Chen and X. W. Sun, Defects Passivation With Dithienobenzodithiophene‐based π‐conjugated Polymer for Enhanced Performance of Perovskite Solar Cells, Solar Rapid Research Letters 3 (6), 1900029 (2019).
    83. F. Fabregat-Santiago, J. Bisquert, G. Garcia-Belmonte, G. Boschloo and A. Hagfeldt, Influence of electrolyte in transport and recombination in dye-sensitized solar cells studied by impedance spectroscopy, Solar Energy Materials and Solar Cells 87 (1-4), 117-131 (2005).
    84. D. Prochowicz, M. M. Tavakoli, M. Wolska-Pietkiewicz, M. Jędrzejewska, S. Trivedi, M. Kumar, S. M. Zakeeruddin, J. Lewiński, M. Graetzel and P. Yadav, Suppressing recombination in perovskite solar cells via surface engineering of TiO2 ETL, Solar Energy 197, 50-57 (2020).
    85. J. Dou, D. Shen, Y. Li, A. Abate and M. Wei, Highly Efficient Perovskite Solar Cells Based on a Zn2SnO4 Compact Layer, ACS Appl Mater Interfaces 11 (40), 36553-36559 (2019).
    86. C. Gao, H. Dong, X. Bao, Y. Zhang, A. Saparbaev, L. Yu, S. Wen, R. Yang and L. Dong, Additive engineering to improve the efficiency and stability of inverted planar perovskite solar cells, Journal of Materials Chemistry C 6 (30), 8234-8241 (2018).
    87. R. Xu, H. Dong, P. Li, X. Cao, H. Li, J. Li and Z. Wu, Formamidine Acetate Induces Regulation of Crystallization and Stabilization in Sn-Based Perovskite Solar Cells, ACS Appl Mater Interfaces 13 (28), 33218-33225 (2021).
    88. R. Fu, Y. Zhao, W. Zhou, Q. Li, Y. Zhao and Q. Zhao, Ultrahigh open-circuit voltage for high performance mixed-cation perovskite solar cells using acetate anions, Journal of Materials Chemistry A 6 (29), 14387-14391 (2018).
    89. X. Ni, L. Lei, Y. Yu, J. Xie, M. Li, S. Yang, M. Wang, J. Liu, H. Zhang and B. Ye, Effect of Br content on phase stability and performance of H2N=CHNH2Pb(I1-xBrx)3 perovskite thin films, Nanotechnology 30 (16), 165402 (2019).
    90. I. S. Zhidkov, D. W. Boukhvalov, A. F. Akbulatov, L. A. Frolova, L. D. Finkelstein, A. I. Kukharenko, S. O. Cholakh, C.-C. Chueh, P. A. Troshin and E. Z. Kurmaev, XPS spectra as a tool for studying photochemical and thermal degradation in APbX3 hybrid halide perovskites, Nano Energy 79, 105421 (2021).
    91. B.-w. Park, B. Philippe, S. M. Jain, X. Zhang, T. Edvinsson, H. Rensmo, B. Zietz and G. Boschloo, Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance, Journal of Materials Chemistry A 3 (43), 21760-21771 (2015).
    92. M. Que, W. Cai, Y. Zhao, Y. Yang, B. Zhang, S. Yun, J. Chen and G. Zhu, 2D/2D Schottky heterojunction of in-situ growth FAPbBr3/Ti3C2 composites for enhancing photocatalytic CO2 reduction, Journal of Colloid and Interface Science 610, 538-545 (2022).
    93. B. Huo, J. Yang, Y. Bian, D. Wu, J. Feng, J. Zhou, Q. Huang, F. Dong and X. Tang, Amino-mediated anchoring of FAPbBr3 perovskite quantum dots on silica spheres for efficient visible light photocatalytic NO removal, Chemical Engineering Journal 406, 126740 (2021).

    無法下載圖示 全文公開日期 2024/08/08 (校內網路)
    全文公開日期 2024/08/08 (校外網路)
    全文公開日期 2024/08/08 (國家圖書館:臺灣博碩士論文系統)
    QR CODE