簡易檢索 / 詳目顯示

研究生: 江至皓
Chih-Hao Chiang
論文名稱: 高穩定性藍光到綠光放射波長之鈣鈦礦量子點/奈米纖維素晶體複合螢光膜
High stability blue to green emission wavelength perovskite quantum dots/cellulose nanocrystals hybrid luminescent films
指導教授: 蔡孟霖
Meng-Lin Tsai
口試委員: 施邵儒
Shao-Ju Shih
楊伯康
Po-Kang Yang
李權倍
Chuan-Pei Lee
蔡東昇
Dung-Sheng Tsai
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 103
中文關鍵詞: 奈米纖維素晶體量子點鈣鈦礦無鎘螢光膜
外文關鍵詞: cadmium-free, cellulose nanocrystals, luminescent films, perovskite, quantum dots
相關次數: 點閱:477下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鈣鈦礦量子點相較於一般傳統量子點具有較窄的放射峰半高寬、較高量子轉換效率高與放射光波長的易調變性等優秀的光電性質且不含鎘,其可應用於太陽能電池、發光二極體及顯示器面板等光電元件,故近年來受到極大的關注。然而其穩定性在大氣、高溫與連續紫外光照射的條件下並不佳,故增強鈣鈦礦量子點之穩定性使其具備商業應用性已成為在相關領域中最重要的議題。本研究利用硫酸化之奈米纖維素晶體取代傳統以油酸及油胺作為表面配體與鈣鈦礦量子點合成複合螢光膜,並成功製造出無機鈣鈦礦量子點複合螢光膜與有機無機混合鈣鈦礦量子點複合螢光膜共三種不同組成之複合螢光膜,更進一步利用陰離子混合達到放射波長可調變性(藍光到綠光)。經穩定性測試,由於奈米纖維素晶體的輔助,鈣鈦礦量子點複合螢光膜之穩定性比一般傳統鈣鈦礦量子點上升數倍。綜合以上優點,本研究提出之鈣鈦礦量子點複合螢光膜為光電領域及相關應用元件提供了嶄新的可能性。


    Perovskite quantum dots (PQD) have attracted much attention for developing cadmium-free quantum light emitting displays (QLED), solar cells and light emitting diodes (LED) based on outstanding light emission properties including narrow full width at half maximum (FWHM), tunable bandgap, and ultra-high (>90%) photoluminescence quantum yield (PLQY). Nevertheless, the poor stability under ambient condition, high temperature, and continuous light irradiation is the main problem for practical applications. In recent years, enhancing the stability of PQD to meet the requirement for commercialize application is the most important issue in the related research fields. In this study, a new method has been proposed to effectively stabilize PQD by synthesizing it with sulfate-functionalized cellulose nanocrystals (CNC) at room temperature without using traditional PQD capping ligands such as oleylamine (OAm) and oleic acid (OA). We have successfully synthesized inorganic and organic-inorganic PQD/CNC hybrid luminescent films. In addition, color-tunability (blue to green emission color) has been achieved by tuning the anion concentration. Under the stability test, the PQD/CNC hybrid luminescent films are more stable than traditional PQD. Therefore, the PQD/CNC hybrid luminescent films can provide new possibility for practical applications in the future development of PQD related devices.

    誌謝 I 摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 XII 第 1 章 緒論 1 1.1 前言 1 1.1.1 量子點基本性質與分類 1 1.1.2 鈣鈦礦量子點之性質與應用 5 1.1.3 奈米纖維素晶體之特性 11 1.2 研究動機與目的 14 第 2 章 文獻回顧與探討 15 2.1 鈣鈦礦量子點之合成方法 15 2.1.1 球磨法 16 2.1.2 模板法 18 2.1.3 配體輔助再析出法 19 2.1.4 熱注入法 20 2.1.5 微流體法 21 2.1.6 超聲波法 22 2.2 鈣鈦礦量子點合成方法之製程比較 23 2.3 鈣鈦礦量子點之穩定性 24 2.3.1 結構穩定性 24 2.3.2 表面穩定性 26 2.3.3 光穩定性 26 2.3.4 熱穩定性 27 2.3.5 氧穩定性 28 2.3.6 水穩定性 28 2.4 鈣鈦礦量子點之X光繞射晶體分析 30 2.5 鈣鈦礦量子點之形貌分析 32 2.6 鈣鈦礦量子點之光學分析 33 2.6.1 螢光光譜分析 33 2.6.2 吸收光譜分析 35 第 3 章 實驗方法 38 3.1 實驗流程 38 3.2 實驗藥品、設備與分析儀器 40 3.2.1 實驗藥品 40 3.2.2 實驗設備 41 3.2.3 分析儀器 43 3.3 傳統膠體鈣鈦礦量子點之合成 46 3.3.1 CsPbClxBr3-x 傳統膠體鈣鈦礦量子點合成 46 3.3.2 MAPbClxBr3-x 傳統膠體鈣鈦礦量子點合成 47 3.3.3 FAPbClxBr3-x 傳統膠體鈣鈦礦量子點合成 47 3.3.4 傳統膠體鈣鈦礦量子點之純化與離心 47 3.4 鈣鈦礦量子點/奈米纖維素晶體複合螢光膜之合成 49 3.4.1 奈米纖維素晶體分散溶液之製備 50 3.4.2 CsPbClxBr3-x 複合螢光膜合成 50 3.4.3 MAPbClxBr3-x 複合螢光膜合成 51 3.4.4 FAPbClxBr3-x 複合螢光膜合成 52 3.5 複合螢光膜之螢光量子轉換效率最佳化 53 3.6 穩定性測試 54 第 4 章 結果與討論 55 4.1 鈣鈦礦量子點/奈米纖維素晶體複合螢光膜之X光繞射晶體分析 55 4.2 鈣鈦礦量子點/奈米纖維素晶體複合螢光膜之形貌分析 58 4.3 鈣鈦礦量子點/奈米纖維素晶體複合螢光膜之光學分析 60 4.3.1 螢光光譜分析 60 4.3.2 吸收光譜分析 66 4.3.3 穿透光譜分析 68 4.4 螢光量子轉換效率最佳化之結果 70 4.5 鈣鈦礦量子點/奈米纖維素晶體複合螢光膜之穩定性 74 第 5 章 結論與未來展望 77 5.1 結論 77 5.2 未來展望 79 參考文獻 80

    [1] A. P. Alivisatos, "Semiconductor Clusters, Nanocrystals, and Quantum Dots," Science, vol. 271, no. 5251, pp. 933–937, 1996.
    [2] J. McKittrick, L. E. Shea-Rohwer and D. J. Green, "Review: Down Conversion Materials for Solid-State Lighting," J. Am. Ceram. Soc., vol. 97, no. 5, pp. 1327–1352, 2014.
    [3] P. Bhatia, S. S. Verma and M. M. Sinha, "Tuning the Optical Properties of Fe-Au Core-Shell Nanoparticles with Spherical and Spheroidal Nanostructures," Phys. Lett. A, vol. 383, no. 21, pp. 2542–2550, 2019.
    [4] H. C. Wang, Z. Bao, H. Y. Tsai, A. C. Tang and R. S. Liu, "Perovskite Quantum Dots and Their Application in Light-Emitting Diodes," Small, vol. 14, no. 1, pp. 1702433, 2018.
    [5] Q. A. Akkerman, V. D'lnnocenzo, S. Accornero, A. Petrozza, M. Prato and L. Manna, "Tuning the Optical Properties of Cesium Lead Halide Perovskite Nanocrystals by Anion Exchange Reactions," J. Am. Chem. Soc., vol. 137, no. 32, pp. 10276–102781, 2015.
    [6] H. Huang, A. S. Susha, S. V. Kershaw, T. F. Hung and A. L. Rogach, "Control of Emission Color of High Quantum Yield CH3NH3PbBr3 Perovskite Quantum Dots by Precipitation Temperature," Adv. Sci., vol. 2, no. 9, pp. 1500194, 2015.
    [7] I. Levchuk, P. Herre, M. Brandl, A. Osvet, R. Hock, W. Peukert, P. Schweizer, E. Spiecker, M. Batentschuk and C. J. Brabec, "Ligand-assisted Thickness Tailoring of Highly Luminescent Colloidal CH3NH3PbX3 (X = Br and I) Perovskite Nanoplatelets," Chem. Commun., vol. 53, no. 1, pp. 244–247, 2016.
    [8] L. Peng, A. Tang, C. Yang and F. Teng, "Size-controlled Synthesis of Highly Luminescent Organometal Halide Perovskite Quantum Dots," J. Alloys Compd., vol. 687, pp. 506–513, 2016.
    [9] G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, "Fast Anion-Exchange in Highly Luminescent Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, I)," Nano Lett., vol. 15, no. 8, pp. 5635–5640, 2015.
    [10] W. van der Stam, J. J. Geuchies, T. Altantzis, K. H. W. van den Bos, J. D. Meeldijk, S. Van Aert, S. Bals, D. Vanmaekelbergh and C. de Mello Donega, "Highly Emissive Divalent-Ion-Doped Colloidal CsPb1-xMxBr3 Perovskite Nanocrystals through Cation Exchange," J. Am. Ceram. Soc., vol. 139, no. 11, pp. 4087–4097, 2017.
    [11] M. S. Islam, L. Chen, J. Sisler and K. C. Tam, "Cellulose Nanocrystal (CNC)-Inorganic Hybrid Systems: Synthesis, Properties and Applications," J. Mater. Chem. B, vol. 6, no. 6, pp. 864–883, 2018.
    [12] A. Chakrabarty and Y. Teramoto, "Recent Advances in Nanocellulose Composites with Polymers: A Guide for Choosing Partners and How to Incorporate Them," Polymers, vol. 10, no. 5, pp. 517, 2018.
    [13] M. Isik, H. Sardon and D. Mecerreyes, "Ionic Liquids and Cellulose: Dissolution, Chemical Modification and Preparation of New Cellulosic Materials," Int. J. Mol. Sci., vol. 15, no. 7, pp. 11922–11940, 2014.
    [14] L. Protesescu, S. Yakunin, O. Nazarenko, D. N. Dirin and M. V. Kovalenko, "Low-Cost Synthesis of Highly Luminescent Colloidal Lead Halide Perovskite Nanocrystals by Wet Ball Milling," ACS Appl. Nano Mater., vol. 1, no. 3, pp. 1300–1308, 2018.
    [15] D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie and M. V. Kovalenko, "Harnessing Defect-Tolerance at the Nanoscale: Highly Luminescent Lead Halide Perovskite Nanocrystals in Mesoporous Silica Matrixes," Nano Lett., vol. 16, no. 9, pp. 5866–5874, 2016.
    [16] F. Zhang, H. Zhong, C. Chen, X. Wu, X. Hu, H. Huang, J. Han, B. Zou and Y. Dong, "Brightly Luminescent and Color-tunable Colloidal CH3NH3PbX3 (X = Br, I, Cl) Quantum Dots: Potential Alternatives for Display Technology," ACS nano, vol. 9, no. 4, pp. 4533–4542, 2015.
    [17] L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, "Nanocrystals of Cesium Lead Halide Perovskites (CsPbX3, X = Cl, Br, and I): Novel Optoelectronic Materials Showing Bright Emission with Wide Color Gamut," Nano Lett., vol. 15, no. 6, pp. 3692–3696, 2015.
    [18] I. Lignos, S. Stavrakis, G. Nedelcu, L. Protesescu, A. J. deMello and M. V. Kovalenko, "Synthesis of Cesium Lead Halide Perovskite Nanocrystals in a Droplet-Based Microfluidic Platform: Fast Parametric Space Mapping," Nano Lett., vol. 16, no. 3, pp. 1869–1877, 2016.
    [19] D. M. Jang, D. H. Kim, K. Park, J. Park, J. W. Lee and J. K. Song, "Ultrasound Synthesis of Lead Halide Perovskite Nanocrystals," J. Mater. Chem. C, vol. 4, no. 45, pp. 10625–10629, 2016.
    [20] X. Du, G. Wu, J. Cheng, H. Dang, K. Ma, Y. W. Zhang, P. F. Tan and S. Chen, "High-quality CsPbBr3 Perovskite Nanocrystals for Quantum Dot Light-emitting Diodes," RSC Adv., vol. 7, no. 17, pp. 10391–10396, 2017.
    [21] X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, "CsPbX3 Quantum Dots for Lighting and Displays: Room-Temperature Synthesis, Photoluminescence Superiorities, Underlying Origins and White Light-Emitting Diodes," Adv. Funct. Mater., vol. 26, no. 15, pp. 2435–2445, 2016.
    [22] J. Shamsi, A. S. Urban, M. Imran, L. De Trizio and L. Manna, "Metal Halide Perovskite Nanocrystals: Synthesis, Post-Synthesis Modifications, and Their Optical Properties," Chem. Rev., vol. 119, no. 5, pp. 3296–3348, 2019.
    [23] Y. Tong, E. Bladt, M. F. Ayguler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban, L. Polavarapu and J. Feldmann, "Highly Luminescent Cesium Lead Halide Perovskite Nanocrystals with Tunable Composition and Thickness by Ultrasonication," Angew. Chem., Int. Ed. Engl., vol. 55, no. 44, pp. 13887–13892, 2016.
    [24] Y. Wei, Z. Cheng and J. Lin, "An Overview on Enhancing the Stability of Lead Halide Perovskite Quantum Dots and Their Applications in Phosphor-converted LEDs," Chem. Soc. Rev., vol. 48, no. 1, pp. 310–350, 2019.
    [25] Q. Chen, N. De Marco, Y. Yang, T. B. Song, C. C. Chen, H. Zhao, Z. Hong, H. Zhou and Y. Yang, "Under the Spotlight: The Organic-Inorganic Hybrid Halide Perovskite for Optoelectronic Applications," Nano Today, vol. 10, no. 3, pp. 355–396, 2015.
    [26] J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens, "Highly Dynamic Ligand Binding and Light Absorption Coefficient of Cesium Lead Bromide Perovskite Nanocrystals," ACS Nano, vol. 10, no. 2, pp. 2071–2081, 2016.
    [27] F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Suess, B. Clerc, D. Guggisberg, O. Nazarenko, Y. Shynkarenko, S. Kumar, C. J. Shih, I. Infante and M. V. Kovalenko, "Colloidal CsPbX3 (X = Cl, Br, I) Nanocrystals 2.0: Zwitterionic Capping Ligands for Improved Durability and Stability," ACS Energy Lett., vol. 3, no. 3, pp. 641–646, 2018.
    [28] D. Yang, X. Li, W. Zhou, S. Zhang, C. Meng, Y. Wu, Y. Wang and H. Zeng, "CsPbBr3 Quantum Dots 2.0: Benzenesulfonic Acid Equivalent Ligand Awakens Complete Purification," Adv. Mater., vol. 31, no. 30, pp. 1900767, 2019.
    [29] J. Chen, D. Liu, M. J. Al-Marri, L. Nuuttila, H. Lehtivuori and K. Zheng, "Photo-stability of CsPbBr3 Perovskite Quantum Dots for Optoelectronic Application," Sci. China Mater., vol. 59, no. 9, pp. 719–727, 2016.
    [30] S. N. Habisreutinger, T. Leijtens, G. E. Eperon, S. D. Stranks, R. J. Nicholas and H. J. Snaith, "Carbon Nanotube/Polymer Composites as a Highly Stable Hole Collection Layer in Perovskite Solar Cells," Nano Lett., vol. 14, no. 10, pp. 5561–5568, 2014.
    [31] B. T. Diroll, G. Nedelcu, M. V. Kovalenko and R. D. Schaller, "High-Temperature Photoluminescence of CsPbX3(X = Cl, Br, I) Nanocrystals," Adv. Funct. Mater., vol. 27, no. 21, pp. 1606750, 2017.
    [32] N. Aristidou, C. Eames, I. Sanchez-Molina, X. Bu, J. Kosco, M. S. Islam and S. A. Haque, "Fast Oxygen Diffusion and Iodide Defects Mediate Oxygen-induced Degradation of Perovskite Solar Cells," Nat. Commun., vol. 8, pp. 15218, 2017.
    [33] E. Moyen, A. Kanwat, S. Cho, H. Jun, R. Aad and J. Jang, "Ligand Removal and Photo-activation of CsPbBr3 Quantum Dots for Enhanced Optoelectronic Devices," Nanoscale, vol. 10, no. 18, pp. 8591–8599, 2018.
    [34] S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan and L. Li, "Morphology Evolution and Degradation of CsPbBr3 Nanocrystals under Blue Light-Emitting Diode Illumination," ACS Appl. Mater. Interfaces, vol. 9, no. 8, pp. 7249–7258, 2017.
    [35] Z. Zhenfu, J. Liang, W. Zhihai, C. Jiong, Z. Miaomiao and H. Yafei, "Perovskite Quantum Dots as Fluorescent Materials for Multi-colored Lighting," J. Mater. Sci., vol. 53, no. 22, pp. 15430–15441, 2018.
    [36] I. Levchuk, A. Osvet, X. Tang, M. Brandl, J. D. Perea, F. Hoegl, G. J. Matt, R. Hock, M. Batentschuk and C. J. Brabec, "Brightly Luminescent and Color-Tunable Formamidinium Lead Halide Perovskite FAPbX3 (X = Cl, Br, I) Colloidal Nanocrystals," Nano Lett., vol. 17, no. 5, pp. 2765–2770, 2017.
    [37] D. N. Minh, J. Kim, J. Hyon, J. H. Sim, H. H. Sowlih, C. Seo, J. Nam, S. Eom, S. Suk, S. Lee, E. Kim and Y. Kang, "Room-Temperature Synthesis of Widely Tunable Formamidinium Lead Halide Perovskite Nanocrystals," Chem. Mater., vol. 29, no. 13, pp. 5713–5719, 2017.
    [38] A. Perumal, S. Shendre, M. Li, Y. K. Tay, V. K. Sharma, S. Chen, Z. Wei, Q. Liu, Y. Gao, P. J. Buenconsejo, S. T. Tan, C. L. Gan, Q. Xiong, T. C. Sum and H. V. Demir, "High Brightness Formamidinium Lead Bromide Perovskite Nanocrystal Light Emitting Devices," Sci. Rep., vol. 6, pp. 36733, 2016.
    [39] A. Swarnkar, A. R. Marshall, E. M. Sanehira, B. D. Chernomordik, D. T. Moore, J. A. Christians, T. Chakrabarti and J. M. Luther, "Quantum Dot-Induced Phase Stabilization of α-CsPbI3 Perovskite for High-efficiency Photovoltaics," Science, vol. 354, no. 6308, pp. 92–95, 2016.
    [40] J. Zhang, Y. Yang, H. Deng, U. Farooq, X. Yang, J. Khan, J. Tang and H. Song, "High Quantum Yield Blue Emission from Lead-Free Inorganic Antimony Halide Perovskite Colloidal Quantum Dots," ACS Nano, vol. 11, no. 9, pp. 9294–9302, 2017.
    [41] B. Yang, J. Chen, F. Hong, X. Mao, K. Zheng, S. Yang, Y. Li, T. Pullerits, W. Deng and K. Han, "Lead-Free, Air-Stable All-Inorganic Cesium Bismuth Halide Perovskite Nanocrystals," Angew. Chem., Int. Ed. Engl., vol. 56, no. 41, pp. 12471–12475, 2017.
    [42] H. Sun, Z. Li, L. Kong, B. Wang, C. Zhang, Q. Yuan, S. Huang, Y. Liu and L. Li, "Enhancing the Stability of CsPbBr3 Nanocrystals by Sequential Surface Adsorption of S2– and Metal Ions," Chem. Commun., vol. 54, no. 67, pp. 9345–9348, 2018.
    [43] H. C. Yoon, S. Lee, J. K. Song, H. Yang and Y. R. Do, "Efficient and Stable CsPbBr3 Quantum-Dot Powders Passivated and Encapsulated with a Mixed Silicon Nitride and Silicon Oxide Inorganic Polymer Matrix," ACS Appl. Mater. Interfaces, vol. 10, no. 14, pp. 11756–11767, 2018.
    [44] Z. J. Li, E. Hofman, J. Li, A. H. Davis, C. H. Tung, Z. L. Wu and W. Zheng, "Photoelectrochemically Active and Environmentally Stable CsPbBr3/TiO2 Core/Shell Nanocrystals," Adv. Funct. Mater., vol. 28, no. 1, pp. 1704288, 2018.
    [45] Z. Li, L. Kong, S. Huang and L. Li, "Highly Luminescent and Ultrastable CsPbBr3 Perovskite Quantum Dots Incorporated into a Silica/Alumina Monolith," Angew. Chem., Int. Ed. Engl., vol. 56, no. 28, pp. 8134–8138, 2017.
    [46] Y. Wei, X. Deng, Z. Xie, X. Cai, S. Liang, P. Ma, Z. Hou, Z. Cheng and J. Lin, "Enhancing the Stability of Perovskite Quantum Dots by Encapsulation in Crosslinked Polystyrene Beads via a Swelling-Shrinking Strategy toward Superior Water Resistance," Adv. Funct. Mater., vol. 27, no. 39, pp. 1703535, 2017.

    無法下載圖示 全文公開日期 2025/05/21 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE