簡易檢索 / 詳目顯示

研究生: 陳霆睿
Ting-Jui Chen
論文名稱: 鈣鈦礦量子點發光二極體之研究
The Study of Perovskite Quantum Dots Light Emitting Diodes
指導教授: 陳良益
Liang-Yih Chen
口試委員: 邱昱誠
Yu-Cheng Chiu
江志強
Jyh-Chiang Jiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 212
中文關鍵詞: 溴化銫鉛鈣鈦礦量子點發光二極體配體移除界面鈍化
外文關鍵詞: cesium lead bromide perovskite, quantum dots, light-emitting diode, ligand removal, interfacial passivation
相關次數: 點閱:206下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XXIII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 理論基礎與回顧 4 2-1 半導體與奈米材料 4 2-1-1 半導體材料 4 2-1-2 奈米材料 8 2-2 鈣鈦礦材料 11 2-2-1 鈣鈦礦結構 11 2-2-2 鈣鈦礦材料發展 12 2-3 CsPbX3鈣鈦礦量子點 13 2-3-1 CsPbX3鈣鈦礦量子點合成 13 2-3-2 鈣鈦礦量子點穩定性 26 2-3-3 鈣鈦礦量子點陰陽離子摻雜 38 2-4 鈣鈦礦量子點發光二極體 42 2-4-1 發光二極體各層結構介紹 42 2-4-2 量子點配體對元件性能影響 47 2-4-3 界面鈍化層對元件性能影響 57 第三章、 實驗設計 63 3-1 實驗流程圖 63 3-2 實驗藥品 64 3-3 實驗分析儀器與原理 69 3-3-1 紫外光-可見光光譜儀(UV/visible Spectrophotometer) 69 3-3-2 螢光光譜儀(Fluorescence Spectrophotometer) 71 3-3-3 X 光繞射分析儀(X-ray Diffraction,XRD) 72 3-3-4 場發穿透式電子顯微鏡 (Transmission electron microscope,TEM) 74 3-3-5 時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 76 3-3-6 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 78 3-3-7 高解析度場發射型掃描式電子顯微鏡 (High Resolution Field-emission Scanning Electron Microscope,FE-SEM) 80 3-3-8 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy,FTIR) 81 3-3-9 電致發光量測系統(Electroluminescence ,EL) 82 3-4 實驗步驟 84 3-4-1 室溫法合成CsPbBr3量子點 84 3-4-2 以HBr水溶液進行CsPbBr3沉澱物後處理優化製程 87 3-4-3 CsPbBr3量子點表面配體控制程序 88 3-4-4 量測CsPbBr3量子點螢光量子效率 89 3-4-5 發光二極體元件製作 92 3-4-6 電子主導元件(electron only devie,EOD)製作 95 3-4-7 電洞主導元件(hole only device,HOD)製作 97 3-4-8 發光二極體效能指標介紹 100 3-4-8-1 啟動電壓(turn on voltage,VTO) 100 3-4-8-2 LED發光程度的單位 100 3-4-8-3 電流效率(current efficiency,CE) 103 3-4-8-4 外部量子效率(external quantum efficiency,EQE) 103 3-4-9 電子主導元件與電洞主導元件之分析與計算 107 第四章、 結果與討論 109 中文摘要 I Abstract III 致謝 V 目錄 VI 圖目錄 XI 表目錄 XXIII 第一章、 緒論 1 1-1 前言 1 1-2 研究動機與目的 2 第二章、 理論基礎與回顧 4 2-1 半導體與奈米材料 4 2-1-1 半導體材料 4 2-1-2 奈米材料 8 2-2 鈣鈦礦材料 11 2-2-1 鈣鈦礦結構 11 2-2-2 鈣鈦礦材料發展 12 2-3 CsPbX3鈣鈦礦量子點 13 2-3-1 CsPbX3鈣鈦礦量子點合成 13 2-3-2 鈣鈦礦量子點穩定性 26 2-3-3 鈣鈦礦量子點陰陽離子摻雜 38 2-4 鈣鈦礦量子點發光二極體 42 2-4-1 發光二極體各層結構介紹 42 2-4-2 量子點配體對元件性能影響 47 2-4-3 界面鈍化層對元件性能影響 57 第三章、 實驗設計 63 3-1 實驗流程圖 63 3-2 實驗藥品 64 3-3 實驗分析儀器與原理 69 3-3-1 紫外光-可見光光譜儀(UV/visible Spectrophotometer) 69 3-3-2 螢光光譜儀(Fluorescence Spectrophotometer) 71 3-3-3 X 光繞射分析儀(X-ray Diffraction,XRD) 72 3-3-4 場發穿透式電子顯微鏡 (Transmission electron microscope,TEM) 74 3-3-5 時間解析光致發光測量系統(Time-resolved photoluminescence,TRPL) 76 3-3-6 紫外光電子能譜儀(Ultraviolet Photoelectron Spectroscopy,UPS) 78 3-3-7 高解析度場發射型掃描式電子顯微鏡 (High Resolution Field-emission Scanning Electron Microscope,FE-SEM) 80 3-3-8 傅立葉轉換紅外線光譜儀(Fourier transform infrared spectroscopy,FTIR) 81 3-3-9 電致發光量測系統(Electroluminescence ,EL) 82 3-4 實驗步驟 84 3-4-1 室溫法合成CsPbBr3量子點 84 3-4-2 以HBr水溶液進行CsPbBr3沉澱物後處理優化製程 87 3-4-3 CsPbBr3量子點表面配體控制程序 88 3-4-4 量測CsPbBr3量子點螢光量子效率 89 3-4-5 發光二極體元件製作 92 3-4-6 電子主導元件(electron only devie,EOD)製作 95 3-4-7 電洞主導元件(hole only device,HOD)製作 97 3-4-8 發光二極體效能指標介紹 100 3-4-8-1 啟動電壓(turn on voltage,VTO) 100 3-4-8-2 LED發光程度的單位 100 3-4-8-3 電流效率(current efficiency,CE) 103 3-4-8-4 外部量子效率(external quantum efficiency,EQE) 103 3-4-9 電子主導元件與電洞主導元件之分析與計算 107 第四章、 結果與討論 109 4-1 合成CsPbBr3量子點製程優化與性質分析 109 4-1-1 CsPbBr3量子點合成與性質分析 109 4-1-2 以氫溴酸水溶液進行CsPbBr3沉澱物後處理優化製程探討 118 4-2 CsPbBr3量子點發光二極體製備與光電特性分析 130 4-2-1 移除CsPbBr3量子點表面配體對提升發光二極體性能之效能探討 134 4-2-2 探討以UV光移除CsPbBr3量子點表面配體對提升發光二極體性能之效能 146 4-2-3 探討以熱處理移除CsPbBr3量子點表面配體對提升發光二極體性能之效能 150 4-2-4 探討以鈍化層修飾CsPbBr3量子點薄膜界面對提升發光二極體性能之效能 156 第五章、 結論 167 第六章、 參考文獻 169

    1. L. Protesescu, S. Yakunin, M. I. Bodnarchuk, F. Krieg, R. Caputo, C. H. Hendon, R. X. Yang, A. Walsh and M. V. Kovalenko, Nanocrystals of cesium lead halide perovskites (CsPbX3, X = Cl, Br, and I): novel optoelectronic materials showing bright emission with wide color gamut, Nano Letters 15 (6), 3692-3696 (2015).
    2. Q. Pan, H. Hu, Y. Zou, M. Chen, L. Wu, D. Yang, X. Yuan, J. Fan, B. Sun and Q. Zhang, Microwave-assisted synthesis of high-quality “all-inorganic” CsPbX3 (X= Cl, Br, I) perovskite nanocrystals and their application in light emitting diodes, Journal of Materials Chemistry C 5 (42), 10947-10954 (2017).
    3. X. Li, Y. Wu, S. Zhang, B. Cai, Y. Gu, J. Song and H. Zeng, CsPbX3 quantum dots for lighting and displays: room-temperature synthesis, photoluminescence superiorities, underlying origins and white light-emitting diodes, Advanced Functional Materials 26 (15), 2435-2445 (2016).
    4. P. B. a. J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 13 (6), 2287 (1976).
    5. L. Lang, J.-H. Yang, H.-R. Liu, H. J. Xiang and X. G. Gong, First-principles study on the electronic and optical properties of cubic ABX3 halide perovskites, Physics Letters A 378 (3), 290-293 (2014).
    6. C. K. Møller, Crystal structure and photoconductivity of caesium plumbohalides, Nature 182 (4647), 1436-1436 (1958).
    7. D. Weber, CH3NH3PbX3, a Pb (II)-system with cubic perovskite structure, Z. Naturforsch B. 33 (12), 1443-1445 (1978).
    8. M. Nikl, K. Nitsch, K. Polak, E. Mihókova, S. Zazubovich, G. Pazzi, P. Fabeni, L. Salvini, R. Aceves and M. Barbosa-Flores, Quantum size effect in the excitonic luminescence of CsPbX3-like quantum dots in CsX (X= Cl, Br) single crystal host, Journal of Luminescence 72, 377-379 (1997).
    9. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, Journal of the American Chemical Society 131 (17), 6050-6051 (2009).
    10. J. Jeong, M. Kim, J. Seo, H. Lu, P. Ahlawat, A. Mishra, Y. Yang, M. A. Hope, F. T. Eickemeyer and M. Kim, Pseudo-halide anion engineering for α-FAPbI3 perovskite solar cells, Nature 592 (7854), 381-385 (2021).
    11. The national renewable energy laboratory, best research-cell efficiency chart, (2021).
    12. S. Wei, Y. Yang, X. Kang, L. Wang, L. Huang and D. Pan, Room-temperature and gram-scale synthesis of CsPbX3 (X = Cl, Br, I) perovskite nanocrystals with 50-85% photoluminescence quantum yields, Chemical Communications 52 (45), 7265-7268 (2016).
    13. S. Fang, G. Li, Y. Lu and L. Li, Highly luminescent CsPbX3 (X=Cl, Br, I) nanocrystals achieved by a rapid anion exchange at room temperature, Chemistry–A European Journal 24 (8), 1898-1904 (2018).
    14. J. Pan, Y. Shang, J. Yin, M. De Bastiani, W. Peng, I. Dursun, L. Sinatra, A. M. El-Zohry, M. N. Hedhili and A.-H. Emwas, Bidentate ligand-passivated CsPbI3 perovskite nanocrystals for stable near-unity photoluminescence quantum yield and efficient red light-emitting diodes, Journal of the American Chemical Society 140 (2), 562-565 (2017).
    15. X. Ling, S. Zhou, J. Yuan, J. Shi, Y. Qian, B. W. Larson, Q. Zhao, C. Qin, F. Li and G. Shi, 14.1% CsPbI3 perovskite quantum dot solar cells via cesium cation passivation, Advanced Energy Materials 9 (28), 1900721 (2019).
    16. J. Li, L. Xu, T. Wang, J. Song, J. Chen, J. Xue, Y. Dong, B. Cai, Q. Shan, B. Han and H. Zeng, 50-fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control, Advanced Materials 29 (5) (2017).
    17. Y. Wang, X. Li, V. Nalla, H. Zeng and H. Sun, Solution‐processed low threshold vertical cavity surface emitting lasers from all‐inorganic perovskite nanocrystals, Advanced Functional Materials 27 (13), 1605088 (2017).
    18. P. Ramasamy, D.-H. Lim, B. Kim, S.-H. Lee, M.-S. Lee and J.-S. Lee, All-inorganic cesium lead halide perovskite nanocrystals for photodetector applications, Chemical Communications 52 (10), 2067-2070 (2016).
    19. G. C. Papavassiliou, G. Pagona, N. Karousis, G. A. Mousdis, I. Koutselas and A. Vassilakopoulou, Nanocrystalline/microcrystalline materials based on lead-halide units, Journal of Materials Chemistry 22 (17), 8271-8280 (2012).
    20. O. Vybornyi, S. Yakunin and M. V. Kovalenko, Polar-solvent-free colloidal synthesis of highly luminescent alkylammonium lead halide perovskite nanocrystals, Nanoscale 8 (12), 6278-6283 (2016).
    21. L. C. Schmidt, A. Pertegás, S. González-Carrero, O. Malinkiewicz, S. Agouram, G. Minguez Espallargas, H. J. Bolink, R. E. Galian and J. Pérez-Prieto, Nontemplate synthesis of CH3NH3PbBr3 perovskite nanoparticles, Journal of the American Chemical Society 136 (3), 850-853 (2014).
    22. Y. Tong, E. Bladt, M. F. Aygüler, A. Manzi, K. Z. Milowska, V. A. Hintermayr, P. Docampo, S. Bals, A. S. Urban and L. Polavarapu, Highly luminescent cesium lead halide perovskite nanocrystals with tunable composition and thickness by ultrasonication, Angewandte Chemie International Edition 55 (44), 13887-13892 (2016).
    23. H. Huang, Q. Xue, B. Chen, Y. Xiong, J. Schneider, C. Zhi, H. Zhong and A. L. Rogach, Top‐down fabrication of stable methylammonium lead halide perovskite nanocrystals by employing a mixture of ligands as coordinating solvents, Angewandte Chemie 129 (32), 9699-9704 (2017).
    24. Y. Li, H. Huang, Y. Xiong, S. V. Kershaw and A. L. Rogach, Revealing the formation mechanism of CsPbBr3 perovskite nanocrystals produced via a slowed‐down microwave‐assisted synthesis, Angewandte Chemie International Edition 57 (20), 5833-5837 (2018).
    25. Y. Tong, B. J. Bohn, E. Bladt, K. Wang, P. Müller‐Buschbaum, S. Bals, A. S. Urban, L. Polavarapu and J. Feldmann, From precursor powders to CsPbX3 perovskite nanowires: one‐pot synthesis, growth mechanism, and oriented self‐assembly, Angewandte Chemie International Edition 56 (44), 13887-13892 (2017).
    26. H. Liu, Z. Wu, H. Gao, J. Shao, H. Zou, D. Yao, Y. Liu, H. Zhang and B. Yang, One-step preparation of cesium lead halide CsPbX3 (X= Cl, Br, and I) perovskite nanocrystals by microwave irradiation, ACS Applied Materials & Interfaces 9 (49), 42919-42927 (2017).
    27. B. A. Koscher, J. K. Swabeck, N. D. Bronstein and A. P. Alivisatos, Essentially trap-free CsPbBr3 colloidal nanocrystals by postsynthetic thiocyanate surface treatment, Journal of the American Chemical Society 139 (19), 6566-6569 (2017).
    28. Q. A. Akkerman, D. Meggiolaro, Z. Dang, F. De Angelis and L. Manna, Fluorescent alloy CsPbxMn1–xI3 perovskite nanocrystals with high structural and optical stability, ACS Energy Letters 2 (9), 2183-2186 (2017).
    29. W. Liu, Q. Lin, H. Li, K. Wu, I. Robel, J. M. Pietryga and V. I. Klimov, Mn2+-doped lead halide perovskite nanocrystals with dual-color emission controlled by halide content, Journal of the American Chemical Society 138 (45), 14954-14961 (2016).
    30. Z.-J. Yong, S.-Q. Guo, J.-P. Ma, J.-Y. Zhang, Z.-Y. Li, Y.-M. Chen, B.-B. Zhang, Y. Zhou, J. Shu and J.-L. Gu, Doping-enhanced short-range order of perovskite nanocrystals for near-unity violet luminescence quantum yield, Journal of the American Chemical Society 140 (31), 9942-9951 (2018).
    31. V. M. Goldschmidt, The laws of crystal chemistry, Naturwissenschaften 14 (21), 477-485 (1926).
    32. W. Travis, E. Glover, H. Bronstein, D. Scanlon and R. Palgrave, On the application of the tolerance factor to inorganic and hybrid halide perovskites: a revised system, Chemical Science 7 (7), 4548-4556 (2016).
    33. C. Li, X. Lu, W. Ding, L. Feng, Y. Gao and Z. Guo, Formability of ABX3 (X= F, Cl, Br, I) halide perovskites, Acta Crystallographica Section B 64 (6), 702-707 (2008).
    34. L. Protesescu, S. Yakunin, S. Kumar, J. Bär, F. Bertolotti, N. Masciocchi, A. Guagliardi, M. Grotevent, I. Shorubalko and M. I. Bodnarchuk, Dismantling the “red wall” of colloidal perovskites: highly luminescent formamidinium and formamidinium–cesium lead iodide nanocrystals, ACS Nano 11 (3), 3119-3134 (2017).
    35. M. I. Saidaminov, O. F. Mohammed and O. M. Bakr, Low-dimensional-networked metal halide perovskites: the next big thing, ACS Energy Letters 2 (4), 889-896 (2017).
    36. B. Saparov and D. B. Mitzi, Organic–inorganic perovskites: structural versatility for functional materials design, Chemical Reviews 116 (7), 4558-4596 (2016).
    37. J.-P. Correa-Baena, M. Saliba, T. Buonassisi, M. Grätzel, A. Abate, W. Tress and A. Hagfeldt, Promises and challenges of perovskite solar cells, Science 358 (6364), 739-744 (2017).
    38. C. C. Stoumpos, C. D. Malliakas, J. A. Peters, Z. Liu, M. Sebastian, J. Im, T. C. Chasapis, A. C. Wibowo, D. Y. Chung and A. J. Freeman, Crystal growth of the perovskite semiconductor CsPbBr3: a new material for high-energy radiation detection, Crystal Growth & Design 13 (7), 2722-2727 (2013).
    39. S. Hirotsu, J. Harada, M. Iizumi and K. Gesi, Structural phase transitions in CsPbBr3, Journal of the Physical Society of Japan 37 (5), 1393-1398 (1974).
    40. F. Bertolotti, L. Protesescu, M. V. Kovalenko, S. Yakunin, A. Cervellino, S. J. Billinge, M. W. Terban, J. S. Pedersen, N. Masciocchi and A. Guagliardi, Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals, ACS Nano 11 (4), 3819-3831 (2017).
    41. M.-G. Ju, M. Chen, Y. Zhou, J. Dai, L. Ma, N. P. Padture and X. C. Zeng, Toward eco-friendly and stable perovskite materials for photovoltaics, Joule 2 (7), 1231-1241 (2018).
    42. M. V. Kovalenko, L. Protesescu and M. I. Bodnarchuk, Properties and potential optoelectronic applications of lead halide perovskite nanocrystals, Science 358 (6364), 745-750 (2017).
    43. Y. Kim, E. Yassitepe, O. Voznyy, R. Comin, G. Walters, X. Gong, P. Kanjanaboos, A. F. Nogueira and E. H. Sargent, Efficient luminescence from perovskite quantum dot solids, ACS Applied Materials & Interfaces 7 (45), 25007-25013 (2015).
    44. S. Huang, Z. Li, B. Wang, N. Zhu, C. Zhang, L. Kong, Q. Zhang, A. Shan and L. Li, Morphology evolution and degradation of CsPbBr3 nanocrystals under blue Light-emitting diode illumination, ACS Applied Materials & Interfaces 9 (8), 7249-7258 (2017).
    45. S. Sourisseau, N. Louvain, W. Bi, N. Mercier, D. Rondeau, F. Boucher, J.-Y. Buzaré and C. Legein, Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic− inorganic interface, Chemistry of Materials 19 (3), 600-607 (2007).
    46. E. Yassitepe, Z. Yang, O. Voznyy, Y. Kim, G. Walters, J. A. Castañeda, P. Kanjanaboos, M. Yuan, X. Gong and F. Fan, Amine‐free synthesis of cesium lead halide perovskite quantum dots for efficient light‐emitting diodes, Advanced Functional Materials 26 (47), 8757-8763 (2016).
    47. F. Krieg, S. T. Ochsenbein, S. Yakunin, S. Ten Brinck, P. Aellen, A. Süess, B. Clerc, D. Guggisberg, O. Nazarenko and Y. Shynkarenko, Colloidal CsPbX3 (X= Cl, Br, I) nanocrystals 2.0: Zwitterionic capping ligands for improved durability and stability, ACS Energy Letters 3 (3), 641-646 (2018).
    48. J. Dai, J. Xi, L. Li, J. Zhao, Y. Shi, W. Zhang, C. Ran, B. Jiao, X. Hou and X. Duan, Charge transport between coupling colloidal perovskite quantum dots assisted by functional conjugated ligands, Angewandte Chemie International Edition 57 (20), 5754-5758 (2018).
    49. M. L. Green and G. Parkin, Application of the covalent bond classification method for the teaching of inorganic chemistry, Journal of Chemical Education 91 (6), 807-816 (2014).
    50. J. De Roo, M. Ibanez, P. Geiregat, G. Nedelcu, W. Walravens, J. Maes, J. C. Martins, I. Van Driessche, M. V. Kovalenko and Z. Hens, Highly dynamic ligand binding and light absorption coefficient of cesium lead bromide perovskite nanocrystals, ACS Nano 10 (2), 2071-2081 (2016).
    51. M. A. Boles, D. Ling, T. Hyeon and D. V. Talapin, The surface science of nanocrystals, Nature Materials 15 (2), 141-153 (2016).
    52. Q. A. Akkerman, G. Rainò, M. V. Kovalenko and L. Manna, Genesis, challenges and opportunities for colloidal lead halide perovskite nanocrystals, Nature Materials 17 (5), 394-405 (2018).
    53. A. Pan, B. He, X. Fan, Z. Liu, J. J. Urban, A. P. Alivisatos, L. He and Y. Liu, Insight into the ligand-mediated synthesis of colloidal CsPbBr3 perovskite nanocrystals: the role of organic acid, base, and cesium precursors, ACS Nano 10 (8), 7943-7954 (2016).
    54. J. Pan, L. N. Quan, Y. Zhao, W. Peng, B. Murali, S. P. Sarmah, M. Yuan, L. Sinatra, N. M. Alyami and J. Liu, Highly efficient perovskite‐quantum‐dot light‐emitting diodes by surface engineering, Advanced Materials 28 (39), 8718-8725 (2016).
    55. Y. Tan, Y. Zou, L. Wu, Q. Huang, D. Yang, M. Chen, M. Ban, C. Wu, T. Wu and S. Bai, Highly luminescent and stable perovskite nanocrystals with octylphosphonic acid as a ligand for efficient light-emitting diodes, ACS Applied Materials & Interfaces 10 (4), 3784-3792 (2018).
    56. D. Gerion, F. Pinaud, S. C. Williams, W. J. Parak, D. Zanchet, S. Weiss and A. P. Alivisatos, Synthesis and properties of biocompatible water-soluble silica-coated CdSe/ZnS semiconductor quantum dots, The Journal of Physical Chemistry B 105 (37), 8861-8871 (2001).
    57. J.-N. Liu, W.-B. Bu and J.-L. Shi, Silica coated upconversion nanoparticles: A versatile platform for the development of efficient theranostics, Accounts of Chemical Research 48 (7), 1797-1805 (2015).
    58. D. N. Dirin, L. Protesescu, D. Trummer, I. V. Kochetygov, S. Yakunin, F. Krumeich, N. P. Stadie and M. V. Kovalenko, Harnessing defect-tolerance at the nanoscale: highly luminescent lead halide perovskite nanocrystals in mesoporous silica matrixes, Nano Letters 16 (9), 5866-5874 (2016).
    59. V. Malgras, S. Tominaka, J. W. Ryan, J. Henzie, T. Takei, K. Ohara and Y. Yamauchi, Observation of quantum confinement in monodisperse methylammonium lead halide perovskite nanocrystals embedded in mesoporous silica, Journal of the American Chemical Society 138 (42), 13874-13881 (2016).
    60. X. Li, Y. Wang, H. Sun and H. Zeng, Amino‐mediated anchoring Perovskite quantum dots for stable and low‐threshold random lasing, Advanced Materials 29 (36), 1701185 (2017).
    61. A. Pan, J. Wang, M. J. Jurow, M. Jia, Y. Liu, Y. Wu, Y. Zhang, L. He and Y. Liu, General strategy for the preparation of stable luminous nanocomposite inks using chemically addressable CsPbX3 peroskite nanocrystals, Chemistry of Materials 30 (8), 2771-2780 (2018).
    62. H. Huang, B. Chen, Z. Wang, T. F. Hung, A. S. Susha, H. Zhong and A. L. Rogach, Water resistant CsPbX3 nanocrystals coated with polyhedral oligomeric silsesquioxane and their use as solid state luminophores in all-perovskite white light-emitting devices, Chemical Science 7 (9), 5699-5703 (2016).
    63. W. Chen, J. Hao, W. Hu, Z. Zang, X. Tang, L. Fang, T. Niu and M. Zhou, Enhanced stability and tunable photoluminescence in perovskite CsPbX3/ZnS quantum dot heterostructure, Small 13 (21), 1604085 (2017).
    64. Z. Fang, M. Shang, X. Hou, Y. Zheng, Z. Du, Z. Yang, K.-C. Chou, W. Yang, Z. L. Wang and Y. Yang, Bandgap alignment of α-CsPbI3 perovskites with synergistically enhanced stability and optical performance via B-site minor doping, Nano Energy 61, 389-396 (2019).
    65. S. Yakunin, L. Protesescu, F. Krieg, M. I. Bodnarchuk, G. Nedelcu, M. Humer, G. De Luca, M. Fiebig, W. Heiss and M. V. Kovalenko, Low-threshold amplified spontaneous emission and lasing from colloidal nanocrystals of caesium lead halide perovskites, Nature Communications 6 (1), 1-9 (2015).
    66. Z. Liang, S. Zhao, Z. Xu, B. Qiao, P. Song, D. Gao and X. Xu, Shape-controlled synthesis of all-inorganic CsPbBr3 perovskite nanocrystals with bright blue emission, ACS Applied Materials & Interfaces 8 (42), 28824-28830 (2016).
    67. G. Nedelcu, L. Protesescu, S. Yakunin, M. I. Bodnarchuk, M. J. Grotevent and M. V. Kovalenko, Fast anion-exchange in highly luminescent nanocrystals of cesium lead halide perovskites (CsPbX3, X= Cl, Br, I), Nano Letters 15 (8), 5635-5640 (2015).
    68. W.-J. Yin, Y. Yan and S.-H. Wei, Anomalous alloy properties in mixed halide perovskites, The Journal of Physical Chemistry Letters 5 (21), 3625-3631 (2014).
    69. D. Amgar, T. Binyamin, V. Uvarov and L. Etgar, Near ultra-violet to mid-visible band gap tuning of mixed cation RbXCs1-XPbX3 (X= Cl or Br) perovskite nanoparticles, Nanoscale 10 (13), 6060-6068 (2018).
    70. S. Huang, B. Wang, Q. Zhang, Z. Li, A. Shan and L. Li, Postsynthesis potassium‐modification method to improve stability of CsPbBr3 perovskite nanocrystals, Advanced Optical Materials 6 (6), 1701106 (2018).
    71. Y. Liu, G. Pan, R. Wang, H. Shao, H. Wang, W. Xu, H. Cui and H. Song, Considerably enhanced exciton emission of CsPbCl3 perovskite quantum dots by the introduction of potassium and lanthanide ions, Nanoscale 10 (29), 14067-14072 (2018).
    72. M. Liu, G. Zhong, Y. Yin, J. Miao, K. Li, C. Wang, X. Xu, C. Shen and H. Meng, Aluminum‐doped cesium lead bromide perovskite nanocrystals with stable blue photoluminescence used for display backlight, Advanced Science 4 (11), 1700335 (2017).
    73. A. Swarnkar, W. J. Mir and A. Nag, Can B-site doping or alloying improve thermal-and phase-stability of all-inorganic CsPbX3 (X= Cl, Br, I) perovskites?, ACS Energy Letters 3 (2), 286-289 (2018).
    74. F. Yang, D. Hirotani, G. Kapil, M. A. Kamarudin, C. H. Ng, Y. Zhang, Q. Shen and S. Hayase, All‐inorganic CsPb1-XGeXI2Br perovskite with enhanced phase stability and photovoltaic performance, Angewandte Chemie International Edition 57 (39), 12745-12749 (2018).
    75. D. Parobek, B. J. Roman, Y. Dong, H. Jin, E. Lee, M. Sheldon and D. H. Son, Exciton-to-dopant energy transfer in Mn-doped cesium lead halide perovskite nanocrystals, Nano Letters 16 (12), 7376-7380 (2016).
    76. S. Zou, Y. Liu, J. Li, C. Liu, R. Feng, F. Jiang, Y. Li, J. Song, H. Zeng and M. Hong, Stabilizing cesium lead halide perovskite lattice through Mn (II) substitution for air-stable light-emitting diodes, Journal of the American Chemical Society 139 (33), 11443-11450 (2017).
    77. M. Li, X. Zhang, K. Matras-Postolek, H.-S. Chen and P. Yang, An anion-driven Sn2+ exchange reaction in CsPbBr3 nanocrystals towards tunable and high photoluminescence, Journal of Materials Chemistry C 6 (20), 5506-5513 (2018).
    78. Q. Shang, M. Li, L. Zhao, D. Chen, S. Zhang, S. Chen, P. Gao, C. Shen, J. Xing and G. Xing, Role of the exciton–polariton in a continuous-wave optically pumped CsPbBr3 perovskite laser, Nano Letters 20 (9), 6636-6643 (2020).
    79. M. M. Stylianakis, T. Maksudov, A. Panagiotopoulos, G. Kakavelakis and K. Petridis, Inorganic and hybrid perovskite based laser devices: a review, Materials 12 (6), 859 (2019).
    80. H. Sun, W. Tian, F. Cao, J. Xiong and L. Li, Ultrahigh‐performance self‐powered flexible double‐twisted fibrous broadband perovskite photodetector, Advanced Materials 30 (21), 1706986 (2018).
    81. L. Dou, Y. M. Yang, J. You, Z. Hong, W.-H. Chang, G. Li and Y. J. N. c. Yang, Solution-processed hybrid perovskite photodetectors with high detectivity, Nature Communications 5 (1), 1-6 (2014).
    82. K. X. Steirer, P. Schulz, G. Teeter, V. Stevanovic, M. Yang, K. Zhu and J. J. Berry, Defect tolerance in methylammonium lead triiodide perovskite, ACS Energy Letters 1 (2), 360-366 (2016).
    83. J. Kang and L.-W. Wang, High defect tolerance in lead halide perovskite CsPbBr3, The Journal of Physical Chemistry Letters 8 (2), 489-493 (2017).
    84. E. Yoon, K. Y. Jang, J. Park and T. W. Lee, Understanding the synergistic effect of device architecture design toward efficient perovskite light‐emitting diodes using interfacial layer engineering, Advanced Materials Interfaces 8 (3), 2001712 (2021).
    85. Q. Shan, J. Li, J. Song, Y. Zou, L. Xu, J. Xue, Y. Dong, C. Huo, J. Chen, B. Han and H. Zeng, All-inorganic quantum-dot light-emitting diodes based on perovskite emitters with low turn-on voltage and high humidity stability, Journal of Materials Chemistry C 5 (18), 4565-4570 (2017).
    86. F. Jin, B. Zhao, B. Chu, H. Zhao, Z. Su, W. Li and F. Zhu, Morphology control towards bright and stable inorganic halide perovskite light-emitting diodes, Journal of Materials Chemistry C 6 (6), 1573-1578 (2018).
    87. N. Yantara, S. Bhaumik, F. Yan, D. Sabba, H. A. Dewi, N. Mathews, P. P. Boix, H. V. Demir and S. Mhaisalkar, Inorganic halide perovskites for efficient light-emitting diodes, The Journal of Physical Chemistry Letters 6 (21), 4360-4364 (2015).
    88. T. Brown, R. Friend, I. Millard, D. Lacey, J. Burroughes and F. Cacialli, LiF/Al cathodes and the effect of LiF thickness on the device characteristics and built-in potential of polymer light-emitting diodes, Applied Physics Letters 77 (19), 3096-3098 (2000).
    89. M. V. Kovalenko, M. Scheele and D. V. Talapin, Colloidal nanocrystals with molecular metal chalcogenide surface ligands, Science 324 (5933), 1417-1420 (2009).
    90. J. Song, J. Li, X. Li, L. Xu, Y. Dong and H. Zeng, Quantum dot light‐emitting diodes based on inorganic perovskite cesium lead halides (CsPbX3), Advanced Materials 27 (44), 7162-7167 (2015).
    91. E. Moyen, A. Kanwat, S. Cho, H. Jun, R. Aad and J. Jang, Ligand removal and photo-activation of CsPbBr3 quantum dots for enhanced optoelectronic devices, Nanoscale 10 (18), 8591-8599 (2018).
    92. D. Lee and R. Condrate, FTIR spectral characterization of thin film coatings of oleic acid on glasses: I. Coatings on glasses from ethyl alcohol, Journal of Materials Science 34 (1), 139-146 (1999).
    93. S. Mourdikoudis and L. M. Liz-Marzán, Oleylamine in nanoparticle synthesis, Chemistry of Materials 25 (9), 1465-1476 (2013).
    94. F. Palazon, F. Di Stasio, S. Lauciello, R. Krahne, M. Prato and L. Manna, Evolution of CsPbBr3 nanocrystals upon post-synthesis annealing under an inert atmosphere, Journal of Materials Chemistry C 4 (39), 9179-9182 (2016).
    95. C. Carrillo-Carrión, S. Cárdenas, B. M. Simonet and M. Valcárcel, Quantum dots luminescence enhancement due to illumination with UV/Vis light, Chemical Communications (35), 5214-5226 (2009).
    96. H. Wu, Y. Zhang, M. Lu, X. Zhang, C. Sun, T. Zhang, V. L. Colvin and W. Y. William, Surface ligand modification of cesium lead bromide nanocrystals for improved light-emitting performance, Nanoscale 10 (9), 4173-4178 (2018).
    97. W. Zheng, Q. Wan, M. Liu, Q. Zhang, C. Zhang, R. Yan, X. Feng, L. Kong and L. Li, CsPbBr3 nanocrystal light-emitting diodes with efficiency up to 13.4% achieved by careful surface engineering and device engineering, The Journal of Physical Chemistry C 125 (5), 3110-3118 (2021).
    98. J. S. Yao, J. C. Zhang, L. Wang, K. H. Wang, X. C. Ru, J. N. Yang, J. J. Wang, X. Chen, Y. H. Song, Y. C. Yin, Y. F. Lan, Q. Zhang and H. B. Yao, Suppressing Auger recombination in cesium lead bromide perovskite nanocrystal film for bright light-emitting diodes, The Journal of Physical Chemistry Letters 11 (21), 9371-9378 (2020).
    99. J. Song, T. Fang, J. Li, L. Xu, F. Zhang, B. Han, Q. Shan and H. Zeng, Organic-inorganic hybrid passivation enables perovskite QLEDs with an EQE of 16.48%, Advanced Materials 30 (50), e1805409 (2018).
    100. G. Li, J. Huang, H. Zhu, Y. Li, J.-X. Tang and Y. Jiang, Surface ligand engineering for near-unity quantum yield inorganic halide perovskite QDs and high-performance QLEDs, Chemistry of Materials 30 (17), 6099-6107 (2018).
    101. M. Lu, J. Guo, S. Sun, P. Lu, X. Zhang, Z. Shi, W. W. Yu and Y. Zhang, Surface ligand engineering-assisted CsPbI3 quantum dots enable bright and efficient red light-emitting diodes with a top-emitting structure, Chemical Engineering Journal 404 (2021).
    102. S. Yuan, Z.-K. Wang, M.-P. Zhuo, Q.-S. Tian, Y. Jin and L.-S. Liao, Self-assembled high quality CsPbBr3 quantum dot films toward highly efficient light-emitting diodes, ACS Nano 12 (9), 9541-9548 (2018).
    103. D. Han, M. Imran, M. Zhang, S. Chang, X.-g. Wu, X. Zhang, J. Tang, M. Wang, S. Ali and X. Li, Efficient light-emitting diodes based on in situ fabricated FAPbBr3 nanocrystals: the enhancing role of the ligand-assisted reprecipitation process, ACS Nano 12 (8), 8808-8816 (2018).
    104. J. H. Park, A.-y. Lee, J. C. Yu, Y. S. Nam, Y. Choi, J. Park and M. H. Song, Surface ligand engineering for efficient perovskite nanocrystal-based light-emitting diodes, ACS Applied Materials & Interfaces 11 (8), 8428-8435 (2019).
    105. S. ten Brinck and I. Infante, Surface termination, morphology, and bright photoluminescence of cesium lead halide perovskite nanocrystals, ACS Energy Letters 1 (6), 1266-1272 (2016).
    106. K. J. Karki, M. Abdellah, W. Zhang and T. Pullerits, Different emissive states in the bulk and at the surface of methylammonium lead bromide perovskite revealed by two-photon micro-spectroscopy and lifetime measurements, APL Photonics 1 (4), 046103 (2016).
    107. C. Han, K. Wang, X. Zhu, H. Yu, X. Sun, Q. Yang and B. Hu, Unraveling surface and bulk trap states in lead halide perovskite solar cells using impedance spectroscopy, Journal of Physics D: Applied Physics 51 (9), 095501 (2018).
    108. Y. Yang, Y. Yan, M. Yang, S. Choi, K. Zhu, J. M. Luther and M. C. Beard, Low surface recombination velocity in solution-grown CH3NH3PbBr3 perovskite single crystal, Nature Communications 6 (1), 1-6 (2015).
    109. X. Zheng, B. Chen, J. Dai, Y. Fang, Y. Bai, Y. Lin, H. Wei, X. C. Zeng and J. Huang, Defect passivation in hybrid perovskite solar cells using quaternary ammonium halide anions and cations, Nature Energy 2 (7), 1-9 (2017).
    110. L. Xu, J. Li, B. Cai, J. Song, F. Zhang, T. Fang and H. Zeng, A bilateral interfacial passivation strategy promoting efficiency and stability of perovskite quantum dot light-emitting diodes, Nature Communications 11 (1), 3902 (2020).
    111. S.-m. Chang, P.-h. Lo and C.-t. Chang, Photocatalytic behavior of TOPO-capped TiO2 nanocrystals for degradation of endocrine disrupting chemicals, Applied Catalysis B: Environmental 91 (3-4), 619-627 (2009).
    112. X. Yang, X. Zhang, J. Deng, Z. Chu, Q. Jiang, J. Meng, P. Wang, L. Zhang, Z. Yin and J. You, Efficient green light-emitting diodes based on quasi-two-dimensional composition and phase engineered perovskite with surface passivation, Nature Communications 9 (1), 1-8 (2018).
    113. K. S. Yook and J. Y. Lee, Organic materials for deep blue phosphorescent organic light‐emitting diodes, Advanced Materials 24 (24), 3169-3190 (2012).
    114. T. Chiba, Y. Hayashi, H. Ebe, K. Hoshi, J. Sato, S. Sato, Y.-J. Pu, S. Ohisa and J. Kido, Anion-exchange red perovskite quantum dots with ammonium iodine salts for highly efficient light-emitting devices, Nature Photonics 12 (11), 681-687 (2018).
    115. X. Shen, Y. Zhang, S. V. Kershaw, T. Li, C. Wang, X. Zhang, W. Wang, D. Li, Y. Wang and M. Lu, Zn-alloyed CsPbI3 nanocrystals for highly efficient perovskite light-emitting devices, Nano Letters 19 (3), 1552-1559 (2019).
    116. Y. S. Shin, Y. J. Yoon, J. Heo, S. Song, J. W. Kim, S. Y. Park, H. W. Cho, G. H. Kim and J. Y. Kim, Functionalized PFN-X (X = Cl, Br, or I) for balanced charge carriers of highly efficient blue light-emitting diodes, ACS Applied Materials & Interfaces 12 (31), 35740-35747 (2020).
    117. Y. Sun, X. Yang, W. Jiao, J. Wu and Z. Zhao, All-inorganic perovskite quantum dots based on InX3-trioctylphosphine oxide hybrid passivation strategies for high-performance and full-colored light-emitting diodes, ACS Applied Electronic Materials 3 (1), 415-421 (2020).
    118. X. Zheng, S. Yuan, J. Liu, J. Yin, F. Yuan, W.-S. Shen, K. Yao, M. Wei, C. Zhou and K. Song, Chlorine vacancy passivation in mixed halide perovskite quantum dots by organic pseudohalides enables efficient Rec. 2020 blue light-emitting diodes, ACS Energy Letters 5 (3), 793-798 (2020).
    119. J. Tauc, R. Grigorovici and A. Vancu, Optical properties and electronic structure of amorphous germanium, Physica Status Solidi 15 (2), 627-637 (1966).
    120. E. Davis and N. Mott, Conduction in non-crystalline systems V. Conductivity, optical absorption and photoconductivity in amorphous semiconductors, Philosophical Magazine 22 (179), 0903-0922 (1970).
    121. W.-C. Chen, Y.-H. Fang, L.-G. Chen, F.-C. Liang, Z.-L. Yan, H. Ebe, Y. Takahashi, T. Chiba, J. Kido and C.-C. Kuo, High luminescence and external quantum efficiency in perovskite quantum-dots light-emitting diodes featuring bilateral affinity to silver and short alkyl ligands, Chemical Engineering Journal 414 (2021).
    122. X. Li, L. Yang, Q. Yang, S. Wang, J. Ding and L. Wang, Heterogeneous post-passivation of inorganic cesium lead halide perovskite quantum dots for efficient electroluminescent devices, Journal of Materials Chemistry C 9 (11), 3978-3986 (2021).
    123. A. M. Brouwer, Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report), Pure and Applied Chemistry 83 (12), 2213-2228 (2011).
    124. M. Anaya, B. P. Rand, R. J. Holmes, D. Credgington, H. J. Bolink, R. H. Friend, J. Wang, N. C. Greenham and S. D. Stranks, Best practices for measuring emerging light-emitting diode technologies, Nature Photonics 13 (12), 818-821 (2019).
    125. M. Shukla, N. Brahme, R. Kher and M. Khokhar, Elementary approach to calculate quantum efficiency of polymer light emitting diodes, Indian Journal of Pure & Applied Physics 49, 142-145 (2011).
    126. S.-K. Kim, H. Yang and Y.-S. Kim, Control of carrier injection and transport in quantum dot light emitting diodes (QLEDs) via modulating Schottky injection barrier and carrier mobility, Journal of Applied Physics 126 (18) (2019).
    127. T. Bu, X. Liu, Y. Zhou, J. Yi, X. Huang, L. Luo, J. Xiao, Z. Ku, Y. Peng and F. Huang, A novel quadruple-cation absorber for universal hysteresis elimination for high efficiency and stable perovskite solar cells, Energy Environmental Science 10 (12), 2509-2515 (2017).
    128. D.-Y. Son, S.-G. Kim, J.-Y. Seo, S.-H. Lee, H. Shin, D. Lee and N.-G. Park, Universal approach toward hysteresis-free perovskite solar cell via defect engineering, Journal of American Chemical Society 140 (4), 1358-1364 (2018).
    129. M. I. Saidaminov, M. A. Haque, J. Almutlaq, S. Sarmah, X. H. Miao, R. Begum, A. A. Zhumekenov, I. Dursun, N. Cho and B. Murali, Inorganic lead halide perovskite single crystals: phase‐selective low‐temperature growth, carrier transport properties, and self‐powered photodetection, Advanced Optical Materials 5 (2), 1600704 (2017).
    130. P. Murgatroyd, Theory of space-charge-limited current enhanced by Frenkel effect, Physics D: Applied Physics 3 (2), 151 (1970).
    131. F. Li, Y. Liu, H. Wang, Q. Zhan, Q. Liu and Z. Xia, Postsynthetic surface trap removal of CsPbX3 (X= Cl, Br, or I) quantum dots via a ZnX2/hexane solution toward an enhanced luminescence quantum yield, Chemistry of Materials 30 (23), 8546-8554 (2018).
    132. Y. Liu, F. Li, Q. Liu and Z. Xia, Synergetic effect of postsynthetic water treatment on the enhanced photoluminescence and stability of CsPbX3 (X= Cl, Br, I) perovskite nanocrystals, Chemistry of Materials 30 (19), 6922-6929 (2018).
    133. E. Fanizza, F. Cascella, D. Altamura, C. Giannini, A. Panniello, L. Triggiani, F. Panzarea, N. Depalo, R. Grisorio and G. P. Suranna, Post-synthesis phase and shape evolution of CsPbBr3 colloidal nanocrystals: The role of ligands, Nano Research 12 (5), 1155-1166 (2019).
    134. T. Chiba, K. Hoshi, Y.-J. Pu, Y. Takeda, Y. Hayashi, S. Ohisa, S. Kawata and J. Kido, High-efficiency perovskite quantum-dot light-emitting devices by effective washing process and interfacial energy level alignment, ACS Applied Materials Interfaces 9 (21), 18054-18060 (2017).
    135. A. H. Ip, S. M. Thon, S. Hoogland, O. Voznyy, D. Zhitomirsky, R. Debnath, L. Levina, L. R. Rollny, G. H. Carey and A. Fischer, Hybrid passivated colloidal quantum dot solids, Nature Nano Technology 7 (9), 577-582 (2012).
    136. J. Tang, K. W. Kemp, S. Hoogland, K. S. Jeong, H. Liu, L. Levina, M. Furukawa, X. Wang, R. Debnath and D. Cha, Colloidal-quantum-dot photovoltaics using atomic-ligand passivation, Nature Materials 10 (10), 765-771 (2011).
    137. S. U. Rege and R. T. Yang, A novel FTIR method for studying mixed gas adsorption at low concentrations: H2O and CO2 on NaX zeolite and γ-alumina, Chemical Engineering Science 56 (12), 3781-3796 (2001).
    138. W. Lv, L. Wang, L. Wang, Y. Xing, D. Yang, Z. Hao and Y. Luo, InGaN quantum dot green light-emitting diodes with negligible blue shift of electroluminescence peak wavelength, Applied Physics Express 7 (2), 025203 (2014).
    139. A. Abate, M. Saliba, D. J. Hollman, S. D. Stranks, K. Wojciechowski, R. Avolio, G. Grancini, A. Petrozza and H. J. Snaith, Supramolecular halogen bond passivation of organic–inorganic halide perovskite solar cells, Nano Letters 14 (6), 3247-3254 (2014).

    無法下載圖示 全文公開日期 2031/09/01 (校內網路)
    全文公開日期 2031/09/01 (校外網路)
    全文公開日期 2031/09/01 (國家圖書館:臺灣博碩士論文系統)
    QR CODE