簡易檢索 / 詳目顯示

研究生: 張憶茹
Yi-Ju Chang
論文名稱: 大氣常壓微電漿輔助合成矽量子點作為螢光奈米探針並應用於神經遞質的感測
Microplasma-Engineered Silicon Quantum Dots as the Fluorescent Nanoprobes for Neurotransmitter Biomarker Detection
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 魏大欽
Ta-Chin Wei
劉沂欣
Hi-Shin Liu
蕭偉文
Wei-Wen Hsiao
江偉宏
Wei-Hung Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 112
中文關鍵詞: 大氣常壓微電漿矽量子點多巴胺感測腎上腺素感測光致發光感測器
外文關鍵詞: Atmosphere-pressure microplasma, Silicon quantum dots, Dopamine sensing, Epinephrine sensing, Photoluminescence sensor
相關次數: 點閱:326下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 矽量子點是一種新型的半導體材料,主要由無毒矽元素所組成的零維奈米材料,由於其受到量子侷限效應展現獨特的材料特性,如光致發光特性、可調控的能隙與表面官能化特性,同時具有低細胞毒性以及良好的生物相容性,它已被應用於各個領域,使其在化學及生物感測方面具有巨大潛力。多巴胺和腎上腺素分子是人體內中樞神經系統中重要的神經傳遞物質,它們對於癌症和神經系統疾病的診斷以及新藥的開發至關重要。然而,多巴胺和腎上腺素濃度的測定可為藥物分析提供參考,並預防濃度異常引起的疾病。因此,要了解神經遞質對神經系統的影響,監測多巴胺和腎上腺素的濃度是現今科學家關注的焦點。
    然而,過去傳統方法大多以水熱法和微波法合成矽量子點,但它們的缺點在於繁瑣的前處理、反應時間長以及需要額外添加化學還原劑,因此,我們提出另一種快速簡便且新穎的技術,利用大氣常壓微電漿來進行合成,此優點在於可以提供高能的電子密度、且不需要添加額外的還原劑來進行反應,並透過改變電解質的濃度可成功合成出可調控波長的矽量子點。在本研究中,通過調節感測環境的酸鹼值,對多巴胺和腎上腺素濃度的量測具有顯著的選擇性和靈敏度,可以達到 20.6 nM 和68.1 nM 的濃度偵測極限,此外透過靜態焠滅與螢光共振能量轉移、電子轉移的協同作用可藉此求得待測物之濃度達到感測之目的。


    The silicon quantum dot (SiQD) is a recently emerged semiconductor nanomaterial with a lot of notable properties such as optical property, tunable bandgap, biocompatibility, and low toxicity. It has been used in various field because of its unique materials properties, and controllable surface functionalities, making them promising materials for chemical and biological sensing. Dopamine (DA) and Epinephrine (EP) are important neurotransmitter biomarkers in the central nervous system of the human body. The determination of DA and EP concentration can provide a reference for drug analysis and prevent diseases caused by abnormal concentration. Therefore, to understand the effect of neurotransmitter on the nervous system, it is very important to monitor the concentration of DA and EP. However, the traditional approaches for SiQDs synthesis such as hydrothermal and microwave methods, usually involve lengthy period, toxic chemicals, and complex operation. Here, we report a facile and rapid microplasma synthesis of SiQDs for detecting EP and DA with significant selectivity and sensitivity. Furthermore, the PL emission of SiQDs could be tuned by adjusting the concentration of electrolyte, and presented an abundant ratio of oxygen functional group. In this research, by adjusting the pH, the selective detection is achieved the ranges from 0.6 to 50 μM for DA and EP with the very low limits of detections (LoD) of 20.6 and 68.1 nM for DA and EP, respectively. The mechanism for the detection of DA and EP are related to Förster resonance energy transfer (FRET) and electron transfer (ET) through static quenching. To summarize, this method provides a good potential of neurotransmitter biomarkers sensing with SiQDs, and the facile and environmental-friendly method to synthesize SiQDs.

    Abstract 摘要 致謝 Outline List of figures List of tables 1. Introduction 1-1 Silicon quantum dot 1-1-1 Photoluminescence 1-1-2 Synthesis method 1-2 Microplasma technology 1-3 Photoluminescence sensing (PL sensing) 1-3-1 SiQDs-based sensors 1-3-2 PL sensing mechanism 1-3-3 Dopamine (DA) sensing 1-3-4 Epinephrine (EP) sensing 2. Experiment 2-1 Materials and Chemicals 2-2 SiQDs synthesis 2-2-1 Emission tunable of Silicon quantum dots 2-2-2 Purification & Yield Calculation 2-2-3 Oxygen functionalities calculations 2-3 Biomarker selectivity test 2-4 Photoluminescence-based DA and EP sensing 2-5 Characterizations and apparatus 3. Synthesis and Characterization of Silicon Quantum Dots (SiQDs) 3-1 Synthesis of emission-tunable SiQDs by microplama 3-2 Characterization of emission-tunable SiQDs 3-3 Mechanism study of microplasma-assisted synthesize SiQDs 4. Photoluminescence-based Neurotransmitter Biomarker Sensing 4-1. Photoluminescence-based dopamine sensing 4-1-1 Optimization of photoluminescence-based dopamine sensing 4-1-2 Comparison of dopamine sensing with emission-tunable SiQD 4-1-3 Possible sensing mechanism 4-2 Photoluminescence-based epinephrine sensing 4-2-1 Optimization of photoluminescence-based epinephrine sensing 4-2-2 Comparison of epinephrine sensing with emission-tunable SiQD 4-2-3 Possible sensing mechanism 5. Conclusion 6. Reference

    [1] S.K. Kailasa, K.H. Cheng, H.F. Wu, Semiconductor Nanomaterials-Based Fluorescence Spectroscopic and Matrix-Assisted Laser Desorption/Ionization (MALDI) Mass Spectrometric Approaches to Proteome Analysis, Materials 6(12) (2013) 5763-5795.
    [2] J. Yin, Y. Huang, S. Hameed, R. Zhou, L. Xie, Y. Ying, Large scale assembly of nanomaterials: mechanisms and applications, Nanoscale 12(34) (2020) 17571-17589.
    [3] K. Kim, J.Y. Choi, T. Kim, S.H. Cho, H.J. Chung, A role for graphene in silicon-based semiconductor devices, Nature 479(7373) (2011) 338-344.
    [4] B. Ghosh, N. Shirahata, Colloidal silicon quantum dots: synthesis and luminescence tuning from the near-UV to the near-IR range, Science and Technology of Advanced Materials 15(1) (2014) 014207.
    [5] J. Wu, J. Dai, Y. Shao, Y. Sun, One-step synthesis of fluorescent silicon quantum dots (Si-QDs) and their application for cell imaging, RSC Advances 5(102) (2015) 83581-83587.
    [6] W.M. Girma, M.Z. Fahmi, A. Permadi, M.A. Abate, J.Y. Chang, Synthetic strategies and biomedical applications of I-III-VI ternary quantum dots, Journal of Materials Chemistry B 5(31) (2017) 6193-6216.
    [7] G. Ramalingam, P. Kathirgamanathan, G. Ravi, T. Elangovan, N. Manivannan, K. Kasinathan, Quantum confinement effect of 2D nanomaterials, Quantum Dots-Fundamental and Applications, IntechOpen2020.
    [8] Y. He, S. Su, T. Xu, Y. Zhong, J.A. Zapien, J. Li, C. Fan, S.-T. Lee, Silicon nanowires-based highly-efficient SERS-active platform for ultrasensitive DNA detection, Nano Today 6(2) (2011) 122-130.
    [9] S. Chandra, G. Beaune, N. Shirahata, F.M. Winnik, A one-pot synthesis of water soluble highly fluorescent silica nanoparticles, Journal of Materials Chemistry B 5(7) (2017) 1363-1370.
    [10] S. Morozova, M. Alikina, A. Vinogradov, M. Pagliaro, Silicon Quantum Dots: Synthesis, Encapsulation, and Application in Light-Emitting Diodes, Frontiers in Chemistry 8 (2020) 191.
    [11] S.A. Empedocles, R. Neuhauser, K. Shimizu, M.G. Bawendi, Photoluminescence from single semiconductor nanostructures, Advanced Materials 11(15) (1999) 1243-1256.
    [12] S. Bhagyaraj, O.S. Oluwafemi, I. Krupa, Polymers in optics, Polymer Science and Innovative Applications2020, pp. 423-455.
    [13] T. Takagahara, K. Takeda, Theory of the quantum confinement effect on excitons in quantum dots of indirect-gap materials, Physical Review B: Condensed Matter 46(23) (1992) 15578-15581.
    [14] M.L. Mastronardi, F. Maier-Flaig, D. Faulkner, E.J. Henderson, C. Kubel, U. Lemmer, G.A. Ozin, Size-dependent absolute quantum yields for size-separated colloidally-stable silicon nanocrystals, Nano Letters 12(1) (2012) 337-342.
    [15] M. Dasog, Z. Yang, S. Regli, T.M. Atkins, A. Faramus, M.P. Singh, E. Muthuswamy, S.M. Kauzlarich, R.D. Tilley, J.G. Veinot, Chemical insight into the origin of red and blue photoluminescence arising from freestanding silicon nanocrystals, ACS Nano 7(3) (2013) 2676-2685.
    [16] M. Montalti, A. Cantelli, G. Battistelli, Nanodiamonds and silicon quantum dots: ultrastable and biocompatible luminescent nanoprobes for long-term bioimaging, Chemical Society Reviews 44(14) (2015) 4853-4921.
    [17] K. Dohnalová, A.N. Poddubny, A.A. Prokofiev, W.D.A.M. de Boer, C.P. Umesh, J.M.J. Paulusse, H. Zuilhof, T. Gregorkiewicz, Surface brightens up Si quantum dots: direct bandgap-like size-tunable emission, Light: Science & Applications 2(1) (2013) e47-e47.
    [18] X. Li, Y. He, M.T. Swihart, Surface functionalization of silicon nanoparticles produced by laser-driven pyrolysis of silane followed by HF− HNO3 etching, Langmuir 20(11) (2004) 4720-4727.
    [19] Y. Xin, T. Kitasako, M. Maeda, K.-i. Saitow, Solvent dependence of laser-synthesized blue-emitting Si nanoparticles: Size, quantum yield, and aging performance, Chemical Physics Letters 674 (2017) 90-97.
    [20] C.C. Tu, K.P. Chen, T.A. Yang, M.Y. Chou, L.Y. Lin, Y.K. Li, Silicon Quantum Dot Nanoparticles with Antifouling Coatings for Immunostaining on Live Cancer Cells, ACS Applied Materials & Interfaces 8(22) (2016) 13714-13723.
    [21] Z. Kang, C.H.A. Tsang, Z. Zhang, M. Zhang, N.-b. Wong, J.A. Zapien, Y. Shan, S.-T. Lee, A polyoxometalate-assisted electrochemical method for silicon nanostructures preparation: from quantum dots to nanowires, Journal of the American Chemical Society 129(17) (2007) 5326-5327.
    [22] Z. Kang, Y. Liu, C.H.A. Tsang, D.D.D. Ma, X. Fan, N.-B. Wong, S.-T. Lee, Water-Soluble Silicon Quantum Dots with Wavelength-Tunable Photoluminescence, Advanced Materials 21(6) (2009) 661-664.
    [23] J. Hwang, Y. Jeong, K.H. Lee, Y. Seo, J. Kim, J.W. Hong, E. Kamaloo, T.A. Camesano, J. Choi, Simple Preparation of Fluorescent Silicon Nanoparticles from Used Si Wafers, Industrial & Engineering Chemistry Research 54(22) (2015) 5982-5989.
    [24] C.M. Hessel, E.J. Henderson, J.G. Veinot, An investigation of the formation and growth of oxide-embedded silicon nanocrystals in hydrogen silsesquioxane-derived nanocomposites, The Journal of Physical Chemistry C 111(19) (2007) 6956-6961.
    [25] M. Dasog, G.B. De los Reyes, L.V. Titova, F.A. Hegmann, J.G. Veinot, Size vs surface: tuning the photoluminescence of freestanding silicon nanocrystals across the visible spectrum via surface groups, ACS Nano 8(9) (2014) 9636-9648.
    [26] G.A. Marcelo, C. Lodeiro, J.L. Capelo, J. Lorenzo, E. Oliveira, Magnetic, fluorescent and hybrid nanoparticles: From synthesis to application in biosystems, Materials Science and Engineering C 106 (2020) 110104.
    [27] P. Searson, J. Macaulay, S. Prokes, The formation, morphology, and optical properties of porous silicon structures, Journal of the Electrochemical Society 139(11) (1992) 3373.
    [28] D. Rioux, M. Laferrière, A. Douplik, D. Shah, L.D. Lilge, A.V. Kabashin, M. Meunier, Silicon nanoparticles produced by femtosecond laser ablation in water as novel contamination-free photosensitizers, Journal of Biomedical Optics 14(2) (2009) 021010.
    [29] P. Blandin, K.A. Maximova, M.B. Gongalsky, J.F. Sanchez-Royo, V.S. Chirvony, M. Sentis, V.Y. Timoshenko, A.V. Kabashin, Femtosecond laser fragmentation from water-dispersed microcolloids: toward fast controllable growth of ultrapure Si-based nanomaterials for biological applications, Journal of Materials Chemistry B 1(19) (2013) 2489-2495.
    [30] J.R. Heath, A liquid-solution-phase synthesis of crystalline silicon, Science 258(5085) (1992) 1131-1133.
    [31] Q. Li, Y. He, J. Chang, L. Wang, H. Chen, Y.W. Tan, H. Wang, Z. Shao, Surface-modified silicon nanoparticles with ultrabright photoluminescence and single-exponential decay for nanoscale fluorescence lifetime imaging of temperature, Journal of the American Chemical Society 135(40) (2013) 14924-14927.
    [32] Y. Zhong, F. Peng, F. Bao, S. Wang, X. Ji, L. Yang, Y. Su, S.T. Lee, Y. He, Large-scale aqueous synthesis of fluorescent and biocompatible silicon nanoparticles and their use as highly photostable biological probes, Journal of the American Chemical Society 135(22) (2013) 8350-8356.
    [33] F.-G. Wu, X. Zhang, S. Kai, M. Zhang, H.-Y. Wang, J.N. Myers, Y. Weng, P. Liu, N. Gu, Z. Chen, One-Step Synthesis of Superbright Water-Soluble Silicon Nanoparticles with Photoluminescence Quantum Yield Exceeding 80%, Advanced Materials Interfaces 2(16) (2015) 1500360.
    [34] Y. Guo, L. Zhang, F. Cao, L. Mang, X. Lei, S. Cheng, J. Song, Hydrothermal synthesis of blue-emitting silicon quantum dots for fluorescent detection of hypochlorite in tap water, Analytical Methods 8(13) (2016) 2723-2728.
    [35] C. Pan, Q. Wen, L. Ma, X. Qin, S. Feng, Green-emissive water-dispersible silicon quantum dots for the fluorescent and colorimetric dual mode sensing of curcumin, Analytical Methods 13(42) (2021) 5025-5034.
    [36] S. Shen, B. Huang, X. Guo, H. Wang, A dual-responsive fluorescent sensor for Hg(2+) and thiols based on N-doped silicon quantum dots and its application in cell imaging, Journal of Materials Chemistry B 7(44) (2019) 7033-7041.
    [37] P. Felbier, J. Yang, J. Theis, R.W. Liptak, A. Wagner, A. Lorke, G. Bacher, U. Kortshagen, Highly Luminescent ZnO Quantum Dots Made in a Nonthermal Plasma, Advanced Functional Materials 24(14) (2014) 1988-1993.
    [38] R. Foest, M. Schmidt, K. Becker, Microplasmas, an emerging field of low-temperature plasma science and technology, International Journal of Mass Spectrometry 248(3) (2006) 87-102.
    [39] J.J. Shi, M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas, Physical Review Letters 96(10) (2006) 105009.
    [40] W.-H. Chiang, C. Richmonds, R.M. Sankaran, Continuous-flow, atmospheric-pressure microplasmas: a versatile source for metal nanoparticle synthesis in the gas or liquid phase, Plasma Sources Science and Technology 19(3) (2010) 034011.
    [41] D. Mariotti, R.M. Sankaran, Microplasmas for nanomaterials synthesis, Journal of Physics D: Applied Physics 43(32) (2010) 323001.
    [42] H. Qiu, C. Luo, M. Sun, F. Lu, L. Fan, X. Li, A chemiluminescence sensor for determination of epinephrine using graphene oxide–magnetite-molecularly imprinted polymers, Carbon 50(11) (2012) 4052-4060.
    [43] C. Zhang, J. Ren, J. Zhou, M. Cui, N. Li, B. Han, Q. Chen, Facile fabrication of a 3,4,9,10-perylene tetracarboxylic acid functionalized graphene-multiwalled carbon nanotube-gold nanoparticle nanocomposite for highly sensitive and selective electrochemical detection of dopamine, Analyst 143(13) (2018) 3075-3084.
    [44] T. Joseph, N. Thomas, A facile electrochemical sensor based on titanium oxide (TiO2)/reduced graphene oxide (RGO) nano composite modified carbon paste electrode for sensitive detection of epinephrine (EP) from ternary mixture, Materials Today: Proceedings 41 (2021) 606-609.
    [45] E. Chan, P. Wee, P. Ho, P. Ho, High-performance liquid chromatographic assay for catecholamines and metanephrines using fluorimetric detection with pre-column 9-fluorenylmethyloxycarbonyl chloride derivatization, Journal of Chromatography B: Biomedical Sciences and Applications 749(2) (2000) 179-189.
    [46] D. Wu, H. Xie, H. Lu, W. Li, Q. Zhang, Sensitive determination of norepinephrine, epinephrine, dopamine and 5-hydroxytryptamine by coupling HPLC with [Ag (HIO6) 2] 5−–luminol chemiluminescence detection., Biomed Chromatogr 30(9) (2016) 1458-1466.
    [47] J. Lee, H.K. Lee, Fully automated dynamic in-syringe liquid-phase microextraction and on-column derivatization of carbamate pesticides with gas chromatography/mass spectrometric analysis, Analytical Chemistry 83(17) (2011) 6856-6861.
    [48] P. Jiang, Z. Guo, Fluorescent detection of zinc in biological systems: recent development on the design of chemosensors and biosensors, Coordination Chemistry Reviews 248(1-2) (2004) 205-229.
    [49] Y. Yi, J. Deng, Y. Zhang, H. Li, S. Yao, Label-free Si quantum dots as photoluminescence probes for glucose detection, Chem Commun (Camb) 49(6) (2013) 612-614.
    [50] J. Lin, Q. Wang, Role of novel silicon nanoparticles in luminescence detection of a family of antibiotics, RSC Advances 5(35) (2015) 27458-27463.
    [51] N.A.A. Anas, Y.W. Fen, N.A.S. Omar, W.M.E.M.M. Daniyal, N.S.M. Ramdzan, S. Saleviter, Development of graphene quantum dots-based optical sensor for toxic metal ion detection, Sensors 19(18) (2019) 3850.
    [52] H. Yin, A. Truskewycz, I.S. Cole, Quantum dot (QD)-based probes for multiplexed determination of heavy metal ions, Microchimica Acta 187(6) (2020) 1-25.
    [53] X. Zhang, C. Li, S. Zhao, H. Pang, Y. Han, X. Luo, W. Tang, Z. Li, S doped silicon quantum dots with high quantum yield as a fluorescent sensor for determination of Fe3+ in water, Optical Materials 110 (2020) 110461.
    [54] Y. Feng, Y. Liu, C. Su, X. Ji, Z. He, New fluorescent pH sensor based on label-free silicon nanodots, Sensors and Actuators B: Chemical 203 (2014) 795-801.
    [55] M. Na, Y. Han, Y. Chen, S. Ma, J. Liu, X. Chen, Synthesis of Silicon Nanoparticles Emitting Yellow-Green Fluorescence for Visualization of pH Change and Determination of Intracellular pH of Living Cells, Anal Chem 93(12) (2021) 5185-5193.
    [56] C.M. Gonzalez, J.G.C. Veinot, Silicon nanocrystals for the development of sensing platforms, Journal of Materials Chemistry C 4(22) (2016) 4836-4846.
    [57] F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: A review on mechanisms and applications, Microchimica Acta 184(7) (2017) 1899-1914.
    [58] T. Chen, B. He, J. Tao, Y. He, H. Deng, X. Wang, Y. Zheng, Application of Förster Resonance Energy Transfer (FRET) technique to elucidate intracellular and in vivo biofate of nanomedicines, Advanced Drug Delivery Reviews 143 (2019) 177-205.
    [59] J.R. Lakowicz, Principles of fluorescence spectroscopy, Springer2006.
    [60] J.F. Lovell, J. Chen, M.T. Jarvi, W.-G. Cao, A.D. Allen, Y. Liu, T.T. Tidwell, B.C. Wilson, G. Zheng, FRET quenching of photosensitizer singlet oxygen generation, The Journal of Physical Chemistry B 113(10) (2009) 3203-3211.
    [61] M. Kuscu, O.B. Akan, Coverage and throughput analysis for FRET-based mobile molecular sensor/actor nanonetworks, Nano Communication Networks 5(1-2) (2014) 45-53.
    [62] M.C. Dos Santos, W.R. Algar, I.L. Medintz, N. Hildebrandt, Quantum dots for Förster resonance energy transfer (FRET), TrAC Trends in Analytical Chemistry 125 (2020) 115819.
    [63] L.K. Fraiji, D.M. Hayes, T. Werner, Static and dynamic fluorescence quenching experiments for the physical chemistry laboratory, Journal of Chemical Education 69(5) (1992) 424.
    [64] D. Genovese, M. Cingolani, E. Rampazzo, L. Prodi, N. Zaccheroni, Static quenching upon adduct formation: a treatment without shortcuts and approximations, Chemical Society Reviews (2021) 8414-8427.
    [65] J. Wei, Y. Yuan, H. Li, D. Hao, C. Sun, G. Zheng, R. Wang, A novel fluorescent sensor for water in organic solvents based on dynamic quenching of carbon quantum dots, New Journal of Chemistry 42(23) (2018) 18787-18793.
    [66] K. Jackowska, P. Krysinski, New trends in the electrochemical sensing of dopamine, Analytical and Bioanalytical Chemistry 405(11) (2013) 3753-3771.
    [67] S. Casalini, F. Leonardi, T. Cramer, F. Biscarini, Organic field-effect transistor for label-free dopamine sensing, Organic Electronics 14(1) (2013) 156-163.
    [68] F.B. Kamal Eddin, Y. Wing Fen, Recent Advances in Electrochemical and Optical Sensing of Dopamine, Sensors (Basel, Switzerland) 20(4) (2020).
    [69] B. Yu, D. Kuang, S. Liu, C. Liu, T. Zhang, Template-assisted self-assembly method to prepare three-dimensional reduced graphene oxide for dopamine sensing, Sensors and Actuators B: Chemical 205 (2014) 120-126.
    [70] J.-H. Kim, J.M. Auerbach, J.A. Rodríguez-Gómez, I. Velasco, D. Gavin, N. Lumelsky, S.-H. Lee, J. Nguyen, R. Sánchez-Pernaute, K. Bankiewicz, Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease, Nature 418(6893) (2002) 50-56.
    [71] A. Pezzella, M. d'Ischia, A. Napolitano, G. Misuraca, G. Prota, Iron-mediated generation of the neurotoxin 6-hydroxydopamine quinone by reaction of fatty acid hydroperoxides with dopamine: a possible contributory mechanism for neuronal degeneration in Parkinson's disease, Journal of Medicinal Chemistry 40(14) (1997) 2211-2216.
    [72] J.P. Kesby, D.W. Eyles, J.J. McGrath, J.G. Scott, Dopamine, psychosis and schizophrenia: the widening gap between basic and clinical neuroscience, Translational psychiatry 8(1) (2018) 1-12.
    [73] N. Yusoff, A. Pandikumar, R. Ramaraj, H.N. Lim, N.M. Huang, Gold nanoparticle based optical and electrochemical sensing of dopamine, Microchimica Acta 182(13-14) (2015) 2091-2114.
    [74] Q. Huang, X. Lin, L. Tong, Q.-X. Tong, Graphene Quantum Dots/Multiwalled Carbon Nanotubes Composite-Based Electrochemical Sensor for Detecting Dopamine Release from Living Cells, ACS Sustainable Chemistry & Engineering 8(3) (2020) 1644-1650.
    [75] M. Du, Virgil Flanigan, and Yinfa Ma., Simultaneous determination of polyamines and catecholamines in PC-12 tumor cell extracts by capillary electrophoresis with laser-induced fluorescence detection, Electrophoresis 25(10-11) (2004) 1496-1502.
    [76] L. Liu, S. Li, L. Liu, D. Deng, N. Xia, Simple, sensitive and selective detection of dopamine using dithiobis(succinimidylpropionate)-modified gold nanoparticles as colorimetric probes, Analyst 137(16) (2012) 3794-3799.
    [77] L. Qin, X. Li, S.Z. Kang, J. Mu, Gold nanoparticles conjugated dopamine as sensing platform for SERS detection, Colloids Surf B Biointerfaces 126 (2015) 210-216.
    [78] A. Xiangzhao, M. Qiang, S. Xingguang, Nanosensor for dopamine and glutathione based on the quenching and recovery of the fluorescence of silica-coated quantum dots, Microchimica Acta 180(3-4) (2012) 269-277.
    [79] A. Kumar, A. Kumari, P. Mukherjee, T. Saikia, K. Pal, S.K. Sahu, A design of fluorescence-based sensor for the detection of dopamine via FRET as well as live cell imaging, Microchemical Journal 159 (2020).
    [80] X. Zhang, X. Chen, S. Kai, H.Y. Wang, J. Yang, F.G. Wu, Z. Chen, Highly sensitive and selective detection of dopamine using one-pot synthesized highly photoluminescent silicon nanoparticles, Analytical Chemistry 87(6) (2015) 3360-3365.
    [81] J. Zhao, L. Zhao, C. Lan, S. Zhao, Graphene quantum dots as effective probes for label-free fluorescence detection of dopamine, Sensors and Actuators B: Chemical 223 (2016) 246-251.
    [82] Y. Ma, A.Y. Chen, X.F. Xie, X.Y. Wang, D. Wang, P. Wang, H.J. Li, J.H. Yang, Y. Li, Doping effect and fluorescence quenching mechanism of N-doped graphene quantum dots in the detection of dopamine, Talanta 196 (2019) 563-571.
    [83] L. Wang, J. Jana, J.S. Chung, S.H. Hur, Glutathione modified N-doped carbon dots for sensitive and selective dopamine detection, Dyes and Pigments 186 (2021) 109028.
    [84] G.Y. Chang, D. Kurniawan, Y.J. Chang, W.H. Chiang, Microplasma-Enabled Surfaced-Functionalized Silicon Quantum Dots for Label-Free Detection of Dopamine, ACS Omega 7(1) (2022) 223-229.
    [85] S.F. Kemp, R.F. Lockey, F.E.R. Simons, W.A.O.a.h.C.o.E.i. Anaphylaxis, Epinephrine: the drug of choice for anaphylaxis--a statement of the World Allergy Organization, World Allergy Organization Journal 1 (2008) S18-S26.
    [86] C.W. Callaway, Epinephrine for cardiac arrest, Current Opinion in Cardiology 28(1) (2013) 36-42.
    [87] J. Tashkhourian, S.F. Nami-Ana, M. Shamsipur, Designing a modified electrode based on graphene quantum dot-chitosan application to electrochemical detection of epinephrine, Journal of Molecular Liquids 266 (2018) 548-556.
    [88] S. Shahrokhian, M. Khafaji, Application of pyrolytic graphite modified with nano-diamond/graphite film for simultaneous voltammetric determination of epinephrine and uric acid in the presence of ascorbic acid, Electrochimica Acta 55(28) (2010) 9090-9096.
    [89] U. Sivasankaran, K. Girish Kumar, A cost effective strategy for dual channel optical sensing of adrenaline based on 'in situ' formation of copper nanoparticles, Spectrochim Acta A Mol Biomol Spectrosc 223 (2019) 117292.
    [90] M. Ying, G. Yang, Y. Xu, H. Ye, X. Lin, Y. Lu, H. Pan, Y. Bai, M. Du, Copper fumarate with high-bifunctional nanozyme activities at different pH values for glucose and epinephrine colorimetric detection in human serum, Analyst 147(1) (2021) 40-47.
    [91] J. Michałowski, P. Hałaburda, Flow-injection chemiluminescence determination of epinephrine in pharmaceutical preparations using raw apple juice as enzyme source, Talanta 55(6) (2001) 1165-1171.
    [92] N. Tavakkoli, N. Soltani, F. Shahdost-Fard, M. Ramezani, H. Salavati, M.R. Jalali, Simultaneous voltammetric sensing of acetaminophen, epinephrine and melatonin using a carbon paste electrode modified with zinc ferrite nanoparticles, Mikrochim Acta 185(10) (2018) 479.
    [93] T.M. Thenrajan, S. Ramasamy, P.K. Chidambaram, J. Wilson, A green approached biocomposite: Iron (III) oxide dissemination over cassava starch for selective detection of epinephrine, Materials Chemistry and Physics 276 (2022) 125366
    [94] V. Carrera, E. Sabater, E. Vilanova, M.A. Sogorb, A simple and rapid HPLC-MS method for the simultaneous determination of epinephrine, norepinephrine, dopamine and 5-hydroxytryptamine: application to the secretion of bovine chromaffin cell cultures, Journal of Chromatography, B: Analytical Technologies in the Biomedical and Life Sciences 847(2) (2007) 88-94.
    [95] A. Kumar, J.P. Hart, D.V. McCalley, Determination of catecholamines in urine using hydrophilic interaction chromatography with electrochemical detection, Journal of Chromatography A 1218(25) (2011) 3854-3861.
    [96] H. Huang, Y. Gao, F. Shi, G. Wang, S.M. Shah, X. Su, Determination of catecholamine in human serum by a fluorescent quenching method based on a water-soluble fluorescent conjugated polymer-enzyme hybrid system, Analyst 137(6) (2012) 1481-1486.
    [97] M. Wang, Y. Li, L. Wang, X. Su, A label-free fluorescence nanosensor for the determination of adrenaline based on graphene quantum dots, Analytical Methods 9(30) (2017) 4434-4438.
    [98] F. Wei, G. Xu, Y. Wu, X. Wang, J. Yang, L. Liu, P. Zhou, Q. Hu, Molecularly imprinted polymers on dual-color quantum dots for simultaneous detection of norepinephrine and epinephrine, Sensors and Actuators B: Chemical 229 (2016) 38-46.
    [99] D. Kurniawan, R.-C. Jhang, K.K. Ostrikov, W.-H. Chiang, Microplasma-Tunable Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers, ACS Applied Materials & Interfaces 13(29) (2021) 34572-34583.
    [100] D. Li, X. Xu, P. Zhou, Y. Huang, Y. Feng, Y. Gu, M. Wang, Y. Liu, A facile synthesis of hybrid silicon quantum dots and fluorescent detection of bovine hemoglobin, New Journal of Chemistry 43(48) (2019) 19338-19343.
    [101] Z. Zhang, C. Wei, W. Ma, J. Li, X. Xiao, D. Zhao, One-Step Hydrothermal Synthesis of Yellow and Green Emitting Silicon Quantum Dots with Synergistic Effect, Nanomaterials 9(3) (2019) 466.
    [102] X. Wang, Y. Yang, D. Huo, Z. Ji, Y. Ma, M. Yang, H. Luo, X. Luo, C. Hou, J. Lv, A turn-on fluorescent nanoprobe based on N-doped silicon quantum dots for rapid determination of glyphosate, Mikrochim Acta 187(6) (2020) 341.
    [103] Y. Han, Y. Chen, J. Feng, J. Liu, S. Ma, X. Chen, One-Pot Synthesis of Fluorescent Silicon Nanoparticles for Sensitive and Selective Determination of 2,4,6-Trinitrophenol in Aqueous Solution, Analytical Chemistry 89(5) (2017) 3001-3008.
    [104] T.S. Basu, S. Diesch, E. Scheer, Single-electron transport through stabilised silicon nanocrystals, Nanoscale 10(29) (2018) 13949-13958.
    [105] J. Wang, D.X. Ye, G.H. Liang, J. Chang, J.L. Kong, J.Y. Chen, One-step synthesis of water-dispersible silicon nanoparticles and their use in fluorescence lifetime imaging of living cells, Journal of Materials Chemistry B 2(27) (2014) 4338-4345.
    [106] G. Faraci, S. Gibilisco, A.R. Pennisi, C. Faraci, Quantum size effects in Raman spectra of Si nanocrystals, Journal of Applied Physics 109(7) (2011) 074311.
    [107] W. Cheng, S.-F. Ren, Calculations on the size effects of Raman intensities of silicon quantum dots, Physical Review B 65(20) (2002) 205305.
    [108] J.H. Warner, A. Hoshino, K. Yamamoto, R.D. Tilley, Water-soluble photoluminescent silicon quantum dots, Angewandte Chemie, International Edition in English 44(29) (2005) 4550-4554.
    [109] Y. Zhou, Z.B. Qu, Y. Zeng, T. Zhou, G. Shi, A novel composite of graphene quantum dots and molecularly imprinted polymer for fluorescent detection of paranitrophenol, Biosens Bioelectron 52 (2014) 317-323.
    [110] J.J. Romero, M.J. Llansola-Portolés, M.L. Dell’Arciprete, H.B. Rodríguez, A.L. Moore, M.C. Gonzalez, Photoluminescent 1–2 nm Sized Silicon Nanoparticles: A Surface-Dependent System, Chemistry of Materials 25(17) (2013) 3488-3498.
    [111] J. Chen, W. Liu, L.-H. Mao, Y.-J. Yin, C.-F. Wang, S. Chen, Synthesis of silica-based carbon dot/nanocrystal hybrids toward white LEDs, Journal of Materials Science 49(21) (2014) 7391-7398.
    [112] S. Zhu, Y. Song, X. Zhao, J. Shao, J. Zhang, B. Yang, The photoluminescence mechanism in carbon dots (graphene quantum dots, carbon nanodots, and polymer dots): current state and future perspective, Nano Research 8(2) (2015) 355-381.
    [113] T. Gong, Y. Li, B. Lei, X. Zhang, Y. Liu, H. Zhang, Solid-state silicon nanoparticles with color-tunable photoluminescence and multifunctional applications, Journal of Materials Chemistry C 7(20) (2019) 5962-5969.
    [114] S. Mitra, V. Švrček, D. Mariotti, T. Velusamy, K. Matsubara, M. Kondo, Microplasma-Induce Liquid Chemistry for Stabilizing of Silicon Nanocrystals Optical Properties in Water, Plasma Processes and Polymers 11(2) (2014) 158-163.
    [115] J.-S. Yang, D.Z. Pai, W.-H. Chiang, Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions, Carbon 153 (2019) 315-319.
    [116] D. Kurniawan, W.-H. Chiang, Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors, Carbon 167 (2020) 675-684.
    [117] F. Rezaei, Y. Gorbanev, M. Chys, A. Nikiforov, S.W. Van Hulle, P. Cos, A. Bogaerts, N. De Geyter, Investigation of plasma‐induced chemistry in organic solutions for enhanced electrospun PLA nanofibers, Plasma Processes and Polymers 15(6) (2018) 1700226.
    [118] B.B. Sahu, Y. Yin, S. Gauter, J.G. Han, H. Kersten, Plasma engineering of silicon quantum dots and their properties through energy deposition and chemistry, Physical Chemistry Chemical Physics 18(37) (2016) 25837-25851.
    [119] Y. Song, L. Cao, J. Li, S. Cong, D. Li, Z. Bao, M. Tan, Interactions of carbon quantum dots from roasted fish with digestive protease and dopamine, Food Funct 10(6) (2019) 3706-3716.
    [120] X. Yang, F. Tian, S. Wen, H. Xu, L. Zhang, J. Zeng, Selective Determination of Dopamine in Pharmaceuticals and Human Urine Using Carbon Quantum Dots as a Fluorescent Probe, Processes 9(1) (2021) 170.
    [121] T. Zhang, H. Xu, H. Wang, J. Zhu, Y. Zhai, X. Bai, B. Dong, H. Song, Green fluorescent organic nanoparticles based on carbon dots and self-polymerized dopamine for cell imaging, RSC Advances 7(46) (2017) 28987-28993.
    [122] D.T. Haynie, Biological thermodynamics, Cambridge University Press2001.
    [123] M. Kiguchi, Compendium of Surface and Interface Analysis, Springer2018.
    [124] R. Das, K.K. Paul, P.K. Giri, Highly sensitive and selective label-free detection of dopamine in human serum based on nitrogen-doped graphene quantum dots decorated on Au nanoparticles: Mechanistic insights through microscopic and spectroscopic studies, Applied Surface Science 490 (2019) 318-330.
    [125] N. Chavoshi, B. Hemmateenejad, Fluorescent Carbon Dots Prepared from Hazelnut Kohl as an Affordable Probe for Determination of Dopamine, Journal of Fluorescence 31(2) (2021) 455-463.
    [126] J. Bergquist, A. Ściubisz, A. Kaczor, J. Silberring, Catecholamines and methods for their identification and quantitation in biological tissues and fluids, Journal of Neuroscience Methods 113(1) (2002) 1-13.
    [127] Y. Zhao, S. Zhao, J. Huang, F. Ye, Quantum dot-enhanced chemiluminescence detection for simultaneous determination of dopamine and epinephrine by capillary electrophoresis, Talanta 85(5) (2011) 2650-2654.
    [128] F. Zhang, M. Wang, D. Zeng, H. Zhang, Y. Li, X. Su, A molybdenum disulfide quantum dots-based ratiometric fluorescence strategy for sensitive detection of epinephrine and ascorbic acid, Analytica Chimica Acta 1089 (2019) 123-130.
    [129] D. Kurniawan, R.C. Jhang, K.K. Ostrikov, W.H. Chiang, Microplasma-Tunable Graphene Quantum Dots for Ultrasensitive and Selective Detection of Cancer and Neurotransmitter Biomarkers, ACS Applied Materials & Interfaces 13(29) (2021) 34572-34583.
    [130] S. Govindaraju, A.S. Reddy, J. Kim, K. Yun, Sensitive detection of epinephrine in human serum via fluorescence enhancement of gold nanoclusters, Applied Surface Science 498 (2019) 143837.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 2027/07/26 (校外網路)
    全文公開日期 2027/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE