簡易檢索 / 詳目顯示

研究生: 江品萱
Pin-Hsuan Chiang
論文名稱: 大氣常壓微電漿合成表面功能化銀奈米團簇作為阿茲海默生物標示物和重金屬的多功能探針
Microplasma Engineering of Surface-functionalized Silver-based Nanoclusters as Multifunctional Probes of Biomarkers Alzheimer's Disease and Heavy Metals
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江建文
Kien-Voon Kong
謝元榜
Yuan-Pang Hsieh
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 147
中文關鍵詞: 大氣常壓微電漿銀奈米團簇光致發光感測阿茲海默生物標示物SERS
外文關鍵詞: Atmospheric-pressure microplasma, Ag clusters, Photoluminescence sensing, Alzheimer's biomarkers SERS
相關次數: 點閱:452下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 近年來,人們對於環境污染和人口高齡化的關注逐年提高。因此,我們將致力於減少金屬離子的危害和預防阿茲海默症病患的增加,開發一種新型具高靈敏度、多功能化,且可用於感測的奈米材料。汞二價離子被認為是重金屬中毒性最強和最普遍的環境污染物之一,可對大腦和中樞神經系統造成永久性損害。 所以,定量水中的汞離子對於預防汞中毒具有重要意義。 此外,阿茲海默症在神經退行性疾病中是非常關鍵的,有報告指出,2015年至2020年發病率增加了17.5%,國際阿茲海默症協會也預測2050年全球患者將達到1.38億,讓阿茲海默症成為全球性的重大問題。 因此,研發一種可快速且靈敏感測阿茲海默症生物標誌物的表面增強拉曼基材對於早期治療具有重要意義。
    銀納米糰簇是一種新型金屬光致發光納米材料,具有獨特的電子躍遷和電漿子性質,可用作熒光探針和增強底物,用於環境監測和生物傳感。 在這項研究中,我們採用常壓微電漿作為一種快速且無毒的方法來合成膠體銀團簇,使其成為一種具有吸引力的納米材料。 為了確保生物相容性並減少對人類和環境的潛在危害,我們在合成過程中使用穀胱甘肽和檸檬酸鈉作為包覆劑,穩定合成的銀團簇。
    銀團簇可作為光致發光傳感中汞二價離子的熒光納米探針,檢測限為1.76 nM,低於美國環境保護署對飲用水中汞二價離子規定的10 nM監管限值。 此外,我們還成功實現了使用銀團簇對澱粉樣蛋白-β (1-42) SERS 的無標記檢測,獲得了 1 pM 的高靈敏度檢測限,可低於阿茲海默症患者唾液中發現的疾病濃度。 這在未來應用於阿茲海默症的早期診斷方面具有巨大潛力,為疾病檢測提供了方便、有效的方法。


    In recent years, people have paid more attention to environmental pollution and population aging issues. In our research, we will improve and prevent the harm of metal ions and the growth of Alzheimer's disease. Hg2+ is considered one of the most toxic and prevalent environmental pollutants among heavy metals and can cause permanent damage to the brain and central nervous system. Therefore, quantifying mercury ions in water is significant for preventing mercury poisoning. In addition, Alzheimer's is vital for neurodegenerative disease, there is a report indicating that predicts that patients in the world will reach 138 M in 2050 by Alzheimer's Disease International, let Alzheimer's become a critical global issue. Therefore, the development of a rapid and sensitive enhanced substrate for Alzheimer's biomarkers SERS is important for early treatment. Silver nanoclusters (Ag NCs) are a new type of metal photoluminescence nanomaterial with unique electronic transition, and plasmonic properties that can be used as fluorescent probes and enhanced substrates for environmental monitoring and biological sensing. In this study, we employ atmospheric pressure microplasma as a rapid and and non-toxic method for synthesizing colloidal Ag NCs, making it an attractive nanomaterial. To ensure biocompatibility and reduce potential harm to humans and the environment, we employ glutathione and sodium citrate as capping agents to stabilize the synthesized Ag NCs during the synthesis process. Ag NCs can serve as fluorescent nanoprobes for Hg2+ in photoluminescence sensing and get the low limit of detection (LoD) of 1.76 nM, which is lower than the regulatory limits of 10 nM for Hg2+ in drinking water set by the US EPA. Furthermore, we successfully achieved label-free detection of Amyloid-β (1-42) SERS with Ag NCs, obtaining the LoD of 1 pM, lower than the disease concentration found in human saliva. This holds great potential for future applications in the early diagnosis of Alzheimer's disease, offering convenient and efficient means for disease detection.

    Abstract i 摘要 ii 致謝 iii Outline iv List of figures vii List of tables xi 1. Introduction 1 1.1 The hazards of mercury ions 1 1.2 Alzheimer’s disease – Amyloid-β (1-42) 3 1.3 Photoluminescence sensing 5 1.4 Surface enhanced Raman spectroscopy (SERS) 11 1.5 Noble metal nanoclusters 17 1.5.1 Silver clusters 17 1.5.2 Synthesis of metal nanoclusters 23 1.6 Atmospheric pressure microplasma technology 33 2. Experimental section 38 2.1 Materials and chemicals 38 2.2 Experimental setup 39 2.2.1 Synthesis of Ag NCs by microplasma 39 2.2.2 Purify of Ag NCs 40 2.4 Photoluminescence-based sensing 42 2.5 Preparation of SERS substrate 43 2.6 Characterization 44 3. Results and discussion 48 3.1 Synthesis and the possible mechanism of the colloidal Ag NCs 48 3.2 Characterization of the colloidal Ag NCs 49 3.2.1 UV-Visible absorption properties 49 3.2.2 Photoluminescence properties 51 3.2.3 Transmission electron microscopy 54 3.2.4 X-ray diffractometer 57 3.2.5 X-ray photoelectron spectroscopy 60 3.2.6 Fourier-transform infrared spectroscopy 66 3.3 Yield and quantum yield of Ag NCs 67 3.4 Photoluminescence Sensing for mercury (II) ion by Ag NCs 69 3.4.1 Metal ions selectivity 69 3.4.2 Optimization of photoluminescence based Hg2+ sensing 71 3.4.3 Possible mechanism of Hg2+ sensing 75 3.5 SERS technology for Ag NCs with R6G 81 3.5.1 Fluorescent probe Rhodamine 6G SERS test 81 3.5.2 Optimization of R6G SERS 83 3.5.3 Mechanism of SERS to detect the R6G 88 3.6 SERS technology for Ag NCs with Alzheimer’s biomarker 90 3.6.1 Alzheimer’s biomarker Aβ (1-42) SERS test 91 3.6.2 Optimization of Aβ (1-42) SERS 93 3.6.3 Mechanism of SERS to detect the Aβ (1-42) 97 4. Conclusion 101 5. References 103

    1. Farhadi, K.; Forough, M.; Molaei, R.; Hajizadeh, S.; Rafipour, A., Highly selective Hg2+ colorimetric sensor using green synthesized and unmodified silver nanoparticles. Sensors and Actuators B: Chemical 2012, 161 (1), 880-885.
    2. Tan, H.; Zhang, Y.; Chen, Y., Detection of mercury ions (Hg2+) in urine using a terbium chelate fluorescent probe. Sensors and Actuators B: Chemical 2011, 156 (1), 120-125.
    3. Peng, J.; Ling, J.; Zhang, X. Q.; Bai, H. P.; Zheng, L.; Cao, Q. E.; Ding, Z. T., Sensitive detection of mercury and copper ions by fluorescent DNA/Ag nanoclusters in guanine-rich DNA hybridization. Spectrochim Acta A Mol Biomol Spectrosc 2015, 137, 1250-7.
    4. Liu, D.; Qu, W.; Chen, W.; Zhang, W.; Wang, Z.; Jiang, X., Highly sensitive, colorimetric detection of mercury(II) in aqueous media by quaternary ammonium group-capped gold nanoparticles at room temperature. Anal Chem 2010, 82 (23), 9606-10.
    5. Ye, B. C.; Yin, B. C., Highly sensitive detection of mercury(II) ions by fluorescence polarization enhanced by gold nanoparticles. Angew Chem Int Ed Engl 2008, 47 (44), 8386-9.
    6. Costley, C. T.; Mossop, K. F.; Dean, J. R.; Garden, L. M.; Marshall, J.; Carroll, J., Determination of mercury in environmental and biological samples using pyrolysis atomic absorption spectrometry with gold amalgamation. Analytica Chimica Acta 2000, 405 (1-2), 179-183.
    7. Ghaedi, M.; Reza Fathi, M.; Shokrollahi, A.; Shajarat, F. J. A. L., Highly selective and sensitive preconcentration of mercury ion and determination by cold vapor atomic absorption spectroscopy. Analytical Letters 2006, 39 (6), 1171-1185.
    8. Allibone, J.; Fatemian, E.; Walker, P. J., Determination of mercury in potable water by ICP-MS using gold as a stabilising agent. Journal of Analytical Atomic Spectrometry 1999, 14 (2), 235-239.
    9. Surucu, O., Electrochemical removal and simultaneous sensing of mercury with inductively coupled plasma-mass spectrometry from drinking water. Materials Today Chemistry 2022, 23.
    10. Hsu, K. C.; Hsu, P. F.; Hung, C. C.; Chiang, C. H.; Jiang, S. J.; Lin, C. C.; Huang, Y. L., Microfluidic desorption-free magnetic solid phase extraction of Hg(2+) from biological samples using cysteine-coated gold-magnetite core-shell nanoparticles prior to its quantitation by ICP-MS. Talanta 2017, 162, 523-529.
    11. Hu, Q.; Yang, G.; Zhao, Y.; Yin, J., Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection. Anal Bioanal Chem 2003, 375 (6), 831-5.
    12. Song, X.; Wu, J.; Pang, J.; Wu, Y.; Huang, X., Task specific monolith for magnetic field-reinforced in-tube solid phase microextraction of mercury species in waters prior to online HPLC quantification. J Hazard Mater 2021, 411, 125141.
    13. Adhikari, B.; Banerjee, A., Facile Synthesis of Water-Soluble Fluorescent Silver Nanoclusters and HgII Sensing. Chemistry of Materials 2010, 22 (15), 4364-4371.
    14. Udhayakumari, D., Review on fluorescent sensors-based environmentally related toxic mercury ion detection. Journal of Inclusion Phenomena and Macrocyclic Chemistry 2022, 102 (5-6), 451-476.
    15. Martín-Yerga, D.; González-García, M. B.; Costa-García, A., Electrochemical determination of mercury: A review. Talanta 2013, 116, 1091-1104.
    16. Bernalte, E.; Arévalo, S.; Pérez-Taborda, J.; Wenk, J.; Estrela, P.; Avila, A.; Di Lorenzo, M., Rapid and on-site simultaneous electrochemical detection of copper, lead and mercury in the Amazon river. Sensors and Actuators B: Chemical 2020, 307.
    17. Niu, X.; Ding, Y.; Chen, C.; Zhao, H.; Lan, M., A novel electrochemical biosensor for Hg2+ determination based on Hg2+-induced DNA hybridization. Sensors and Actuators B: Chemical 2011, 158 (1), 383-387.
    18. Kim, H. N.; Ren, W. X.; Kim, J. S.; Yoon, J., Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions. Chem Soc Rev 2012, 41 (8), 3210-44.
    19. Huang, L.; Zhu, Q.; Zhu, J.; Luo, L.; Pu, S.; Zhang, W.; Zhu, W.; Sun, J.; Wang, J., Portable Colorimetric Detection of Mercury(II) Based on a Non-Noble Metal Nanozyme with Tunable Activity. Inorg Chem 2019, 58 (2), 1638-1646.
    20. Jia, X. Y.; Gong, D. R.; Han, Y.; Wei, C.; Duan, T. C.; Chen, H. T., Fast speciation of mercury in seawater by short-column high-performance liquid chromatography hyphenated to inductively coupled plasma spectrometry after on-line cation exchange column preconcentration. Talanta 2012, 88, 724-9.
    21. Li, Q.; Zhang, Z.; Wang, Z., Determination of Hg2+ by on-line separation and pre-concentration with atmospheric-pressure solution-cathode glow discharge atomic emission spectrometry. Anal Chim Acta 2014, 845, 7-14.
    22. Guerchet, M.; Prince, M.; Prina, M., Numbers of people with dementia worldwide: An update to the estimates in the World Alzheimer Report 2015. 2020.
    23. 2023 Alzheimer's disease facts and figures. Alzheimers Dement 2023, 19 (4), 1598-1695.
    24. Niemantsverdriet, E.; Ottoy, J.; Somers, C.; De Roeck, E.; Struyfs, H.; Soetewey, F.; Verhaeghe, J.; Van den Bossche, T.; Van Mossevelde, S.; Goeman, J.; De Deyn, P. P.; Marien, P.; Versijpt, J.; Sleegers, K.; Van Broeckhoven, C.; Wyffels, L.; Albert, A.; Ceyssens, S.; Stroobants, S.; Staelens, S.; Bjerke, M.; Engelborghs, S., The Cerebrospinal Fluid Abeta1-42/Abeta1-40 Ratio Improves Concordance with Amyloid-PET for Diagnosing Alzheimer's Disease in a Clinical Setting. J Alzheimers Dis 2017, 60 (2), 561-576.
    25. Pawlik, P.; Blochowiak, K., The Role of Salivary Biomarkers in the Early Diagnosis of Alzheimer's Disease and Parkinson's Disease. Diagnostics (Basel) 2021, 11 (2).
    26. Yu, D.; Yin, Q.; Wang, J.; Yang, J.; Chen, Z.; Gao, Z.; Huang, Q.; Li, S., SERS-Based Immunoassay Enhanced with Silver Probe for Selective Separation and Detection of Alzheimer's Disease Biomarkers. Int J Nanomedicine 2021, 16, 1901-1911.
    27. Xing, Y.; Feng, X. Z.; Zhang, L.; Hou, J.; Han, G. C.; Chen, Z., A sensitive and selective electrochemical biosensor for the determination of beta-amyloid oligomer by inhibiting the peptide-triggered in situ assembly of silver nanoparticles. Int J Nanomedicine 2017, 12, 3171-3179.
    28. The Huy, B.; Thangadurai, D. T.; Sharipov, M.; Ngoc Nghia, N.; Van Cuong, N.; Lee, Y.-I., Recent advances in turn off-on fluorescence sensing strategies for sensitive biochemical analysis - A mechanistic approach. Microchemical Journal 2022, 179.
    29. Lakowicz, J. R.; Lakowicz, J. R. J. P. o. f. s., Quenching of fluorescence. 1983, 257-301.
    30. Song, Y.; Zhu, S.; Xiang, S.; Zhao, X.; Zhang, J.; Zhang, H.; Fu, Y.; Yang, B., Investigation into the fluorescence quenching behaviors and applications of carbon dots. Nanoscale 2014, 6 (9), 4676-82.
    31. Ghosh, N.; Mondal, R.; Mukherjee, S., Inverse Temperature Dependence in Static Quenching versus Calorimetric Exploration: Binding Interaction of Chloramphenicol to beta-Lactoglobulin. Langmuir 2015, 31 (29), 8074-80.
    32. Povinelli, A. P. R.; Zazeri, G.; de Freitas Lima, M.; Cornelio, M. L., Details of the cooperative binding of piperlongumine with rat serum albumin obtained by spectroscopic and computational analyses. Sci Rep 2019, 9 (1), 15667.
    33. de Silva, A. P.; Moody, T. S.; Wright, G. D., Fluorescent PET (photoinduced electron transfer) sensors as potent analytical tools. Analyst 2009, 134 (12), 2385-93.
    34. Leng, X.; Wang, Y.; Li, R.; Liu, S.; Yao, J.; Pei, Q.; Cui, X.; Tu, Y.; Tang, D.; Huang, J., Circular exponential amplification of photoinduced electron transfer using hairpin probes, G-quadruplex DNAzyme and silver nanocluster-labeled DNA for ultrasensitive fluorometric determination of pathogenic bacteria. Mikrochim Acta 2018, 185 (3), 168.
    35. Chen, S.; Yu, Y. L.; Wang, J. H., Inner filter effect-based fluorescent sensing systems: A review. Anal Chim Acta 2018, 999, 13-26.
    36. Skourtis, S. S.; Liu, C.; Antoniou, P.; Virshup, A. M.; Beratan, D. N., Dexter energy transfer pathways. Proc Natl Acad Sci U S A 2016, 113 (29), 8115-20.
    37. Sun, J.; Shu, M.; Wang, N.; Wang, Q.; Cao, H.; Zhang, X.; Wang, B.; Zhao, J., Förster and Dexter energy transfer boosted and weakened respectively by host−guest complexations between cyano-containing perylene diimide and BODIPY/diiodo-BODIPY functionalized pillar[5]arenes. Dyes and Pigments 2022, 202.
    38. Strieth-Kalthoff, F.; James, M. J.; Teders, M.; Pitzer, L.; Glorius, F., Energy transfer catalysis mediated by visible light: principles, applications, directions. Chem Soc Rev 2018, 47 (19), 7190-7202.
    39. Förster, T. J. A. d. p., Zwischenmolekulare energiewanderung und fluoreszenz. Ann Phys 1948, 437 (1-2), 55-75.
    40. Zhang, J.; Fu, Y.; Lakowicz, J. R., Enhanced Forster Resonance Energy Transfer (FRET) on Single Metal Particle. J Phys Chem C Nanomater Interfaces 2007, 111 (1), 50-56.
    41. Beljonne, D.; Curutchet, C.; Scholes, G. D.; Silbey, R. J., Beyond Forster resonance energy transfer in biological and nanoscale systems. J Phys Chem B 2009, 113 (19), 6583-99.
    42. Clapp, A. R.; Medintz, I. L.; Mattoussi, H., Forster resonance energy transfer investigations using quantum-dot fluorophores. Chemphyschem 2006, 7 (1), 47-57.
    43. Broussard, J. A.; Green, K. J., Research Techniques Made Simple: Methodology and Applications of Forster Resonance Energy Transfer (FRET) Microscopy. J Invest Dermatol 2017, 137 (11), e185-e191.
    44. Haynes, C. L.; McFarland, A. D.; Van Duyne, R. P., Surface-enhanced Raman spectroscopy. ACS Publications: 2005.
    45. Raman, C.; Krishnan, K. J. N., Polarisation of scattered light-quanta. Nature 1928, 122 (3066), 169-169.
    46. Long, D. A. J. N. Y., Raman spectroscopy. 1977, 1.
    47. McCreery, R. L., Raman spectroscopy for chemical analysis. John Wiley & Sons: 2005.
    48. Eberhardt, K.; Stiebing, C.; Matthaus, C.; Schmitt, M.; Popp, J., Advantages and limitations of Raman spectroscopy for molecular diagnostics: an update. Expert Rev Mol Diagn 2015, 15 (6), 773-87.
    49. Fleischmann, M.; Hendra, P. J.; McQuillan, A. J. J. C. p. l., Raman spectra of pyridine adsorbed at a silver electrode. Chemical physics letters 1974, 26 (2), 163-166.
    50. Jeanmaire, D. L.; Van Duyne, R. P. J. J. o. e. c.; electrochemistry, i., Surface Raman spectroelectrochemistry: Part I. Heterocyclic, aromatic, and aliphatic amines adsorbed on the anodized silver electrode. Journal of Electroanalytical Chemistry and Interfacial Electrochemistry 1977, 84 (1), 1-20.
    51. Han, C.; Li, Y.; Jia, Q.; Bradley, L. H.; Gan, Y.; Yao, Y.; Qu, L.; Li, H.; Zhao, Y., On-demand fabrication of surface-enhanced Raman scattering arrays by pen writing, and their application to the determination of melamine in milk. Microchimica Acta 2017, 184 (8), 2909-2917.
    52. Fikiet, M. A.; Khandasammy, S. R.; Mistek, E.; Ahmed, Y.; Halamkova, L.; Bueno, J.; Lednev, I. K., Surface enhanced Raman spectroscopy: A review of recent applications in forensic science. Spectrochim Acta A Mol Biomol Spectrosc 2018, 197, 255-260.
    53. Pang, S.; Yang, T.; He, L., Review of surface enhanced Raman spectroscopic (SERS) detection of synthetic chemical pesticides. TrAC Trends in Analytical Chemistry 2016, 85, 73-82.
    54. Mandal, P.; Tewari, B. S., Progress in surface enhanced Raman scattering molecular sensing: A review. Surfaces and Interfaces 2022, 28.
    55. Xie, L.; Zeng, H.; Zhu, J.; Zhang, Z.; Sun, H.-b.; Xia, W.; Du, Y., State of the art in flexible SERS sensors toward label-free and onsite detection: from design to applications. Nano Research 2022, 15 (5), 4374-4394.
    56. Haddad, A.; Comanescu, M. A.; Green, O.; Kubic, T. A.; Lombardi, J. R., Detection and Quantitation of Trace Fentanyl in Heroin by Surface-Enhanced Raman Spectroscopy. Anal Chem 2018, 90 (21), 12678-12685.
    57. Lin, D.; Feng, S.; Pan, J.; Chen, Y.; Lin, J.; Chen, G.; Xie, S.; Zeng, H.; Chen, R., Colorectal cancer detection by gold nanoparticle based surface-enhanced Raman spectroscopy of blood serum and statistical analysis. Opt Express 2011, 19 (14), 13565-77.
    58. Ding, S. Y.; You, E. M.; Tian, Z. Q.; Moskovits, M., Electromagnetic theories of surface-enhanced Raman spectroscopy. Chem Soc Rev 2017, 46 (13), 4042-4076.
    59. Tan, T.; Tian, C.; Ren, Z.; Yang, J.; Chen, Y.; Sun, L.; Li, Z.; Wu, A.; Yin, J.; Fu, H., LSPR-dependent SERS performance of silver nanoplates with highly stable and broad tunable LSPRs prepared through an improved seed-mediated strategy. Phys Chem Chem Phys 2013, 15 (48), 21034-42.
    60. Perez-Jimenez, A. I.; Lyu, D.; Lu, Z.; Liu, G.; Ren, B., Surface-enhanced Raman spectroscopy: benefits, trade-offs and future developments. Chem Sci 2020, 11 (18), 4563-4577.
    61. Tian, F.; Bonnier, F.; Casey, A.; Shanahan, A. E.; Byrne, H. J., Surface enhanced Raman scattering with gold nanoparticles: effect of particle shape. Anal. Methods 2014, 6 (22), 9116-9123.
    62. Roguska, A.; Kudelski, A.; Pisarek, M.; Opara, M.; Janik-Czachor, M., Surface-enhanced Raman scattering (SERS) activity of Ag, Au and Cu nanoclusters on TiO2-nanotubes/Ti substrate. Applied Surface Science 2011, 257 (19), 8182-8189.
    63. Zhu, A. Y.; Kuznetsov, A. I.; Luk’yanchuk, B.; Engheta, N.; Genevet, P., Traditional and emerging materials for optical metasurfaces. Nanophotonics 2017, 6 (2), 452-471.
    64. Mai, Q. D.; Nguyen, H. A.; Phung, T. L. H.; Xuan Dinh, N.; Tran, Q. H.; Doan, T. Q.; Le, A.-T., Silver Nanoparticles-Based SERS Platform towards Detecting Chloramphenicol and Amoxicillin: An Experimental Insight into the Role of HOMO–LUMO Energy Levels of the Analyte in the SERS Signal and Charge Transfer Process. The Journal of Physical Chemistry C 2022, 126 (17), 7778-7790.
    65. Jensen, L.; Aikens, C. M.; Schatz, G. C., Electronic structure methods for studying surface-enhanced Raman scattering. Chem Soc Rev 2008, 37 (5), 1061-73.
    66. Cheng, H.; Zhao, Y.; Fan, Y.; Xie, X.; Qu, L.; Shi, G., Graphene-quantum-dot assembled nanotubes: a new platform for efficient Raman enhancement. ACS Nano 2012, 6 (3), 2237-44.
    67. Kundu, N.; Sadhukhan, D.; Sarkar, S. J. C. L., Fluorescent carbon nano-materials from coal-based precursors: unveiling structure–function relationship between coal and nano-materials. Carbon Lett. 2022, 32 (3), 671-702.
    68. Walekar, L.; Dutta, T.; Kumar, P.; Ok, Y. S.; Pawar, S.; Deep, A.; Kim, K.-H., Functionalized fluorescent nanomaterials for sensing pollutants in the environment: A critical review. TrAC Trends in Analytical Chemistry 2017, 97, 458-467.
    69. Liu, Q.-H.; Liu, J.; Guo, J.-C.; Yan, X.-L.; Wang, D.-H.; Chen, L.; Yan, F.-Y.; Chen, L.-G., Preparation of polystyrene fluorescent microspheres based on some fluorescent labels. Journal of Materials Chemistry 2009, 19 (14).
    70. Chang, G. Y.; Kurniawan, D.; Chang, Y. J.; Chiang, W. H., Microplasma-Enabled Surfaced-Functionalized Silicon Quantum Dots for Label-Free Detection of Dopamine. ACS Omega 2022, 7 (1), 223-229.
    71. Jin, R., Quantum sized, thiolate-protected gold nanoclusters. Nanoscale 2010, 2 (3), 343-62.
    72. Vaijayanthimala, V.; Chang, H., Functionalized fluorescent nanodiamonds for biomedical applications. Nanomedicine 2009.
    73. Tao, X.; Peng, Y.; Liu, J., Nanomaterial-based fluorescent biosensor for veterinary drug detection in foods. Journal of Food and Drug Analysis 2020, 28 (4), 576-595.
    74. Faraday, M. J. P. t. o. t. R. S. o. L., X. The Bakerian Lecture.—Experimental relations of gold (and other metals) to light. Phil. Trans. 1857, (147), 145-181.
    75. Iqbal, T.; Azam, A.; Majid, A.; Zafar, M.; Shafiq, M.; Ullah, S.; Hussien, M., A DFT study of electronic, vibrational and optical properties of gold clusters. Optical and Quantum Electronics 2022, 54 (2).
    76. Mie, G. J. A. d. p., Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann Phys 1908, 330 (3), 377-445.
    77. Kreibig, U.; Gartz, M.; Hilger, A., Mie resonances: Sensors for physical and chemical cluster interface properties. Berichte der Bunsengesellschaft für physikalische Chemie 1997, 101 (11), 1593-1604.
    78. Lippard, S. J. J. N., Frank Albert Cotton (1930–2007). Nature 2007, 446 (7136), 626-626.
    79. Cotton, F. A. J. I. C., Metal atom clusters in oxide systems. Inorg Chem 1964, 3 (9), 1217-1220.
    80. Cotton, F. J. I. C., Metal-metal bonding in [Re2X8] 2-ions and other metal atom clusters. Inorg Chem 1965, 4 (3), 334-336.
    81. Cotton, F. A.; Haas, T. J. I. C., A molecular orbital treatment of the bonding in certain metal atom clusters. Inorg Chem 1964, 3 (1), 10-17.
    82. Cotton, F. A., Transition-metal compounds containing clusters of metal atoms. Quarterly Reviews, Chemical Society 1966, 20 (3).
    83. Liu, C.; Ding, Y.; Li, Q.; Lin, Y., Photochemical synthesis of glutathione-stabilized silver nanoclusters for fluorometric determination of hydrogen peroxide. Microchimica Acta 2017, 184 (7), 2497-2503.
    84. Wilcoxon, J. P.; Martin, J. E.; Parsapour, F.; Wiedenman, B.; Kelley, D. F., Photoluminescence from nanosize gold clusters. The Journal of Chemical Physics 1998, 108 (21), 9137-9143.
    85. Yang, T. Q.; Peng, B.; Shan, B. Q.; Zong, Y. X.; Jiang, J. G.; Wu, P.; Zhang, K., Origin of the Photoluminescence of Metal Nanoclusters: From Metal-Centered Emission to Ligand-Centered Emission. Nanomaterials (Basel) 2020, 10 (2).
    86. Schröder, J.; Reupert, A.; Wondraczek, L. J. O. M. E., Non-resonant luminescence enhancement in sol-gel coatings for broadband UV-light conversion on side-emitting optical fibers. Optical Materials Express 2022, 12 (6), 2318-2331.
    87. Shiraishi, Y.; Toshima, N., Colloidal silver catalysts for oxidation of ethylene. Journal of Molecular Catalysis A: Chemical 1999, 141 (1-3), 187-192.
    88. Zhang, L.; Wang, E., Metal nanoclusters: New fluorescent probes for sensors and bioimaging. Nano Today 2014, 9 (1), 132-157.
    89. Mathew, A.; Pradeep, T., Noble Metal Clusters: Applications in Energy, Environment, and Biology. Particle & Particle Systems Characterization 2014, 31 (10), 1017-1053.
    90. Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R., Synthesis of Thiol-derivatised Gold Nanoparticles in a Two-phase Liquid-Liquid System. Journal of the Chemical Society, Chemical Communications 1964, 2.
    91. Xie, X.; Sun, T.; Xue, J.; Miao, Z.; Yan, X.; Fang, W.; Li, Q.; Tang, R.; Lu, Y.; Tang, L.; Zha, Z.; He, T., Ag Nanoparticles Cluster with pH‐Triggered Reassembly in Targeting Antimicrobial Applications. Advanced Functional Materials 2020, 30 (17).
    92. Chakraborty, I.; Bag, S.; Landman, U.; Pradeep, T., Atomically Precise Silver Clusters as New SERS Substrates. The Journal of Physical Chemistry Letters 2013, 4 (16), 2769-2773.
    93. Wu, Q. S.; Bigdeli, F.; Rouhani, F.; Gao, X. M.; Kaviani, H.; Li, H. J.; Wang, W.; Liu, K. G.; Hu, M. L.; Cai, X. Q.; Morsali, A., New 3D Porous Silver Nanopolycluster as a Highly Effective Supercapacitor Electrode: Synthesis and Study of the Optical and Electrochemical Properties. Inorg Chem 2021, 60 (3), 1523-1532.
    94. Zhuge, J.; Rouhani, F.; Bigdeli, F.; Gao, X.-M.; Kaviani, H.; Li, H.-J.; Wang, W.; Hu, M.-L.; Liu, K.-G.; Morsali, A. J. D. T., Stable supercapacitor electrode based on two-dimensional high nucleus silver nano-clusters as a green energy source. Dalton Trans 2021, 50 (7), 2606-2615.
    95. Tamaru, K., In situ surface dynamics in heterogeneous catalysis. Proceedings of the Japan Academy, Series B 2004, 80 (3), 119-127.
    96. Zhang, J.; Colbow, K., Surface silver clusters as oxidation catalysts on semiconductor gas sensors. Sensors and Actuators B: Chemical 1997, 40 (1), 47-52.
    97. Jash, M.; Jana, A.; Poonia, A. K.; Khatun, E.; Chakraborty, P.; Nagar, A.; Ahuja, T.; Adarsh, K. V.; Pradeep, T., Phosphine-Protected Atomically Precise Silver–Gold Alloy Nanoclusters and Their Luminescent Superstructures. Chemistry of Materials 2022, 35 (1), 313-326.
    98. Singh, C.; Mehata, A. K.; Priya, V.; Malik, A. K.; Setia, A.; Suseela, M. N. L.; Vikas; Gokul, P.; Samridhi; Singh, S. K.; Muthu, M. S., Bimetallic Au-Ag Nanoparticles: Advanced Nanotechnology for Tackling Antimicrobial Resistance. Molecules 2022, 27 (20).
    99. Alyari, M.; Scott, R. W. J., Au Cluster-Cored Dendrimers Fabricated by Direct Synthesis and Post-functionalization Routes. Langmuir 2022, 38 (10), 3212-3222.
    100. Manju, C. K.; Ghosh, D.; Bodiuzzaman, M.; Pradeep, T., Formation of an NIR-emitting Ag(34)S(3)SBB(20)(CF(3)COO)(6)(2+) cluster from a hydride-protected silver cluster. Dalton Trans 2019, 48 (24), 8664-8670.
    101. Wang, Z.; Chen, B.; Rogach, A. L., Synthesis, optical properties and applications of light-emitting copper nanoclusters. Nanoscale Horiz 2017, 2 (3), 135-146.
    102. Dou, X.; Wang, X.; Qian, S.; Liu, N.; Yuan, X., From understanding the roles of tetraoctylammonium bromide in the two-phase Brust-Schiffrin method to tuning the size of gold nanoclusters. Nanoscale 2020, 12 (38), 19855-19860.
    103. Vazquez-Vazquez, C.; Banobre-Lopez, M.; Mitra, A.; Lopez-Quintela, M. A.; Rivas, J., Synthesis of small atomic copper clusters in microemulsions. Langmuir 2009, 25 (14), 8208-16.
    104. Huseyinova, S.; Blanco Trillo, J. M.; Ramallo-Lopez, J. M.; Requejo, F. G.; Buceta, D.; Lopez-Quintela, M. A., Synthesis of photocatalytic cysteine-capped Cu( approximately 10) clusters using Cu(5) clusters as catalysts. Phys Chem Chem Phys 2023, 25 (8), 6025-6031.
    105. Gwinn, E. G.; O'Neill, P.; Guerrero, A. J.; Bouwmeester, D.; Fygenson, D. K., Sequence-Dependent Fluorescence of DNA-Hosted Silver Nanoclusters. Advanced Materials 2008, 20 (2), 279-283.
    106. Toshima, N.; Wang, Y., Preparation and Catalysis of Novel Colloidal Dispersions of Copper/Noble Metal Bimetallic Clusters. Langmuir 2002, 10 (12), 4574-4580.
    107. Rodriguez-Penedo, A.; Rioboo-Legaspi, P.; Gonzalez-Lopez, A.; Lores-Padin, A.; Pereiro, R.; Garcia-Suarez, M. D. M.; Cima-Cabal, M. D.; Costa-Rama, E.; Fernandez, B.; Fernandez-Abedul, M. T., Electrocatalytic Palladium Nanoclusters as Versatile Indicators of Bioassays: Rapid Electroanalytical Detection of SARS-CoV-2 by Reverse Transcription Loop-Mediated Isothermal Amplification. Adv Healthc Mater 2023, e2202972.
    108. Meng, X.; Liu, Z.; Zhu, M.; Jin, R., Controlled reduction for size selective synthesis of thiolate-protected gold nanoclusters Aun(n = 20, 24, 39, 40). Nanoscale Research Letters 2012, 7 (1).
    109. Tan, H.; Zhou, H.; Zhao, Y.; Wang, X.; He, X.; Chen, J.; Zhang, K.; Antoine, R.; Zhang, S.; Tian, Y., Regulation of Silver Nanoclusters with 4 Orders of Magnitude Variation of Fluorescence Lifetimes with Solvent-Induced Noncovalent Interaction. The Journal of Physical Chemistry C 2022, 126 (11), 5198-5205.
    110. Abarghoei, S.; Fakhri, N.; Borghei, Y. S.; Hosseini, M.; Ganjali, M. R., A colorimetric paper sensor for citrate as biomarker for early stage detection of prostate cancer based on peroxidase-like activity of cysteine-capped gold nanoclusters. Spectrochim Acta A Mol Biomol Spectrosc 2019, 210, 251-259.
    111. Reetz, M. T.; Helbig, W., Size-Selective Synthesis of Nanostructured Transition Metal Clusters. Journal of the American Chemical Society 2002, 116 (16), 7401-7402.
    112. Vilar-Vidal, N.; Blanco, M. C.; López-Quintela, M. A.; Rivas, J.; Serra, C., Electrochemical Synthesis of Very Stable Photoluminescent Copper Clusters. The Journal of Physical Chemistry C 2010, 114 (38), 15924-15930.
    113. Yin, B.; Ma, H.; Wang, S.; Chen, S., Electrochemical Synthesis of Silver Nanoparticles under Protection of Poly(N-vinylpyrrolidone). The Journal of Physical Chemistry B 2003, 107 (34), 8898-8904.
    114. Santiago Gonzalez, B.; Blanco, M. C.; Lopez-Quintela, M. A., Single step electrochemical synthesis of hydrophilic/hydrophobic Ag5 and Ag6 blue luminescent clusters. Nanoscale 2012, 4 (24), 7632-5.
    115. Reetz, M. T.; Winter, M.; Breinbauer, R.; Thurn-Albrecht, T.; Vogel, W., Size-Selective Electrochemical Preparation of Surfactant-Stabilized Pd-, Ni- and Pt/Pd Colloids. Chemistry 2001, 7 (5), 1084-1094.
    116. Fernández-Fariña, S.; González-Barcia, L. M.; Romero, M. J.; García-Tojal, J.; Maneiro, M.; Seco, J. M.; Zaragoza, G.; Martínez-Calvo, M.; González-Noya, A. M.; Pedrido, R., Conversion of a double-tetranuclear cluster silver helicate into a dihelicate via a rare desulfurization process. Inorganic Chemistry Frontiers 2022, 9 (3), 531-536.
    117. Suslick, K. S.; Fang, M.; Hyeon, T., Sonochemical Synthesis of Iron Colloids. Journal of the American Chemical Society 1996, 118 (47), 11960-11961.
    118. Xu, H.; Suslick, K. S., Sonochemical synthesis of highly fluorescent ag nanoclusters. ACS Nano 2010, 4 (6), 3209-14.
    119. Suslick, K. S.; Hyeon, T.; Fang, M.; Cichowlas, A. A., Sonochemical synthesis of nanostructured catalysts. Materials Science and Engineering: A 1995, 204 (1-2), 186-192.
    120. Xu, H.; Zeiger, B. W.; Suslick, K. S., Sonochemical synthesis of nanomaterials. Chem Soc Rev 2013, 42 (7), 2555-67.
    121. Huang, H.; Fan, H.; Ge, Y.; Ye, W.; Liu, Y.; Song, C.; Lin, H.; Zhang, X.; Li, B.; Nie, X.; Zhang, S.; Lu, R., Solvent-free oxidation of toluene to benzaldehyde using electron-rich Au clusters confined in Silicalite-1. Chemical Engineering Journal 2023, 458.
    122. Liao, J. H.; Kanatzidis, M. G., Hydrothermal synthesis of metal polychalcogenides. Structural characterization of [Mo12Se56]12-. A cluster of clusters. Journal of the American Chemical Society 1990, 112 (20), 7400-7402.
    123. Chen, Y.; Yu, R.; Shi, Q.; Qin, J.; Zheng, F., Hydrothermal synthesis of hexagonal ZnO clusters. Materials Letters 2007, 61 (22), 4438-4441.
    124. He, P.; Yi, Q.; Geng, H.; Shao, Y.; Liu, M.; Wu, Z.; Luo, W.; Liu, Y.; Valtchev, V., Boosting the Catalytic Activity and Stability of Ru Metal Clusters in Hydrodeoxygenation of Guaiacol through MWW Zeolite Pore Constraints. ACS Catalysis 2022, 12 (23), 14717-14726.
    125. Adnan, R. H.; Madridejos, J. M. L.; Alotabi, A. S.; Metha, G. F.; Andersson, G. G., A Review of State of the Art in Phosphine Ligated Gold Clusters and Application in Catalysis. Adv Sci (Weinh) 2022, 9 (15), e2105692.
    126. Shichibu, Y.; Negishi, Y.; Tsunoyama, H.; Kanehara, M.; Teranishi, T.; Tsukuda, T., Extremely high stability of glutathionate-protected Au25 clusters against core etching. Small 2007, 3 (5), 835-9.
    127. Udaya Bhaskara Rao, T.; Pradeep, T., Luminescent Ag7 and Ag8 clusters by interfacial synthesis. Angew Chem Int Ed Engl 2010, 49 (23), 3925-9.
    128. Cui, M.; Zhao, Y.; Song, Q., Synthesis, optical properties and applications of ultra-small luminescent gold nanoclusters. TrAC Trends in Analytical Chemistry 2014, 57, 73-82.
    129. Habeeb Muhammed, M. A.; Ramesh, S.; Sinha, S. S.; Pal, S. K.; Pradeep, T., Two distinct fluorescent quantum clusters of gold starting from metallic nanoparticles by pH-dependent ligand etching. Nano Research 2010, 1 (4), 333-340.
    130. Shimizu, T.; Teranishi, T.; Hasegawa, S.; Miyake, M., Size Evolution of Alkanethiol-Protected Gold Nanoparticles by Heat Treatment in the Solid State. The Journal of Physical Chemistry B 2003, 107 (12), 2719-2724.
    131. Dhanalakshmi, L.; Udayabhaskararao, T.; Pradeep, T., Conversion of double layer charge-stabilized Ag@citrate colloids to thiol passivated luminescent quantum clusters. Chem Commun (Camb) 2012, 48 (6), 859-61.
    132. Maye, M. M.; Zheng, W.; Leibowitz, F. L.; Ly, N. K.; Zhong, C.-J., Heating-Induced Evolution of Thiolate-Encapsulated Gold Nanoparticles:  A Strategy for Size and Shape Manipulations. Langmuir 1999, 16 (2), 490-497.
    133. Srinivasulu, Y. G.; Goswami, N.; Yao, Q.; Xie, J., High-Yield Synthesis of AIE-Type Au22(SG)18 Nanoclusters through Precursor Engineering and Its pH-Dependent Size Transformation. The Journal of Physical Chemistry C 2021, 125 (7), 4066-4076.
    134. Huang, T.; Huang, L.; He, W.; Song, X.; Sun, Z.; Jiang, Y.; Pan, G.; Wei, S., Ammonia-Induced Size Convergence of Atomically Monodisperse Au6 Nanoclusters. The Journal of Physical Chemistry C 2018, 122 (11), 6405-6411.
    135. Yuan, X.; Dou, X.; Zheng, K.; Xie, J., Recent Advances in the Synthesis and Applications of Ultrasmall Bimetallic Nanoclusters. Particle & Particle Systems Characterization 2015, 32 (6), 613-629.
    136. Pembere, A. M. S.; Wu, H.; An, P.; Magero, D.; Louis, H.; Luo, Z., Guerbet coupling of methanol catalysed by titanium clusters. Chemical Physics Letters 2022, 802.
    137. Takeda, Y., Metal clusters trapped on opaque substrate particles prepared using pulsed laser ablation in liquid. Japanese Journal of Applied Physics 2022, 61 (7).
    138. Lillich, H.; Wolfrum, J.; Zumbach, V.; Aleandri, L. E.; Jones, D. J.; Roziere, J.; Albers, P.; Seibold, K.; Freund, A., Production and Characterization of Noble Metal Clusters by Laser Ablation. The Journal of Physical Chemistry 1995, 99 (33), 12413-12421.
    139. Oujja, M.; Izquierdo, J. G.; Banares, L.; de Nalda, R.; Castillejo, M., Observation of middle-sized metal clusters in femtosecond laser ablation plasmas through nonlinear optics. Phys Chem Chem Phys 2018, 20 (25), 16956-16965.
    140. Kim, M.; Osone, S.; Kim, T.; Higashi, H.; Seto, T., Synthesis of Nanoparticles by Laser Ablation: A Review. KONA Powder and Particle Journal 2017, 34 (0), 80-90.
    141. Crookes, W. J. W. C. o. t. f. s. o. m., Electric Spacecraft, USA, Radiant matter: A Resume of the principal lectures and papers of Prof. 1879.
    142. Okyere, A. Y.; Rajendran, S.; Annor, G. A., Cold plasma technologies: Their effect on starch properties and industrial scale-up for starch modification. Curr Res Food Sci 2022, 5, 451-463.
    143. Liao, X.; Liu, D.; Xiang, Q.; Ahn, J.; Chen, S.; Ye, X.; Ding, T., Inactivation mechanisms of non-thermal plasma on microbes: A review. Food Control 2017, 75, 83-91.
    144. Heinlin, J.; Morfill, G.; Landthaler, M.; Stolz, W.; Isbary, G.; Zimmermann, J. L.; Shimizu, T.; Karrer, S., Plasma medicine: possible applications in dermatology. J Dtsch Dermatol Ges 2010, 8 (12), 968-76.
    145. Lin, L.; Wang, Q., Microplasma: A New Generation of Technology for Functional Nanomaterial Synthesis. Plasma Chemistry and Plasma Processing 2015, 35 (6), 925-962.
    146. Chiang, W. H.; Mariotti, D.; Sankaran, R. M.; Eden, J. G.; Ostrikov, K. K., Microplasmas for Advanced Materials and Devices. Adv Mater 2020, 32 (18), e1905508.
    147. Ruzaliyev, X. S. J. E. S. H., Analysis of the Methods of Covering the Working Surfaces of the Parts with Vacuum Ion-Plasmas and the Change of Surface Layers. Eurasian Scientific Herald 2022, 9, 27-32.
    148. van Doremaele, E., Morphology and the effect of plasma on the gas flow in cold atmospheric pressure helium plasma jet impinging on a substrate. 2018.
    149. Mariotti, D.; Sankaran, R. M., Microplasmas for nanomaterials synthesis. Journal of Physics D: Applied Physics 2010, 43 (32).
    150. Foest, R.; Schmidt, M.; Becker, K., Microplasmas, an emerging field of low-temperature plasma science and technology. International Journal of Mass Spectrometry 2006, 248 (3), 87-102.
    151. Chang, F.-C.; Richmonds, C.; Sankaran, R. M., Microplasma-assisted growth of colloidal Ag nanoparticles for point-of-use surface-enhanced Raman scattering applications. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 2010, 28 (4), L5-L8.
    152. Shi, J. J.; Kong, M. G., Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas. Phys Rev Lett 2006, 96 (10), 105009.
    153. Zhou, T.; Rong, M.; Cai, Z.; Yang, C. J.; Chen, X., Sonochemical synthesis of highly fluorescent glutathione-stabilized Ag nanoclusters and S2- sensing. Nanoscale 2012, 4 (14), 4103-6.
    154. Mei, J.; Leung, N. L.; Kwok, R. T.; Lam, J. W.; Tang, B. Z., Aggregation-Induced Emission: Together We Shine, United We Soar! Chem Rev 2015, 115 (21), 11718-940.
    155. Xie, Z.; Sun, P.; Wang, Z.; Li, H.; Yu, L.; Sun, D.; Chen, M.; Bi, Y.; Xin, X.; Hao, J., Metal-Organic Gels from Silver Nanoclusters with Aggregation-Induced Emission and Fluorescence-to-Phosphorescence Switching. Angew Chem Int Ed Engl 2020, 59 (25), 9922-9927.
    156. Zhang, M. M.; Li, K.; Zang, S. Q., Progress in Atomically Precise Coinage Metal Clusters with Aggregation‐Induced Emission and Circularly Polarized Luminescence. Advanced Optical Materials 2020, 8 (14).
    157. Sun, P.; Wang, Z.; Bi, Y.; Sun, D.; Zhao, T.; Zhao, F.; Wang, W.; Xin, X., Self-Assembly-Driven Aggregation-Induced Emission of Silver Nanoclusters for Light Conversion and Temperature Sensing. ACS Applied Nano Materials 2020, 3 (2), 2038-2046.
    158. Reinhard, D.; Hall, B. D.; Ugarte, D.; Monot, R., Size-independent fcc-to-icosahedral structural transition in unsupported silver clusters: An electron diffraction study of clusters produced by inert-gas aggregation. Physical Review B 1997, 55 (12), 7868-7881.
    159. Baruwati, B.; Polshettiwar, V.; Varma, R. S., Glutathione promoted expeditious green synthesis of silver nanoparticles in water using microwaves. Green Chemistry 2009, 11 (7).
    160. Li, H.; Cui, Z.; Han, C., Glutathione-stabilized silver nanoparticles as colorimetric sensor for Ni2+ ion. Sensors and Actuators B: Chemical 2009, 143 (1), 87-92.
    161. Sun, Z.; Li, S.; Jiang, Y.; Qiao, Y.; Zhang, L.; Xu, L.; Liu, J.; Qi, W.; Wang, H., Silver Nanoclusters with Specific Ion Recognition Modulated by Ligand Passivation toward Fluorimetric and Colorimetric Copper Analysis and Biological Imaging. Sci Rep 2016, 6, 20553.
    162. Liu, J.; Bao, H.; Ma, D. L.; Leung, C. H., Silver nanoclusters functionalized with Ce(III) ions are a viable "turn-on-off" fluorescent probe for sulfide. Mikrochim Acta 2018, 186 (1), 16.
    163. Guascito, M. R.; Filippo, E.; Malitesta, C.; Manno, D.; Serra, A.; Turco, A., A new amperometric nanostructured sensor for the analytical determination of hydrogen peroxide. Biosens Bioelectron 2008, 24 (4), 1063-9.
    164. Mao, Y.; Wang, C.; Yang, H., Facile synthesis of needle-like single-crystal silver clusters. Materials Letters 2015, 142, 112-114.
    165. Wang, W. X.; Cheung, Y. W.; Dirkzwager, R. M.; Wong, W. C.; Tanner, J. A.; Li, H. W.; Wu, Y., Specific and sensitive detection of Plasmodium falciparum lactate dehydrogenase by DNA-scaffolded silver nanoclusters combined with an aptamer. Analyst 2017, 142 (5), 800-807.
    166. Antipov, A. A.; Arakelyan, S. M.; Vartanyan, T. A.; Itina, T. E.; Kutrovskaya, S. V.; Kucherik, A. O.; Sapegina, I. V., Optical properties of nanostructured gold-silver films formed by deposition of small colloid drops. Optics and Spectroscopy 2015, 119 (1), 119-123.
    167. Zhao, J.; Luo, Y.; Wang, G., Tight-binding study of structural and electronic properties of silver clusters. The European Physical Journal D 2001, 14 (3), 309-316.
    168. Ma, Y.; Shi, L.; Liu, F.; Zhang, Y.; Pang, Y.; Shen, X., Self-assembled thixotropic silver cluster hydrogel for anticancer drug release. Chemical Engineering Journal 2019, 362, 650-657.
    169. Adhikari, B.; Banerjee, A., Short-peptide-based hydrogel: a template for the in situ synthesis of fluorescent silver nanoclusters by using sunlight. Chemistry 2010, 16 (46), 13698-705.
    170. Mehta, B. K.; Chhajlani, M.; Shrivastava, B. D., Green synthesis of silver nanoparticles and their characterization by XRD. Journal of Physics: Conference Series 2017, 836.
    171. Marchioni, M.; Battocchio, C.; Joly, Y.; Gateau, C.; Nappini, S.; Pis, I.; Delangle, P.; Michaud-Soret, I.; Deniaud, A.; Veronesi, G., Thiolate-Capped Silver Nanoparticles: Discerning Direct Grafting from Sulfidation at the Metal–Ligand Interface by Interrogating the Sulfur Atom. The Journal of Physical Chemistry C 2020, 124 (24), 13467-13478.
    172. Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T., High temperature nucleation and growth of glutathione protected ~Ag75 clusters. Chem Commun (Camb) 2012, 48 (54), 6788-90.
    173. Das, A. K.; Biswas, S.; Manna, S. S.; Pathak, B.; Mandal, S., Solvent-Dependent Photophysical Properties of a Semiconducting One-Dimensional Silver Cluster-Assembled Material. Inorg Chem 2021, 60 (23), 18234-18241.
    174. Prosposito, P.; Burratti, L.; Bellingeri, A.; Protano, G.; Faleri, C.; Corsi, I.; Battocchio, C.; Iucci, G.; Tortora, L.; Secchi, V.; Franchi, S.; Venditti, I., Bifunctionalized Silver Nanoparticles as Hg(2+) Plasmonic Sensor in Water: Synthesis, Characterizations, and Ecosafety. Nanomaterials (Basel) 2019, 9 (10).
    175. Wu, Y.; Yang, Y.; Zhang, Z.; Wang, Z.; Zhao, Y.; Sun, L., A facile method to prepare size-tunable silver nanoparticles and its antibacterial mechanism. Advanced Powder Technology 2018, 29 (2), 407-415.
    176. Pal, N. K.; Kryschi, C., A facile synthesis of highly stable and luminescent Ag clusters: a steady-state and time-resolved spectroscopy study. Phys Chem Chem Phys 2015, 17 (3), 1957-65.
    177. Fereja, S. L.; Li, P.; Guo, J.; Fang, Z.; Zhang, Z.; Zhuang, Z.; Zhang, X.; Liu, K.; Chen, W., Silver-enhanced fluorescence of bimetallic Au/Ag nanoclusters as ultrasensitive sensing probe for the detection of folic acid. Talanta 2021, 233, 122469.
    178. Brouwer, A. M., Standards for photoluminescence quantum yield measurements in solution (IUPAC Technical Report). Pure and Applied Chemistry 2011, 83 (12), 2213-2228.
    179. Yang, T.; Dai, S.; Tan, H.; Zong, Y.; Liu, Y.; Chen, J.; Zhang, K.; Wu, P.; Zhang, S.; Xu, J.; Tian, Y., Mechanism of Photoluminescence in Ag Nanoclusters: Metal-Centered Emission versus Synergistic Effect in Ligand-Centered Emission. The Journal of Physical Chemistry C 2019, 123 (30), 18638-18645.
    180. Guo, W.; Yuan, J.; Wang, E., Oligonucleotide-stabilized Ag nanoclusters as novel fluorescence probes for the highly selective and sensitive detection of the Hg2+ ion. Chem Commun (Camb) 2009, (23), 3395-7.
    181. Kraithong, S.; Sirirak, J.; Soisuwan, K.; Wanichacheva, N.; Swanglap, P., Enhancing Sensitivity of Novel Hg2+ Fluorescent Sensor via Plasmonic Enhancement of Silver Nanoparticles. Sensors and Actuators B: Chemical 2018, 258, 694-703.
    182. Packirisamy, V.; Pandurangan, P., Heterocyclic thiol protected supramolecular self-assembly of silver nanoclusters for ultrasensitive detection of toxic Hg (II) ions in nanomolar range. Journal of Molecular Liquids 2021, 344.
    183. Zhou, Q.; Yongli, L.; Wu, Y.; Li, Z.; Li, Y.; Liu, M.; Qu, T.; Chen, C., Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles. Chemosphere 2021, 274, 129959.
    184. Wang, C.; Xu, L.; Wang, Y.; Zhang, D.; Shi, X.; Dong, F.; Yu, K.; Lin, Q.; Yang, B., Fluorescent silver nanoclusters as effective probes for highly selective detection of mercury(II) at parts-per-billion levels. Chem Asian J 2012, 7 (7), 1652-6.
    185. Chakraborty, I.; Udayabhaskararao, T.; Pradeep, T., Luminescent sub-nanometer clusters for metal ion sensing: a new direction in nanosensors. J Hazard Mater 2012, 211-212, 396-403.
    186. Guo, C.; Irudayaraj, J., Fluorescent Ag clusters via a protein-directed approach as a Hg(II) ion sensor. Anal Chem 2011, 83 (8), 2883-9.
    187. Li, S.; Cao, W.; Kumar, A.; Jin, S.; Zhao, Y.; Zhang, C.; Zou, G.; Wang, P. C.; Li, F.; Liang, X. J., Highly Sensitive Simultaneous Detection of Mercury and Copper Ions by Ultrasmall Fluorescent DNA-Ag Nanoclusters. New J Chem 2014, 38 (4), 1546-1550.
    188. Moulder, J. F.; Stickle, W. F.; Sobol, P. E.; Bomben, K. D., Handbook of X-ray photoelectron spectroscopy. 1992.
    189. Bootharaju, M. S.; Pradeep, T., Investigation into the reactivity of unsupported and supported Ag7 and Ag8 clusters with toxic metal ions. Langmuir 2011, 27 (13), 8134-43.
    190. Schiesaro, I.; Burratti, L.; Meneghini, C.; Fratoddi, I.; Prosposito, P.; Lim, J.; Scheu, C.; Venditti, I.; Iucci, G.; Battocchio, C., Hydrophilic Silver Nanoparticles for Hg(II) Detection in Water: Direct Evidence for Mercury–Silver Interaction. The Journal of Physical Chemistry C 2020, 124 (47), 25975-25983.
    191. Rumble, J. R.; Bickham, D. M.; Powell, C. J., The NIST x-ray photoelectron spectroscopy database. Surface and Interface Analysis 1992, 19 (1-12), 241-246.
    192. Das, S.; Samanta, A.; Kole, K.; Gangopadhyay, G.; Jana, S., MnO(2) flowery nanocomposites for efficient and fast removal of mercury(ii) from aqueous solution: a facile strategy and mechanistic interpretation. Dalton Trans 2020, 49 (20), 6790-6800.
    193. Chang, Y. C.; Chiang, W. H., Noble Metal‐Free Surface‐Enhanced Raman Scattering Enhancement from Bandgap‐Controlled Graphene Quantum Dots. Particle & Particle Systems Characterization 2021, 38 (10).
    194. Kirubha, E.; Palanisamy, P. K., Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies. Advances in Natural Sciences: Nanoscience and Nanotechnology 2014, 5 (4).
    195. Wang, P.; Liang, O.; Zhang, W.; Schroeder, T.; Xie, Y. H., Ultra-sensitive graphene-plasmonic hybrid platform for label-free detection. Adv Mater 2013, 25 (35), 4918-24.
    196. Huang, D.; Cui, J.; Chen, X., A morpholinium surfactant crystallization induced formation of Au nanoparticle sheet-like assemblies with uniform SERS activity. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2014, 456, 100-107.
    197. Pilot, R.; Signorini, R.; Durante, C.; Orian, L.; Bhamidipati, M.; Fabris, L., A Review on Surface-Enhanced Raman Scattering. Biosensors (Basel) 2019, 9 (2).
    198. Schmidt, J. P.; Cross, S. E.; Buratto, S. K., Surface-enhanced Raman scattering from ordered Ag nanocluster arrays. J Chem Phys 2004, 121 (21), 10657-9.
    199. Upender, G.; Satyavathi, R.; Raju, B.; Shadak Alee, K.; Narayana Rao, D.; Bansal, C., Silver nanocluster films as novel SERS substrates for ultrasensitive detection of molecules. Chemical Physics Letters 2011, 511 (4-6), 309-314.
    200. Xu, D.; Dong, Z.; Sun, J. L., Fabrication of high performance surface enhanced Raman scattering substrates by a solid-state ionics method. Nanotechnology 2012, 23 (12), 125705.
    201. Chen, J.; Huang, M.; Kong, L., Flexible Ag/nanocellulose fibers SERS substrate and its applications for in-situ hazardous residues detection on food. Applied Surface Science 2020, 533.
    202. Yeh, Y.-J.; Chiang, W.-H., Ag Microplasma-Engineered Nanoassemblies on Cellulose Papers for Surface-Enhanced Raman Scattering and Catalytic Nitrophenol Reduction. ACS Applied Nano Materials 2021, 4 (6), 6364-6375.
    203. Zhou, F.; Liu, Y.; Wang, H.; Wei, Y.; Zhang, G.; Ye, H.; Chen, M.; Ling, D., Au-nanorod-clusters patterned optical fiber SERS probes fabricated by laser-induced evaporation self-assembly method. Opt Express 2020, 28 (5), 6648-6662.
    204. Jiang, T.; Wang, B.; Zhang, L.; Zhou, J., Hydrothermal synthesis of silver nanocubes with tunable edge lengths and their size dependent SERS behaviors. Journal of Alloys and Compounds 2015, 632, 140-146.
    205. Wang, Y. Q.; Ma, S.; Yang, Q. Q.; Li, X. J., Size-dependent SERS detection of R6G by silver nanoparticles immersion-plated on silicon nanoporous pillar array. Applied Surface Science 2012, 258 (15), 5881-5885.
    206. Garcia-Leis, A.; Sanchez-Cortes, S., Label-Free Detection and Self-Aggregation of Amyloid β-Peptides Based on Plasmonic Effects Induced by Ag Nanoparticles: Implications in Alzheimer’s Disease Diagnosis. ACS Applied Nano Materials 2021, 4 (4), 3565-3575.
    207. Dong, J.; Atwood, C. S.; Anderson, V. E.; Siedlak, S. L.; Smith, M. A.; Perry, G.; Carey, P. R. J. B., Metal binding and oxidation of amyloid-β within isolated senile plaque cores: Raman microscopic evidence. Biochemistry 2003, 42 (10), 2768-2773.
    208. Dallari, C.; Credi, C.; Lenci, E.; Trabocchi, A.; Cicchi, R.; Pavone, F. S., Nanostars—decorated microfluidic sensors for surface enhanced Raman scattering targeting of biomolecules. Journal of Physics: Photonics 2020, 2 (2).
    209. Ortiz, C.; Zhang, D.; Xie, Y.; Davisson, V. J.; Ben-Amotz, D., Identification of insulin variants using Raman spectroscopy. Anal Biochem 2004, 332 (2), 245-52.
    210. Devitt, G.; Howard, K.; Mudher, A.; Mahajan, S., Raman Spectroscopy: An Emerging Tool in Neurodegenerative Disease Research and Diagnosis. ACS Chem Neurosci 2018, 9 (3), 404-420.
    211. Rygula, A.; Majzner, K.; Marzec, K. M.; Kaczor, A.; Pilarczyk, M.; Baranska, M., Raman spectroscopy of proteins: a review. Journal of Raman Spectroscopy 2013, 44 (8), 1061-1076.
    212. Chou, I. H.; Benford, M.; Beier, H. T.; Cote, G. L.; Wang, M.; Jing, N.; Kameoka, J.; Good, T. A., Nanofluidic biosensing for beta-amyloid detection using surface enhanced Raman spectroscopy. Nano Lett 2008, 8 (6), 1729-35.
    213. Yang, J. K.; Hwang, I. J.; Cha, M. G.; Kim, H. I.; Yim, D.; Jeong, D. H.; Lee, Y. S.; Kim, J. H., Reaction Kinetics-Mediated Control over Silver Nanogap Shells as Surface-Enhanced Raman Scattering Nanoprobes for Detection of Alzheimer's Disease Biomarkers. Small 2019, 15 (19), e1900613.
    214. Zhang, X.; Liu, S.; Song, X.; Wang, H.; Wang, J.; Wang, Y.; Huang, J.; Yu, J., Robust and Universal SERS Sensing Platform for Multiplexed Detection of Alzheimer's Disease Core Biomarkers Using PAapt-AuNPs Conjugates. ACS Sens 2019, 4 (8), 2140-2149.
    215. Park, H. J.; Cho, S.; Kim, M.; Jung, Y. S., Carboxylic Acid-Functionalized, Graphitic Layer-Coated Three-Dimensional SERS Substrate for Label-Free Analysis of Alzheimer's Disease Biomarkers. Nano Lett 2020, 20 (4), 2576-2584.
    216. Wang, G.; Hao, C.; Ma, W.; Qu, A.; Chen, C.; Xu, J.; Xu, C.; Kuang, H.; Xu, L., Chiral Plasmonic Triangular Nanorings with SERS Activity for Ultrasensitive Detection of Amyloid Proteins in Alzheimer's Disease. Adv Mater 2021, 33 (38), e2102337.
    217. Novo, M.; Freire, S.; Al-Soufi, W., Critical aggregation concentration for the formation of early Amyloid-beta (1-42) oligomers. Sci Rep 2018, 8 (1), 1783.

    無法下載圖示 全文公開日期 2028/07/17 (校內網路)
    全文公開日期 2028/07/17 (校外網路)
    全文公開日期 2028/07/17 (國家圖書館:臺灣博碩士論文系統)
    QR CODE