簡易檢索 / 詳目顯示

研究生: 鄭宇源
Yu-Yuan Cheng
論文名稱: 以大氣常壓微電漿方法進行木質素基底之石墨烯量子點合成,及其汞離子與高半胱胺酸之感測
Microplasma-Enhanced Green and Renewable Synthesis of Lignin-Based Graphene Quantum Dots for Mercury (II) Ions and Homocysteine Sensing
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 魏大欽
Ta-Chin Wei
劉沂欣
Yi-Hsin Liu
蕭偉文
Wei-Wen Hsiao
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 94
中文關鍵詞: 大氣常壓微電漿石墨烯量子點光致發光檢測系統汞離子(II)檢測高半胱胺酸檢測
外文關鍵詞: Atmosphere-pressure microplasma, Graphene quantum dots, Photoluminescence sensing, Mercury(II) ions detection, Homocysteine detection
相關次數: 點閱:420下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 木質素是自然界最豐富的天然有機聚合物之一,造紙業將其加工後的副產物便成了鹼木質素,是一種大量且低價的生質廢棄物,主要用於製造界面活性劑等低價商品。因此,本研究主要目的為以生質素廢棄物鹼木質素為前驅物,合成出具有高商業價值的石墨烯量子點。傳統的石墨烯量子點合成方法有水熱法、微波法及化學切割法為主,其缺點在於高溫、高耗能製程的需求,或是冗長的製程時間以及危險藥劑的添加,因此本研究採用綠色製程的大氣常壓微電漿技術將鹼木質素轉變為貴重的石墨烯量子點,透過合成參數的改變使來調控其放光波長,並探討不同光學性質的石墨烯量子點之材料特性。
    汞離子是一種劇毒的重金屬離子,在人體內累積後會引發器官衰竭、精神錯亂或死亡等多種症狀。高半胱胺酸是一種人體內的生物分子,人體內含有過高的高半胱胺酸可能會導致阿爾茨海默病、骨質疏鬆症或心血管疾病。因此,汞離子和高半胱胺酸的檢測對於環境保護和人體健康具有重要意義。因此,本研究使用具有光致發光特性的石墨烯量子點來檢測劇毒汞離子和生物分子高半胱胺酸。透過石墨烯量子點與汞離子之靜電吸引力來其進行檢測,造成石墨烯量子點之發光強度下降。不同放光波長之量子點對於汞離子的感測有不同的結果,其可歸因於量子點表面的含氧官能基含量。此外,由於胺基酸中的硫醇基與汞離子之間的強大吸引力,將汞離子與石墨烯量子點分離使其螢光強度上升,透過量子點螢光強度的減少與上升來檢測汞離子與高半胱胺酸濃度。


    Recently, biomass resources have attracted high interest in various applications. Lignin is a dominant aromatic polymer, which constitutes the second most abundant organic polymer in the world. In paper industry, alkali Lignin is produced as a byproduct with low commercial value. Therefore, in this project, alkali lignin was used as a precursor to synthesize highly-valued graphene quantum dot (GQD) with tunable emission from blue to yellow by microplasma treatment. Comparing with those conventional synthesis methods, the microplasma synthesis can provide a green, renewable and rapid method to convert biomass waste into highly-valued GQDs.
    Mercury(II) ion (Hg2+) is a toxic heavy metal ion, which may accumulate in human body and cause several symptoms including the failure of organs, insanity or death. Homocysteine (Hcy) is a kind of amino acid. The concentrations of the Hcy in the human body are in elevated level may cause Alzheimer's disease, Osteoporosis or Cardiovascular diseases. Therefore, mercury ions and Hcy detection is significant for protecting environment and human health. Herein, the as-synthesized GQD solution play a role as a sensitive dual probe for detect extreme toxic mercury ions and biomolecule homocysteine. The electrostatic force between negative charge GQDs with abundant oxygen-containing groups with Hg2+ ions enable GQD solution to detect it with the limit of detection(LOD) of 116 nM. Furthermore, the strong affinity between Hcy and Hg2+ ions make the intensity of GQDs recovered, owning to Pearson acid-base concept mechanism. The LOD of Hcy is 113 nM with the linear range from 3 to 15 μM, which has a high potential for normal human body detection.

    Abstract 摘要 致謝 Outline List of figures List of tables 1. Introduction 1.1 Graphene quantum dot 1.2 Synthesis method of GQDs 1.2.1 Top Down approaches for the preparation of GQD 1.2.2 Bottom up methods for the preparation of GQD 1.3 Photoluminescence (PL) 1.4.1 Particle Size effect 1.4.2 Surface effect 1.4.3 Environment effect 1.4.4 Heteroatom doping 1.5 Quenching mechanism of mercury(II) ions 1.6 Microplasma technology 1.7 Mercury (II) ion 1.8 Homocysteine 2. Experimental section 2.1 Materials and Chemicals 2.2 Synthesis of the graphene quantum dot 2.3 Characterizations 2.3.1 Ultraviolet-visible spectroscopy (UV-Vis) 2.3.2 Photoluminescence spectroscopy (PL) 2.3.3 Raman spectroscopy (Raman) 2.3.4 Fourier-transform infrared spectroscopy (FTIR) 2.3.5 Transmission electron microscopy (TEM) 2.3.6 Atomic Force Microscope (AFM) 2.3.7 X-ray photoelectron spectroscopy (XPS) 2.3.8 Zeta potential 2.3.9 Optical Emission Spectroscopy (OES) 2.3.10 Time-Resolved Photoluminescence(TRPL) 2.4 Calculation of yield and calibration line 2.5 Calculation of quantum yield 3. Results and discussion 3.1 Possible mechanism of graphene quantum dot synthesis by microplasma 3.2 Effect of microplasma parameters 3.2.1 Polarity 3.2.2 Current and reaction time 3.3 Characterizations of graphene quantum dots 3.4 Yield of graphene quantum dots 3.5 Photoluminescence-based Mercury ion sensing 3.5.1 Optimization of sensing conditions 3.5.2 Mechanism for the PL quenching of GQD by Hg2+ ions 3.6 Photoluminescence-based homocysteine sensing 3.6.1 Experimental mechanism of homocysteine detection 3.6.2 Optimization of sensing conditions 3.6.3 Zeta potential 4. Conclusions 5. References

    [1] J. Park, Yan, M., Covalent Functionalization of Graphene with Reactive Intermediates, Accounts of Chemical Research 46(1) (2013) 181-189.
    [2] A.K. Geim, Graphene: status and prospects, Science 324(5934) (2009) 1530-1534.
    [3] J.C. Meyer, Kisielowski, C., Erni, R., Rossell, M. D., Crommie, M. F., Zettl, A., Direct Imaging of Lattice Atoms and Topological Defects in Graphene Membranes, Nano Letters 8(11) (2008) 3582–3586.
    [4] J. Peng, W. Gao, B.K. Gupta, Z. Liu, R. Romero-Aburto, L. Ge, L. Song, L.B. Alemany, X. Zhan, G. Gao, S.A. Vithayathil, B.A. Kaipparettu, A.A. Marti, T. Hayashi, J.J. Zhu, P.M. Ajayan, Graphene quantum dots derived from carbon fibers, Nano Letters 12(2) (2012) 844-9.
    [5] N. Baig, I. Kammakakam, W. Falath, Nanomaterials: a review of synthesis methods, properties, recent progress, and challenges, Materials Advances 2(6) (2021) 1821-1871.
    [6] C.H. Park, H. Yang, J. Lee, H.H. Cho, D. Kim, D.C. Lee, B.J. Kim, Multicolor Emitting Block Copolymer-Integrated Graphene Quantum Dots for Colorimetric, Simultaneous Sensing of Temperature, pH, and Metal Ions, Chemistry of Materials 27(15) (2015) 5288-5294.
    [7] J. Cassidy, M. Zamkov, Nanoshell quantum dots: Quantum confinement beyond the exciton Bohr radius, The Journal of Chemical Physics 152(11) (2020) 110902.
    [8] X. Yan, X. Cui, L.-s. Li, Synthesis of large, stable colloidal graphene quantum dots with tunable size, Journal of the American Chemical Society 132(17) (2010) 5944-5945.
    [9] Q. Liu, B. Guo, Z. Rao, B. Zhang, J.R. Gong, Strong two-photon-induced fluorescence from photostable, biocompatible nitrogen-doped graphene quantum dots for cellular and deep-tissue imaging, Nano Letters 13(6) (2013) 2436-2441.
    [10] D. Pan, L. Guo, J. Zhang, C. Xi, Q. Xue, H. Huang, J. Li, Z. Zhang, W. Yu, Z. Chen, Z. Li, M. Wu, Cutting sp2 clusters in graphene sheets into colloidal graphene quantum dots with strong green fluorescence, Journal of Materials Chemistry 22(8) (2012).
    [11] D. Qu, M. Zheng, J. Li, Z. Xie, Z. Sun, Tailoring color emissions from N-doped graphene quantum dots for bioimaging applications, Light: Science & Applications 4(12) (2015) e364-e364.
    [12] S. Diao, X. Zhang, Z. Shao, K. Ding, J. Jie, X. Zhang, 12.35% efficient graphene quantum dots/silicon heterojunction solar cells using graphene transparent electrode, Nano Energy 31 (2017) 359-366.
    [13] C. Shen, S. Ge, Y. Pang, F. Xi, J. Liu, X. Dong, P. Chen, Facile and scalable preparation of highly luminescent N,S co-doped graphene quantum dots and their application for parallel detection of multiple metal ions, Journal of Materials Chemistry B 5(32) (2017) 6593-6600.
    [14] X. Wang, X. Sun, J. Lao, H. He, T. Cheng, M. Wang, S. Wang, F. Huang, Multifunctional graphene quantum dots for simultaneous targeted cellular imaging and drug delivery, Colloids and Surfaces B: Biointerfaces 122 (2014) 638-644.
    [15] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent Advances on Graphene Quantum Dots: From Chemistry and Physics to Applications, Advanced Materials 31(21) (2019) 1808283.
    [16] M. Li, T. Chen, J.J. Gooding, J. Liu, Review of Carbon and Graphene Quantum Dots for Sensing, ACS Sensors 4(7) (2019) 1732-1748.
    [17] D. Pan, J. Zhang, Z. Li, M. Wu, Hydrothermal route for cutting graphene sheets into blue-luminescent graphene quantum dots, Advanced Materials 22(6) (2010) 734-738.
    [18] X. Hai, Q.X. Mao, W.J. Wang, X.F. Wang, X.W. Chen, J.H. Wang, An acid-free microwave approach to prepare highly luminescent boron-doped graphene quantum dots for cell imaging, Journal of Materials Chemistry B 3(47) (2015) 9109-9114.
    [19] D.B. Shinde, V.K. Pillai, Electrochemical preparation of luminescent graphene quantum dots from multiwalled carbon nanotubes, Chemistry 18(39) (2012) 12522-12528.
    [20] F. Liu, M.H. Jang, H.D. Ha, J.H. Kim, Y.H. Cho, T.S. Seo, Facile synthetic method for pristine graphene quantum dots and graphene oxide quantum dots: origin of blue and green luminescence, Advanced Materials 25(27) (2013) 3657-3662.
    [21] S. Kumar, S.T. Aziz, O. Girshevitz, G.D. Nessim, One-Step Synthesis of N-Doped Graphene Quantum Dots from Chitosan as a Sole Precursor Using Chemical Vapor Deposition, The Journal of Physical Chemistry C 122(4) (2018) 2343-2349.
    [22] Y. Dong, J. Shao, C. Chen, H. Li, R. Wang, Y. Chi, X. Lin, G. Chen, Blue luminescent graphene quantum dots and graphene oxide prepared by tuning the carbonization degree of citric acid, Carbon 50(12) (2012) 4738-4743.
    [23] S. Umrao, M.H. Jang, J.H. Oh, G. Kim, S. Sahoo, Y.H. Cho, I.K. Oh, Microwave bottom-up route for size-tunable and switchable photoluminescent graphene quantum dots using acetylacetone: New platform for enzyme-free detection of hydrogen peroxide, Carbon 81 (2015) 514-524.
    [24] J.S. Yang, D.Z. Pai, W.H. Chiang, Microplasma-enhanced synthesis of colloidal graphene quantum dots at ambient conditions, Carbon 153 (2019) 315-319.
    [25] J. Liqiang, Q. Yichun, W. Baiqi, L. Shudan, J. Baojiang, Y. Libin, F. Wei, F. Honggang, S. Jiazhong, Review of photoluminescence performance of nano-sized semiconductor materials and its relationships with photocatalytic activity, Solar Energy Materials and Solar Cells 90(12) (2006) 1773-1787.
    [26] A. Cayuela, M.L. Soriano, C. Carrillo-Carrion, M. Valcarcel, Semiconductor and carbon-based fluorescent nanodots: the need for consistency, Chemical communications 52(7) (2016) 1311-1326.
    [27] T.F. Yeh, W.L. Huang, C.J. Chung, I.T. Chiang, L.C. Chen, H.Y. Chang, W.C. Su, C. Cheng, S.J. Chen, H. Teng, Elucidating Quantum Confinement in Graphene Oxide Dots Based On Excitation-Wavelength-Independent Photoluminescence, The Journal of Physical Chemistry Letters 7(11) (2016) 2087-2092.
    [28] M.A. Sk, A. Ananthanarayanan, L. Huang, K.H. Lim, P. Chen, Revealing the tunable photoluminescence properties of graphene quantum dots, Journal of Materials Chemistry C 2(34) (2014) 6954-6960.
    [29] R. Ye, Z. Peng, A. Metzger, J. Lin, J.A. Mann, K. Huang, C. Xiang, X. Fan, E.L. Samuel, L.B. Alemany, A.A. Marti, J.M. Tour, Bandgap engineering of coal-derived graphene quantum dots, ACS Applied Materials & Interfaces 7(12) (2015) 7041-7048.
    [30] L. Wang, S.-J. Zhu, H.-Y. Wang, Y.-F. Wang, Y.-W. Hao, J.-H. Zhang, Q.-D. Chen, Y.-L. Zhang, W. Han, B. Yang, H.-B. Sun, Unraveling Bright Molecule-Like State and Dark Intrinsic State in Green-Fluorescence Graphene Quantum Dots via Ultrafast Spectroscopy, Advanced Optical Materials 1(3) (2013) 264-271.
    [31] S. Zhu, J. Zhang, S. Tang, C. Qiao, L. Wang, H. Wang, X. Liu, B. Li, Y. Li, W. Yu, X. Wang, H. Sun, B. Yang, Surface Chemistry Routes to Modulate the Photoluminescence of Graphene Quantum Dots: From Fluorescence Mechanism to Up-Conversion Bioimaging Applications, Advanced Functional Materials 22(22) (2012) 4732-4740.
    [32] H. Ding, S.B. Yu, J.S. Wei, H.M. Xiong, Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism, ACS Nano 10(1) (2016) 484-491.
    [33] C. Zhu, S. Yang, G. Wang, R. Mo, P. He, J. Sun, Z. Di, N. Yuan, J. Ding, G. Ding, X. Xie, Negative induction effect of graphite N on graphene quantum dots: tunable band gap photoluminescence, Journal of Materials Chemistry C 3(34) (2015) 8810-8816.
    [34] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots with oxygen-rich functional groups, Journal of the American Chemical Society 134(1) (2012) 15-18.
    [35] J. Feng, H. Dong, B. Pang, F. Shao, C. Zhang, L. Yu, L. Dong, Theoretical study on the optical and electronic properties of graphene quantum dots doped with heteroatoms, Physical Chemistry Chemical Physics 20(22) (2018) 15244-15252.
    [36] J. Qian, C. Shen, J. Yan, F. Xi, X. Dong, J. Liu, Tailoring the Electronic Properties of Graphene Quantum Dots by P Doping and Their Enhanced Performance in Metal-Free Composite Photocatalyst, The Journal of Physical Chemistry C 122(1) (2017) 349-358.
    [37] X. Li, S.P. Lau, L. Tang, R. Ji, P. Yang, Multicolour light emission from chlorine-doped graphene quantum dots, Journal of Materials Chemistry C 1(44) (2013) 7308-7313.
    [38] K. Wang, J. Dong, L. Sun, H. Chen, Y. Wang, C. Wang, L. Dong, Effects of elemental doping on the photoluminescence properties of graphene quantum dots, RSC Advances 6(94) (2016) 91225-91232.
    [39] F. Zu, F. Yan, Z. Bai, J. Xu, Y. Wang, Y. Huang, X. Zhou, The quenching of the fluorescence of carbon dots: A review on mechanisms and applications, Microchimica Acta 184(7) (2017) 1899-1914.
    [40] N.T.N. Anh, A.D. Chowdhury, R.-a. Doong, Highly sensitive and selective detection of mercury ions using N, S-codoped graphene quantum dots and its paper strip based sensing application in wastewater, Sensors and Actuators B: Chemical 252 (2017) 1169-1178.
    [41] K.H. Becker, K.H. Schoenbach, J.G. Eden, Microplasmas and applications, Journal of Physics D: Applied Physics 39(3) (2006) R55-R70.
    [42] W.H. Chiang, D. Mariotti, R.M. Sankaran, J.G. Eden, K.K. Ostrikov, Microplasmas for Advanced Materials and Devices, Advanced Materials 32(18) (2020) 1905508.
    [43] N.K. Kaushik, N. Kaushik, N.N. Linh, B. Ghimire, A. Pengkit, J. Sornsakdanuphap, S.J. Lee, E.H. Choi, Plasma and Nanomaterials: Fabrication and Biomedical Applications, Nanomaterials 9(1) (2019) 98.
    [44] J.J. Shi, M.G. Kong, Evolution of discharge structure in capacitive radio-frequency atmospheric microplasmas, Physical Review Letters 96(10) (2006) 105009.
    [45] H. Ali, E. Khan, I. Ilahi, Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation, Journal of Chemistry 2019 (2019).
    [46] K.H. Vardhan, P.S. Kumar, R.C. Panda, A review on heavy metal pollution, toxicity and remedial measures: Current trends and future perspectives, Journal of Molecular Liquids 290 (2019) 111197.
    [47] F. Calvo, E. Pahl, M. Wormit, P. Schwerdtfeger, Evidence for low‐temperature melting of mercury owing to relativity, Angewandte Chemie International Edition 52(29) (2013) 7583-7585.
    [48] R.A. Bernhoft, Mercury toxicity and treatment: a review of the literature, Journal of Environmental and Public Health 2012 (2012) 460508.
    [49] S. Ekino, M. Susa, T. Ninomiya, K. Imamura, T. Kitamura, Minamata disease revisited: An update on the acute and chronic manifestations of methyl mercury poisoning, Journal of the Neurological Sciences 262(1-2) (2007) 131-144.
    [50] M. Ghaedi, M. Reza Fathi, A. Shokrollahi, F. Shajarat, Highly Selective and Sensitive Preconcentration of Mercury Ion and Determination by Cold Vapor Atomic Absorption Spectroscopy, Analytical Letters 39(6) (2006) 1171-1185.
    [51] Y. Li, C. Chen, B. Li, J. Sun, J. Wang, Y. Gao, Y. Zhao, Z. Chai, Elimination efficiency of different reagents for the memory effect of mercury using ICP-MS, Journal of Analytical Atomic Spectrometry 21(1) (2006) 94-96.
    [52] Q. Hu, G. Yang, Y. Zhao, J. Yin, Determination of copper, nickel, cobalt, silver, lead, cadmium, and mercury ions in water by solid-phase extraction and the RP-HPLC with UV-Vis detection, Analytical and Bioanalytical Chemistry 375(6) (2003) 831-5.
    [53] P.M.U. H. Refsum, O. Nygård, and S. E. Vollset, Homocysteine and Cardiovascular Disease, Annual Review of Medicine 49 (1998) 31-62.
    [54] T. Hasan, R. Arora, A.K. Bansal, R. Bhattacharya, G.S. Sharma, L.R. Singh, Disturbed homocysteine metabolism is associated with cancer, Experimental & Molecular Medicine 51(2) (2019) 1-13.
    [55] F. Van Dam, W.A. Van Gool, Hyperhomocysteinemia and Alzheimer's disease: A systematic review, Arch Gerontol Geriatr 48(3) (2009) 425-430.
    [56] M. Herrmann, J. Peter Schmidt, N. Umanskaya, A. Wagner, O. Taban-Shomal, T. Widmann, G. Colaianni, B. Wildemann, W. Herrmann, The role of hyperhomocysteinemia as well as folate, vitamin B(6) and B(12) deficiencies in osteoporosis: a systematic review, Clinical Chemistry and Laboratory Medicine 45(12) (2007) 1621-1632.
    [57] M.M. Steed, S.C. Tyagi, Mechanisms of cardiovascular remodeling in hyperhomocysteinemia, Antioxid Redox Signal 15(7) (2011) 1927-1943.
    [58] N. Tyagi, K.C. Sedoris, M. Steed, A.V. Ovechkin, K.S. Moshal, S.C. Tyagi, Mechanisms of homocysteine-induced oxidative stress, The American Journal of Physiology-Heart and Circulatory Physiology 289(6) (2005) H2649-H2656.
    [59] V. Ducros, K. Demuth, M.-P. Sauvant, M. Quillard, E. Caussé, M. Candito, M.-H. Read, J. Drai, I. Garcia, M.-F. Gerhardt, Methods for homocysteine analysis and biological relevance of the results, Journal of Chromatography B 781(1-2) (2002) 207-226.
    [60] K.W. Ambroszkiewicz J*, Chełchowska M, Gajewska J, Laskowska-Klita T Serum homocysteine, folate, vitamin B12 and total antioxidant status in vegetarian children, Advances in Medical Sciences 51(265) (2006).
    [61] S.G. Pascal Houze, Isabelle Madelaine, Bernard Bousquet, Bernard Gourmel, Simultaneous Determination of Total Plasma Glutathione,Homocysteine, Cysteinylglycine, and Methionine byHigh-Performance Liquid Chromatography WithElectrochemical Detection, Journal of Clinical Laboratory Analysis 15(3) (2001) 144-153.
    [62] T. Orriere, Kurniawan, D., Chang, Y. C., Pai, D. Z., Chiang, W. H., Effect of plasma polarity on the synthesis of graphene quantum dots by atmospheric-pressure microplasmas, Nanotechnology 31(48) (2020) 485001.
    [63] D. Qu, M. Zheng, P. Du, Y. Zhou, L. Zhang, D. Li, H. Tan, Z. Zhao, Z. Xie, Z. Sun, Highly luminescent S, N co-doped graphene quantum dots with broad visible absorption bands for visible light photocatalysts, Nanoscale 5(24) (2013) 12272-12277.
    [64] E. Dervishi, Z. Ji, H. Htoon, M. Sykora, S.K. Doorn, Raman spectroscopy of bottom-up synthesized graphene quantum dots: size and structure dependence, Nanoscale 11(35) (2019) 16571-16581.
    [65] Y. Hu, J. Yang, J. Tian, L. Jia, J.-S. Yu, Waste frying oil as a precursor for one-step synthesis of sulfur-doped carbon dots with pH-sensitive photoluminescence, Carbon 77 (2014) 775-782.
    [66] G. Yang, X. Wan, Y. Su, X. Zeng, J. Tang, Acidophilic S-doped carbon quantum dots derived from cellulose fibers and their fluorescence sensing performance for metal ions in an extremely strong acid environment, Journal of Materials Chemistry A 4(33) (2016) 12841-12849.
    [67] M. Hua, C. Wang, J. Qian, K. Wang, Z. Yang, Q. Liu, H. Mao, K. Wang, Preparation of graphene quantum dots based core-satellite hybrid spheres and their use as the ratiometric fluorescence probe for visual determination of mercury(II) ions, Analytica Chimica Acta 888 (2015) 173-181.
    [68] B. Shi, L. Zhang, C. Lan, J. Zhao, Y. Su, S. Zhao, One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury(II) ions, Talanta 142 (2015) 131-139.
    [69] D. Kurniawan, W.H. Chiang, Microplasma-enabled colloidal nitrogen-doped graphene quantum dots for broad-range fluorescent pH sensors, Carbon 167 (2020) 675-684.
    [70] A.N. Nair, V.S.N. Chava, S. Bose, T. Zheng, S. Pilla, S.T. Sreenivasan, In Situ Doping-Enabled Metal and Nonmetal Codoping in Graphene Quantum Dots: Synthesis and Application for Contaminant Sensing, ACS Sustainable Chemistry & Engineering 8(44) (2020) 16565-16576.
    [71] S. Li, Y. Li, J. Cao, J. Zhu, L. Fan, X. Li, Sulfur-doped graphene quantum dots as a novel fluorescent probe for highly selective and sensitive detection of Fe(3+), Analytical Chemistry 86(20) (2014) 10201-10207.
    [72] D. Su, M. Wang, Q. Liu, Z. Qu, X. Su, A novel fluorescence strategy for mercury ion and trypsin activity assay based on nitrogen-doped graphene quantum dots, New Journal of Chemistry 42(20) (2018) 17083-17090.
    [73] Y. Yang, X. Xiao, X. Xing, Z. Wang, T. Zou, Z. Wang, R. Zhao, Y. Wang, One-pot synthesis of N-doped graphene quantum dots as highly sensitive fluorescent sensor for detection of mercury ions water solutions, Materials Research Express 6(9) (2019) 095615.
    [74] Y. Yang, X. Xiao, X. Xing, Z. Wang, T. Zou, Z. Wang, R. Zhao, Y. Wang, Rhodamine B assisted graphene quantum dots flourescent sensor system for sensitive recognition of mercury ions, Journal of Luminescence 207 (2019) 273-281.
    [75] C. Kaewprom, Y. Areerob, W.-C. Oh, K.L. Ameta, S. Chanthai, Simultaneous determination of Hg (II) and Cu (II) in water samples using fluorescence quenching sensor of N-doped and N, K co-doped graphene quantum dots, Arabian Journal of Chemistry 13(2) (2020) 3714-3723.
    [76] B. Wang, S. Zhuo, L. Chen, Y. Zhang, Fluorescent graphene quantum dot nanoprobes for the sensitive and selective detection of mercury ions, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 131 (2014) 384-387.
    [77] B. Shi, L. Zhang, C. Lan, J. Zhao, Y. Su, S. Zhao, One-pot green synthesis of oxygen-rich nitrogen-doped graphene quantum dots and their potential application in pH-sensitive photoluminescence and detection of mercury (II) ions, Talanta 142 (2015) 131-139.
    [78] R.V. Khose, G. Chakraborty, M.P. Bondarde, P.H. Wadekar, A.K. Ray, S. Some, Red-fluorescent graphene quantum dots from guava leaf as a turn-off probe for sensing aqueous Hg (ii), New Journal of Chemistry 45(10) (2021) 4617-4625.
    [79] Y. Liu, X. Tang, M. Deng, Y. Cao, Y. Li, H. Zheng, F. Li, F. Yan, T. Lan, L. Shi, Nitrogen doped graphene quantum dots as a fluorescent probe for mercury (II) ions, Microchimica Acta 186(3) (2019) 1-8.
    [80] D. Gu, S. Shang, Q. Yu, J. Shen, Green synthesis of nitrogen-doped carbon dots from lotus root for Hg(II) ions detection and cell imaging, Applied Surface Science 390 (2016) 38-42.
    [81] Y. Zhang, P. Cui, F. Zhang, X. Feng, Y. Wang, Y. Yang, X. Liu, Fluorescent probes for "off-on" highly sensitive detection of Hg2+ and L-cysteine based on nitrogen-doped carbon dots, Talanta 152 (2016) 288-300.
    [82] A. Alfarra, E. Frackowiak, F. Béguin, The HSAB concept as a means to interpret the adsorption of metal ions onto activated carbons, Applied Surface Science 228(1-4) (2004) 84-92.
    [83] Z. Wu, W. Li, J. Chen, C. Yu, A graphene quantum dot-based method for the highly sensitive and selective fluorescence turn on detection of biothiols, Talanta 119 (2014) 538-543.
    [84] X. Ran, H. Sun, F. Pu, J. Ren, X. Qu, Ag nanoparticle-decorated graphene quantum dots for label-free, rapid and sensitive detection of Ag+ and biothiols, Chemical communications 49(11) (2013) 1079-1081.
    [85] S.K. Vaishnav, K. Patel, K. Chandraker, J. Korram, R. Nagwanshi, K.K. Ghosh, M.L. Satnami, Surface plasmon resonance based spectrophotometric determination of medicinally important thiol compounds using unmodified silver nanoparticles, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 179 (2017) 155-162.
    [86] W. Hao, A. McBride, S. McBride, J.P. Gao, Z.Y. Wang, Colorimetric and near-infrared fluorescence turn-on molecular probe for direct and highly selective detection of cysteine in human plasma, Journal of Materials Chemistry 21(4) (2011) 1040-1048.

    無法下載圖示 全文公開日期 2027/07/26 (校內網路)
    全文公開日期 2027/07/26 (校外網路)
    全文公開日期 2027/07/26 (國家圖書館:臺灣博碩士論文系統)
    QR CODE