簡易檢索 / 詳目顯示

研究生: 簡浩軒
Hao-Hsuan Chien
論文名稱: 機械化學輔助固相剝離製程一步驟合成石墨烯量子點
Scalable synthesis of graphene quantum dots by mechanochemical-assisted solid exfoliations
指導教授: 江偉宏
Wei-Hung Chiang
口試委員: 江偉宏
Wei-Hung Chiang
王復民
Fu-Ming Wang
游文岳
Wen-Yueh Yu
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 英文
論文頁數: 84
中文關鍵詞: 機械化學法固相剝離石墨烯量子點球磨
外文關鍵詞: mechenochemical method, solid exfoliation, graphene quantum dots (GQDs), ball milling
相關次數: 點閱:292下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 石墨烯量子點(GQDs)是直徑小於100nm的碳奈米結晶體。由於量子侷限和邊界效應,石墨烯量子點具有優異的性能,包括可調控的螢光特性,在水中有良好的分散性和優異的生物相容性。因此,GQD在螢光成像,藥物輸送和感測領域已被廣泛應用。這就是為什麼石墨烯量子點吸引了越來越多的關注。但是,該如何合成石墨烯量子點呢?一般的合成方法可以分為top down和bottom up。top down是將大的塊材切割成小型結構,如化學氧化還原法,電化學法以及機械法等,但缺點為產品不易控制尺寸和形狀。相反地,bottom up是利用小分子通過聚合反應形成大分子結構,常用的方法如微波,熱和水熱法等,雖然量子點的合成容易控制表面結構,但涉及復雜的程序和高溫製程,因此不利於量產化。在這裡,我們提出了一種簡單,節能,可規模生產的途徑,通過機械化學輔助固相剝離合成石墨烯量子點,該剝離過程是石墨和氧化劑的混合物藉由高能球磨來操作。石墨烯量子點的平均大小約為3.03nm。它們是典型的藍光,量子產率約為2.23%。通過改變物理參數如時間和轉速,我們發現它們是控制石墨烯量子點產量的因素。石墨烯量子點的產量與物理參數有正相關。此外,我們改變不同的試劑以探索化學參數的影響。首先討論了氧化劑的pH值效應。我們發現氧化劑的pH值越高,石墨烯量子點的產量越高。其次,我們觀察到氧化劑離子的莫耳密度越高,石墨烯量子點的產率越高。第三,我們注意到氧化劑的離子半徑越大,石墨烯量子點的量子產率越高。最後,我們利用PL光譜分析觀察在高能球磨中使用不同試劑作為氧化劑所合成的石墨烯量子點的螢光放射波長。大多數石墨烯量子點具有典型的435至445nm的藍色放光。然而,高能球磨中用碳酸鉀作為氧化劑所合成的石墨烯量子點的放射波長發生紅位移。這是由含氧基團和量子限侷限效應所導致。


    Graphene quantum dots (GQDs) are carbon nanocrystals with a diameter of less than 100 nm. Due to quantum confinement and edge effects, GQDs have excellent properties, including tunable PL property, good water solubility, and excellent biocompatibility. Therefore, GQDs have been widely applied in the field of fluorescence imaging, drug delivery and sensing. That is why GQDs have attracted an increasing attention. The general synthesis method can be divided into top-down and bottom-up. The method of top-down is to cut a large block into small structures such as chemical redox method and electrochemical method as well as mechanical method, etc. However, the disadvantage is that the product is not easy to control the size and shape. Conversely, bottom-up is the use of small molecules through the polymerization reaction to form a macromolecular structure, common methods such as microwave, heat and hydrothermal method, although the synthesis of quantum dots easy to control the surface structure, but involves complex procedures and high temperature process, not easy to mass production. Here, we presented a facile, energy -efficient, scalable route to synthesize GQDs by mechanochemical assisted solid exfoliations which were operated by high energy ball milling a mixture of graphite and oxidant. The average size of GQDs was about 3.03nm. They were typical blue emission with QY around 2.23%. Though changing physical parameters such as time and rotational speed, we found that they were factors to control the yield of GQDs. The yield of GQDs was proportional physical parameters. Further, we changed different reagents to explore the effect of chemical parameters. First, the pH value of oxidant effect was discussed. We found that the higher pH value of oxidant, the higher yield of GQDs. Second, we observed that the higher molar density of oxidant ions, the higher yield of GQDs. Third, we noticed that the larger ion radius of oxidant, the higher QY of GQDs. Finally, we used PL spectrum analysis to observe the PL emission of GQDs which were synthesized by high energy ball milling with different reagent as oxidant. Most GQDs possessed typical blue emission of 435 to 445nm. However, the peak of GQDs which were synthesized by high energy ball milling with K2CO3 as oxidant was red shift. This was caused by oxygen containing group and quantum confinement.

    Abstract I 摘要 III 致謝 IV Table of content V List of figure VII List of table XI 1. Introduction 1 1.1 GQD structure 1 1.2 GQD properties 2 1.2.1 Optical properties 2 1.3 Synthesis of GQDs 7 1.3.1 Bottom up method 8 1.3.1.1 Controllable synthesis 8 1.3.1.2 pyrolysis or carbonization 9 1.3.2 Top down method 11 1.3.2.1 Chemical oxidation 11 1.3.2.2 Hydrothermal/solvothermal cutting 15 1.3.2.3 Electrochemical cutting 18 1.3.2.4 Microwave-assisted cutting 20 1.3.2.5 Physical method 21 2. Experiment 31 2.1 Chemicals 31 2.2 Characterizations 31 2.2.1 UV-visible spectroscopy 31 2.2.2 Raman spectroscopy 32 2.2.3 Photoluminescence spectroscopy (PL) 32 2.2.4 Transmission Electron Microscopy (TEM) 32 2.2.5 Atomic Force Microscopy (AFM) 32 2.2.6 Fourier Transform Infrared spectrometer (FT-IR) 32 2.2.7 X-ray photoelectron spectroscopy (XPS) 33 2.2.8 X-ray diffraction (XRD) 33 2.3 Synthesis of GQDs by ball milling 34 2.4 Yield calculation 35 2.5 Quantum yield (QY) calculation 36 3. Results and Discussion 37 3.1 Synthesize GQDs by high energy ball milling 37 3.2 Physical parameters 46 3.2.1 Time effect 46 3.2.2 Speed effect 49 3.3 Chemical parameters 52 3.3.1 pH value of oxidant effect 52 3.3.2 The density of oxidant ions effect 54 3.3.3 Ion radius of oxidant effect 56 3.4 Synthesis mechanism 58 3.5 Effect of chemical parameters on PL property 60 4. Conclusion 62 5. References 63 6. Supporting information 70

    1. Namdari, P.; Negahdari, B.; Eatemadi, A., Synthesis, Properties and Biomedical Applications of Carbon-Based Quantum Dots: An Updated Review. Biomed Pharmacother 2017, 87, 209-222.
    2. Li, L.; Wu, G.; Yang, G.; Peng, J.; Zhao, J.; Zhu, J. J., Focusing on Luminescent Graphene Quantum Dots: Current Status and Future Perspectives. Nanoscale 2013, 5, 4015-39.
    3. Lin, L.; Rong, M.; Luo, F.; Chen, D.; Wang, Y.; Chen, X., Luminescent Graphene Quantum Dots as New Fluorescent Materials for Environmental and Biological Applications. TrAC Trends in Analytical Chemistry 2014, 54, 83-102.
    4. Zheng, X. T.; Ananthanarayanan, A.; Luo, K. Q.; Chen, P., Glowing Graphene Quantum Dots and Carbon Dots: Properties, Syntheses, and Biological Applications. Small 2015, 11, 1620-36.
    5. Khan, Z. H., Recent Trends in Nanomaterials: Synthesis and Properties; Springer, 2017; Vol. 83.
    6. Li, K.; Liu, W.; Ni, Y.; Li, D.; Lin, D.; Su, Z.; Wei, G., Technical Synthesis and Biomedical Applications of Graphene Quantum Dots. Journal of Materials Chemistry B 2017, 5, 4811-4826.
    7. Zhang, R.; Ding, Z., Recent Advances in Graphene Quantum Dots as Bioimaging Probes. Journal of Analysis and Testing 2018, 2, 45-60.
    8. Wang, R.; Lu, K.-Q.; Tang, Z.-R.; Xu, Y.-J., Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis. J. Mater. Chem. A 2017, 5, 3717-3734.
    9. Zhu, S., et al., Strongly Green-Photoluminescent Graphene Quantum Dots for Bioimaging Applications. Chem Commun (Camb) 2011, 47, 6858-60.
    10. Liu, Y.; Kim, D. Y., Ultraviolet and Blue Emitting Graphene Quantum Dots Synthesized from Carbon Nano-Onions and Their Comparison for Metal Ion Sensing. Chem Commun (Camb) 2015, 51, 4176-9.
    11. Cao, Y.; Dong, H.; Yang, Z.; Zhong, X.; Chen, Y.; Dai, W.; Zhang, X., Aptamer-Conjugated Graphene Quantum Dots/Porphyrin Derivative Theranostic Agent for Intracellular Cancer-Related Microrna Detection and Fluorescence-Guided Photothermal/Photodynamic Synergetic Therapy. ACS Appl Mater Interfaces 2017, 9, 159-166.
    12. Fan, Z.; Zhou, S.; Garcia, C.; Fan, L.; Zhou, J., Ph-Responsive Fluorescent Graphene Quantum Dots for Fluorescence-Guided Cancer Surgery and Diagnosis. Nanoscale 2017, 9, 4928-4933.
    13. Gokus, T.; Nair, R.; Bonetti, A.; Bohmler, M.; Lombardo, A.; Novoselov, K.; Geim, A.; Ferrari, A.; Hartschuh, A., Making Graphene Luminescent by Oxygen Plasma Treatment. ACS nano 2009, 3, 3963-3968.
    14. Baker, S. N.; Baker, G. A., Luminescent Carbon Nanodots: Emergent Nanolights. Angew Chem Int Ed Engl 2010, 49, 6726-44.
    15. Demchenko, A. P.; Dekaliuk, M. O., Novel Fluorescent Carbonic Nanomaterials for Sensing and Imaging. Methods Appl Fluoresc 2013, 1, 042001.
    16. Cao, L.; Meziani, M. J.; Sahu, S.; Sun, Y.-P., Photoluminescence Properties of Graphene Versus Other Carbon Nanomaterials. Accounts of chemical research 2012, 46, 171-180.
    17. Li, H.; He, X.; Kang, Z.; Huang, H.; Liu, Y.; Liu, J.; Lian, S.; Tsang, C. H.; Yang, X.; Lee, S. T., Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angew Chem Int Ed Engl 2010, 49, 4430-4.
    18. Ding, H.; Yu, S. B.; Wei, J. S.; Xiong, H. M., Full-Color Light-Emitting Carbon Dots with a Surface-State-Controlled Luminescence Mechanism. ACS Nano 2016, 10, 484-91.
    19. Cao, L.; Wang, X.; Meziani, M. J.; Lu, F.; Wang, H.; Luo, P. G.; Lin, Y.; Harruff, B. A.; Veca, L. M.; Murray, D., Carbon Dots for Multiphoton Bioimaging. Journal of the American Chemical Society 2007, 129, 11318-11319.
    20. Shen, J.; Zhu, Y.; Chen, C.; Yang, X.; Li, C., Facile Preparation and Upconversion Luminescence of Graphene Quantum Dots. Chemical Communications 2011, 47, 2580-2582.
    21. Li, H.; Kang, Z.; Liu, Y.; Lee, S.-T., Carbon Nanodots: Synthesis, Properties and Applications. Journal of Materials Chemistry 2012, 22.
    22. Tong, X.; Wei, Q.; Zhan, X.; Zhang, G.; Sun, S., The New Graphene Family Materials: Synthesis and Applications in Oxygen Reduction Reaction. Catalysts 2016, 7.
    23. Chen, W.; Lv, G.; Hu, W.; Li, D.; Chen, S.; Dai, Z., Synthesis and Applications of Graphene Quantum Dots: A Review. Nanotechnology Reviews 2018, 7, 157-185.
    24. Yan, X.; Cui, X.; Li, L.-s., Synthesis of Large, Stable Colloidal Graphene Quantum Dots with Tunable Size. Journal of the American Chemical Society 2010, 132, 5944-5945.
    25. Dong, Y.; Shao, J.; Chen, C.; Li, H.; Wang, R.; Chi, Y.; Lin, X.; Chen, G., Blue Luminescent Graphene Quantum Dots and Graphene Oxide Prepared by Tuning the Carbonization Degree of Citric Acid. Carbon 2012, 50, 4738-4743.
    26. Bayat, A.; Saievar-Iranizad, E., Synthesis of Green-Photoluminescent Single Layer Graphene Quantum Dots: Determination of Homo and Lumo Energy States. Journal of Luminescence 2017, 192, 180-183.
    27. Peng, J., et al., Graphene Quantum Dots Derived from Carbon Fibers. Nano Lett 2012, 12, 844-9.
    28. Hu, S.; Wei, Z.; Chang, Q.; Trinchi, A.; Yang, J., A Facile and Green Method Towards Coal-Based Fluorescent Carbon Dots with Photocatalytic Activity. Applied Surface Science 2016, 378, 402-407.
    29. Pan, D.; Zhang, J.; Li, Z.; Wu, M., Hydrothermal Route for Cutting Graphene Sheets into Blue-Luminescent Graphene Quantum Dots. Adv Mater 2010, 22, 734-8.
    30. Liu, F.; Jang, M. H.; Ha, H. D.; Kim, J. H.; Cho, Y. H.; Seo, T. S., Facile Synthetic Method for Pristine Graphene Quantum Dots and Graphene Oxide Quantum Dots: Origin of Blue and Green Luminescence. Adv Mater 2013, 25, 3657-62.
    31. Lu, J.; Yang, J.-x.; Wang, J.; Lim, A.; Wang, S.; Loh, K. P., One-Pot Synthesis of Fluorescent Carbon Nanoribbons, Nanoparticles, and Graphene by the Exfoliation of Graphite in Ionic Liquids. ACS nano 2009, 3, 2367-2375.
    32. Shinde, D. B.; Pillai, V. K., Electrochemical Preparation of Luminescent Graphene Quantum Dots from Multiwalled Carbon Nanotubes. Chemistry 2012, 18, 12522-8.
    33. Li, L.-L.; Ji, J.; Fei, R.; Wang, C.-Z.; Lu, Q.; Zhang, J.-R.; Jiang, L.-P.; Zhu, J.-J., A Facile Microwave Avenue to Electrochemiluminescent Two-Color Graphene Quantum Dots. Advanced Functional Materials 2012, 22, 2971-2979.
    34. Han, B.; Yu, M.; Pen, T.; Li, Y.; Hu, X.; Xiang, R.; Hou, X.; He, G., One-Step Extraction of Highly Fluorescent Carbon Quantum Dots by a Physical Method from Carbon Black. New Journal of Chemistry 2017, 41, 5267-5270.
    35. Hassan, M.; Haque, E.; Reddy, K. R.; Minett, A. I.; Chen, J.; Gomes, V. G., Edge-Enriched Graphene Quantum Dots for Enhanced Photo-Luminescence and Supercapacitance. Nanoscale 2014, 6, 11988-94.
    36. Gao, H.; Xue, C.; Hu, G.; Zhu, K., Production of Graphene Quantum Dots by Ultrasound-Assisted Exfoliation in Supercritical Co2/H2o Medium. Ultrason Sonochem 2017, 37, 120-127.
    37. Lu, L.; Zhu, Y.; Shi, C.; Pei, Y. T., Large-Scale Synthesis of Defect-Selective Graphene Quantum Dots by Ultrasonic-Assisted Liquid-Phase Exfoliation. Carbon 2016, 109, 373-383.
    38. Viculis, L. M.; Mack, J. J.; Mayer, O. M.; Hahn, H. T.; Kaner, R. B., Intercalation and Exfoliation Routes to Graphite Nanoplatelets. Journal of Materials Chemistry 2005, 15, 974-978.
    39. Song, S. H.; Jang, M.-H.; Chung, J.; Jin, S. H.; Kim, B. H.; Hur, S.-H.; Yoo, S.; Cho, Y.-H.; Jeon, S., Highly Efficient Light-Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials 2014, 2, 1016-1023.
    40. Sarkar, S.; Gandla, D.; Venkatesh, Y.; Bangal, P. R.; Ghosh, S.; Yang, Y.; Misra, S., Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Phys Chem Chem Phys 2016, 18, 21278-87.
    41. Buzaglo, M.; Shtein, M.; Regev, O., Graphene Quantum Dots Produced by Microfluidization. Chemistry of Materials 2015, 28, 21-24.
    42. Loh, Z. H.; Samanta, A. K.; Sia Heng, P. W., Overview of Milling Techniques for Improving the Solubility of Poorly Water-Soluble Drugs. Asian Journal of Pharmaceutical Sciences 2015, 10, 255-274.
    43. Khadka, P.; Ro, J.; Kim, H.; Kim, I.; Kim, J. T.; Kim, H.; Cho, J. M.; Yun, G.; Lee, J., Pharmaceutical Particle Technologies: An Approach to Improve Drug Solubility, Dissolution and Bioavailability. asian journal of pharmaceutical sciences 2014, 9, 304-316.
    44. Zhang, W.; Wang, Y.; Zhang, D.; Yu, S.; Zhu, W.; Wang, J.; Zheng, F.; Wang, S.; Wang, J., A One-Step Approach to the Large-Scale Synthesis of Functionalized Mos2 Nanosheets by Ionic Liquid Assisted Grinding. Nanoscale 2015, 7, 10210-7.
    45. Al-Sherbini, A. S.; Bakr, M.; Ghoneim, I.; Saad, M., Exfoliation of Graphene Sheets Via High Energy Wet Milling of Graphite in 2-Ethylhexanol and Kerosene. J Adv Res 2017, 8, 209-215.
    46. Ruse, E.; Buzaglo, M.; Pri-Bar, I.; Shunak, L.; Nadiv, R.; Pevzner, S.; Siton-Mendelson, O.; Skripnyuk, V. M.; Rabkin, E.; Regev, O., Hydrogen Storage Kinetics: The Graphene Nanoplatelet Size Effect. Carbon 2018, 130, 369-376.
    47. Gonzalez-Dominguez, J. M.; Leon, V.; Lucio, M. I.; Prato, M.; Vazquez, E., Production of Ready-to-Use Few-Layer Graphene in Aqueous Suspensions. Nat Protoc 2018, 13, 495-506.
    48. Balasubramanyan, S.; Sasidharan, S.; Poovathinthodiyil, R.; Ramakrishnan, R. M.; Narayanan, B. N., Sucrose-Mediated Mechanical Exfoliation of Graphite: A Green Method for the Large Scale Production of Graphene and Its Application in Catalytic Reduction of 4-Nitrophenol. New Journal of Chemistry 2017, 41, 11969-11978.
    49. Liu, C.; Liu, X.; Tan, J.; Wang, Q.; Wen, H.; Zhang, C., Nitrogen-Doped Graphene by All-Solid-State Ball-Milling Graphite with Urea as a High-Power Lithium Ion Battery Anode. Journal of Power Sources 2017, 342, 157-164.
    50. Leon, V.; Quintana, M.; Herrero, M. A.; Fierro, J. L.; de la Hoz, A.; Prato, M.; Vazquez, E., Few-Layer Graphenes from Ball-Milling of Graphite with Melamine. Chem Commun (Camb) 2011, 47, 10936-8.
    51. Li, L. H.; Chen, Y.; Behan, G.; Zhang, H.; Petravic, M.; Glushenkov, A. M., Large-Scale Mechanical Peeling of Boron Nitride Nanosheets by Low-Energy Ball Milling. Journal of Materials Chemistry 2011, 21.
    52. Posudievsky, O. Y.; Khazieieva, O. A.; Cherepanov, V. V.; Dovbeshko, G. I.; Koshechko, V. G.; Pokhodenko, V. D., Efficient Dispersant-Free Liquid Exfoliation Down to the Graphene-Like State of Solvent-Free Mechanochemically Delaminated Bulk Hexagonal Boron Nitride. RSC Advances 2016, 6, 47112-47119.
    53. Buzaglo, M.; Bar, I. P.; Varenik, M.; Shunak, L.; Pevzner, S.; Regev, O., Graphite‐to‐Graphene: Total Conversion. Advanced Materials 2017, 29.
    54. Yi, M.; Shen, Z., A Review on Mechanical Exfoliation for the Scalable Production of Graphene. J. Mater. Chem. A 2015, 3, 11700-11715.
    55. Wang, L.; Chen, X.; Lu, Y.; Liu, C.; Yang, W., Carbon Quantum Dots Displaying Dual-Wavelength Photoluminescence and Electrochemiluminescence Prepared by High-Energy Ball Milling. Carbon 2015, 94, 472-478.
    56. Wang, C.; Xu, Z.; Cheng, H.; Lin, H.; Humphrey, M. G.; Zhang, C., A Hydrothermal Route to Water-Stable Luminescent Carbon Dots as Nanosensors for Ph and Temperature. Carbon 2015, 82, 87-95.
    57. Huang, X.; Li, Y.; Zhong, X.; Rider, A. E.; Ostrikov, K. K., Fast Microplasma Synthesis of Blue Luminescent Carbon Quantum Dots at Ambient Conditions. Plasma Processes and Polymers 2015, 12, 59-65.
    58. Zheng, B.; Chen, Y.; Li, P.; Wang, Z.; Cao, B.; Qi, F.; Liu, J.; Qiu, Z.; Zhang, W., Ultrafast Ammonia-Driven, Microwave-Assisted Synthesis of Nitrogen-Doped Graphene Quantum Dots and Their Optical Properties. Nanophotonics 2017, 6, 259-267.
    59. Gan, Z.; Xu, H.; Hao, Y., Mechanism for Excitation-Dependent Photoluminescence from Graphene Quantum Dots and Other Graphene Oxide Derivates: Consensus, Debates and Challenges. Nanoscale 2016, 8, 7794-7807.
    60. Li, X.; Lau, S. P.; Tang, L.; Ji, R.; Yang, P., Sulphur Doping: A Facile Approach to Tune the Electronic Structure and Optical Properties of Graphene Quantum Dots. Nanoscale 2014, 6, 5323-5328.
    61. Li, X.; Lau, S. P.; Tang, L.; Ji, R.; Yang, P., Multicolour Light Emission from Chlorine-Doped Graphene Quantum Dots. Journal of Materials Chemistry C 2013, 1, 7308-7313.
    62. Gorrasi, G.; Sorrentino, A., Mechanical Milling as a Technology to Produce Structural and Functional Bio-Nanocomposites. Green Chemistry 2015, 17, 2610-2625.
    63. Buzaglo, M.; Bar, I. P.; Varenik, M.; Shunak, L.; Pevzner, S.; Regev, O., Graphite-to-Graphene: Total Conversion. Adv Mater 2017, 29.
    64. Xing, T.; Sunarso, J.; Yang, W.; Yin, Y.; Glushenkov, A. M.; Li, L. H.; Howlett, P. C.; Chen, Y., Ball Milling: A Green Mechanochemical Approach for Synthesis of Nitrogen Doped Carbon Nanoparticles. Nanoscale 2013, 5, 7970-6.
    65. Lee, D.; Lee, B.; Park, K. H.; Ryu, H. J.; Jeon, S.; Hong, S. H., Scalable Exfoliation Process for Highly Soluble Boron Nitride Nanoplatelets by Hydroxide-Assisted Ball Milling. Nano Lett 2015, 15, 1238-44.
    66. Shi, C.; Hu, L.; Guo, K.; Li, H.; Zhai, T., Highly Porous Carbon with Graphene Nanoplatelet Microstructure Derived from Biomass Waste for High‐Performance Supercapacitors in Universal Electrolyte. Advanced Sustainable Systems 2017, 1.
    67. Yoon, G.; Seo, D.-H.; Ku, K.; Kim, J.; Jeon, S.; Kang, K., Factors Affecting the Exfoliation of Graphite Intercalation Compounds for Graphene Synthesis. Chemistry of Materials 2015, 27, 2067-2073.
    68. Chen, X.; Chen, H.; Guan, J.; Zhen, J.; Sun, Z.; Du, P.; Lu, Y.; Yang, S., A Facile Mechanochemical Route to a Covalently Bonded Graphitic Carbon Nitride (Gc 3 N 4) and Fullerene Hybrid toward Enhanced Visible Light Photocatalytic Hydrogen Production. Nanoscale 2017, 9, 5615-5623.
    69. Song, S. H.; Jang, M. H.; Chung, J.; Jin, S. H.; Kim, B. H.; Hur, S. H.; Yoo, S.; Cho, Y. H.; Jeon, S., Highly Efficient Light‐Emitting Diode of Graphene Quantum Dots Fabricated from Graphite Intercalation Compounds. Advanced Optical Materials 2014, 2, 1016-1023.
    70. Qiao, W.; Yan, S.; Song, X.; Zhang, X.; He, X.; Zhong, W.; Du, Y., Luminescent Monolayer Mos2 Quantum Dots Produced by Multi-Exfoliation Based on Lithium Intercalation. Applied Surface Science 2015, 359, 130-136.
    71. Fan, D.; Feng, J.; Liu, J.; Gao, T.; Ye, Z.; Chen, M.; Lv, X., Hexagonal Boron Nitride Nanosheets Exfoliated by Sodium Hypochlorite Ball Mill and Their Potential Application in Catalysis. Ceramics International 2016, 42, 7155-7163.
    72. Liu, Q.; Hu, C.; Wang, X., A Facile One-Step Method to Produce Mos 2 Quantum Dots as Promising Bio-Imaging Materials. RSC Advances 2016, 6, 25605-25610.
    73. Zhan, Y.; Liu, Z.; Liu, Q.; Huang, D.; Wei, Y.; Hu, Y.; Lian, X.; Hu, C., A Facile and One-Pot Synthesis of Fluorescent Graphitic Carbon Nitride Quantum Dots for Bio-Imaging Applications. New Journal of Chemistry 2017, 41, 3930-3938.
    74. Wang, S.; Wang, C.; Ji, X., Towards Understanding the Salt-Intercalation Exfoliation of Graphite into Graphene. RSC Advances 2017, 7, 52252-52260.
    75. Lin, L.; Zhang, S., Creating High Yield Water Soluble Luminescent Graphene Quantum Dots Via Exfoliating and Disintegrating Carbon Nanotubes and Graphite Flakes. Chemical communications 2012, 48, 10177-10179.
    76. Sarkar, S.; Gandla, D.; Venkatesh, Y.; Bangal, P. R.; Ghosh, S.; Yang, Y.; Misra, S., Graphene Quantum Dots from Graphite by Liquid Exfoliation Showing Excitation-Independent Emission, Fluorescence Upconversion and Delayed Fluorescence. Physical Chemistry Chemical Physics 2016, 18, 21278-21287.
    77. Yan, L., et al., Electroactive and Biocompatible Hydroxyl- Functionalized Graphene by Ball Milling. Journal of Materials Chemistry 2012, 22.
    78. Jeon, I. Y., et al., Edge-Carboxylated Graphene Nanosheets Via Ball Milling. Proc Natl Acad Sci U S A 2012, 109, 5588-93.
    79. Lee, J. H., Graphene in Edge-Carboxylated Graphite by Ball Milling and Analyses Using Finite Element Method. International Journal of Materials Science and Applications 2013, 2.
    80. Li, X.; Hao, X.; Zhao, M.; Wu, Y.; Yang, J.; Tian, Y.; Qian, G., Exfoliation of Hexagonal Boron Nitride by Molten Hydroxides. Adv Mater 2013, 25, 2200-4.
    81. Lin, T.; Chen, J.; Bi, H.; Wan, D.; Huang, F.; Xie, X.; Jiang, M., Facile and Economical Exfoliation of Graphite for Mass Production of High-Quality Graphene Sheets. J. Mater. Chem. A 2013, 1, 500-504.
    82. León, V.; Rodriguez, A. M.; Prieto, P.; Prato, M.; Vázquez, E., Exfoliation of Graphite with Triazine Derivatives under Ball-Milling Conditions: Preparation of Few-Layer Graphene Via Selective Noncovalent Interactions. ACS Nano 2014, 8, 563-571.
    83. Liu, L.; Zhang, M.; Xiong, Z.; Hu, D.; Wu, G.; Chen, P., Ammonia Borane Assisted Solid Exfoliation of Graphite Fluoride for Facile Preparation of Fluorinated Graphene Nanosheets. Carbon 2015, 81, 702-709.

    無法下載圖示 全文公開日期 2023/08/27 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE