簡易檢索 / 詳目顯示

研究生: 郭奕廷
Yi-Ting Guo
論文名稱: 透過氮摻雜石墨烯量子點修飾及調控雙元過渡金屬比例提升金屬有機框架衍伸鎳鈷層狀雙氫氧化物應用於非酵素型乳酸感測器之靈敏度
The Enhancement of sensitivity toward lactate detection via tuning the ratio of metal and incorporating Nitrogen Doped Graphene Quantum Dots to MOF-derived NiCo Layered Double Hydroxides
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 何國川
Kuo-Chuan Ho
蘇威年
Wei-Nien Su
王丞浩
Chen-Hao Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 英文
論文頁數: 113
中文關鍵詞: 電催化觸媒電化學感測器乳酸金屬有機框架非酵素型氮摻雜石墨烯量子點非侵入式感測器驅物影響汗液
外文關鍵詞: Electrocatalysts, Electrochemical biosensor, lactate, metal organic framework, non-enzymatic, nitrogen doped graphene quantum dots, non-invasive biosensor, precursor influence, sweat
相關次數: 點閱:497下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著現代人對於健康管理的需求升高,進而推動了即時監控生理狀態的需求,透過穿戴
    型生醫感測器持續監控人體生理狀態能有效幫助使用者採取預防措施並進一步防止相關併發
    症。近年來以非侵入方式搜集人體體液中的特定生物標記物進行生理監測之電化學感測器的
    發展在近期備受矚目,而乳酸在眾多生理資訊中為人體劇烈運動下無氧呼吸之產物,因此藉
    由監測汗液中乳酸含量對於非侵入式監控人體缺氧程度是至關重要的。在眾多乳酸感測催化
    材料中,酵素型感測器被廣泛應用於乳酸感測中,然而酵素型感測器在常溫情況下操作會有
    容易失去活性與酵素的成本過高等問題,因此為了解決上述問題並進一步實現非侵入式診斷,
    設計新型電催化觸媒應用於非酵素型電化學乳酸感測器為重要的目標之一。
    有鑑於此,為了提高穿戴式非酵素型汗液乳酸感測器之靈敏度,在本論文的第四章提出
    通過氮摻雜石墨烯量子點修飾金屬有機框架衍伸鎳鈷層狀雙氫氧化物(NGQD/m-NiCo-LDH)
    提升其乳酸感測能力。透過 X 射線吸收光譜證明氮摻雜石墨烯量子點可以修飾金屬框架衍伸
    鎳鈷層狀雙氫氧化物中過渡金屬的局域電子結構,從而降低電荷轉移阻力並加速電化學反應
    過程中的電子轉移。在最適化氮摻雜石墨烯量子點之添加量後,NGQD/m-NiCo-LDH 證明其
    對乳酸濃度範圍 0 至 15 mM 之感測靈敏度(62.63 ± 1.50 uA mM-1
    cm-2
    )高於一般鎳鈷層狀雙氫
    氧化物(NiCo-LDH, 16.77 ± 1.70 uA mM-1
    cm-2
    )與金屬框架衍伸鎳鈷層狀雙氫氧化物(m-NiCoLDH, 45.45 ± 4.39 uA mM-1
    cm-2
    )並同時兼具極佳的選擇率、連續操作穩定性與重複使用性。
    本研究為了更進一步調控金屬有機框架衍伸鎳鈷層狀雙氫氧化物中過度金屬價態與配位
    提升此材料對於乳酸電催化反應之效能,本論文的第五章提出調控鎳鈷雙元過渡金屬比例之
    金屬有機框架衍伸鎳鈷氫氧化物(m-NiCo)並應用於汗液乳酸感測。由研究結果可發現 m-NiCo
    之金屬比例可以藉由金屬前驅物比例來調控,且 m-NiCo 的晶相會隨著鈷比例上升而逐漸從
    具有高乳酸催化活性的-type 逐漸轉為較低催化活性的-type,進而降低了 m-NiCo 對於乳酸
    感測之靈敏度。本研究針對-type 的 m-NiCo 更進一步探討雙元過度金屬比例對於金屬價態
    與配位產生影響,透過 X 射線吸收光譜與拉曼圖譜分析,在最適化雙元過渡金屬比例之 m-Ni5Co1 與其他比例相比,其具有混合八面體與四面體結構以及高氧化鎳金屬價態將有助於提
    升乳酸電催化反應進而提升靈敏度,在乳酸濃度範圍 0 至 12.5 mM 相較於未調控雙元金屬比
    之 m-Ni1Co1 (40.11 ± 3.24 uA mM-1 cm-2)具有更出色的感測靈敏度(63.66 ± 3.86 uA mM-1
    cm-2),
    且對人體汗液中常見的物質具有極佳的選擇率和優異的連續操作穩定性與重複使用性。綜合
    上述所示,本研究結果說明 NGQD/m-NiCo-LDH 與最適化雙元過渡金屬比例之 m-NiCo 是具
    有潛力並可應用於非酵素型電化學乳酸感測器之電催化材料。


    Rapid interest in identifying specific biomarkers has been sparked by the development of
    wearable electrochemical sensors for physiological and biological monitoring via non-invasive
    measurement. During anaerobic metabolic circumstances, monitoring the lactate content becomes
    critical for noninvasive diagnosis of hypoxia. Enzyme-based sensors are widely used in lactate
    sensing among a variety of catalysts. However, enzyme-based sensors are limited due to the lack of
    stability and high cost. Therefore, it is crucial to develop non-enzymatic electrochemical lactate
    sensors.
    To improve the sensitivity of wearable sweat biosensors for detecting lactate concentrations,
    metal-organic framework (MOF) derived NiCo-based layered double hydroxides (m-NiCo LDH)
    with N-doped graphene quantum dots (NGQD) decoration is designed in Chapter 4. According to
    the X-ray absorption spectroscopy (XAS) analysis, the incorporation of NGQD will alter the local
    electronic structure of transition metals in m-NiCo LDH, thereby reducing charge transfer resistance
    and accelerating the electron transfer kinetics during electrochemical reactions of lactate detection.
    After understanding the role of NGQD in the matrix of m-NiCo LDH, an as-designed NGQD/m-NiCo
    LDH based electrochemical biosensor for lactate detection displayed superior sensitivity of 62.63 ±
    1.50 uA mM-1
    cm-2
    under an applied potential of 0.60 V (vs. Ag/AgCl/3 M KCl) with the lactate
    concentration range of 0 to 15 mM in alkaline condition, compared to the pristine NiCo LDH (16.77
    ± 1.70 uA mM-1
    cm-2
    ) and m-NiCo LDH (45.45 ± 4.39 uA mM-1
    cm-2
    ) based one. This research
    provides a potential electrocatalyst of NGQD modified MOF derived LDH for using enzyme-free
    electrochemical lactate sensors with reliable and stable performance in order to implement noninvasive human perspiration monitoring on wearable bioelectronics.
    In Chapter 5, we propose to tune the valence state of Ni and coordination in m-NiCo via tuning
    ratio of Ni and Co in order to improve lactate detection. The results demonstrate that metal content
    can be adjusted by tuning the precursor molar ratio. In addition, the NiCo-MOF had been transformed to -type hydroxide with Co increase, which further inhibits the sensitivity toward lactate detection.
    According to the XAS analysis and Raman spectrum, m-Ni5Co1 with -type hydroxide mixed
    octahedral(Oh)/tetrahedral(Td) structure, exhibited an outstanding sensitivity toward lactate detection
    in comparison with other m-Ni1Co1. As intended, the m-Ni5Co1-based electrochemical biosensor
    for lactate detection exhibited a superior sensitivity of 63.66 ± 3.86 uA mM-1
    in comparison with mNi1Co1(40.11 ± 3.24 uA mM-1
    cm-2
    ) with a lactate concentration range of 0 to 12.5 mM under
    alkaline medium. This study proposes an innovative category of electrocatalysts for use in nonenzymatic electrochemical lactate sensors with dependable and stable performance as one of the noninvasive biosensors

    致謝.....i 中文摘要..................................................................... I Abstract...................................................................III Table of Contents......................................................V List of Tables..........................................................VII List of Figures...................................................... VIII Nomenclature ......................................................... XI Chapter 1 Introduction...........................................1 1.1 Overview of Biosensor................................1 1.1.1 The introduction for Biosensor ..................1 1.1.2 Lactate Detection .......................................3 1.2 Development of Non-invasive Biosensors..6 Chapter 2 Literature Review and Research Scope ....................................8 2.1 Overview of Graphene Quantum Dots (GQD) .8 2.2 Overview of Metal Organic Framework (MOF).................................10 2.2.1 Application of MOF derived catalyst in electrochemical catalyst ........10 2.2.2 Bimetal catalyst in electrochemical catalyst ...............................12 2.3 Overview of Electrocatalyst for non-Enzymatic Lactate Detection .....14 2.3.1 Transition Metal Catalyst.........................14 2.3.2 Conductive Nanomaterials Based on Carbon and Its Derivatives...........15 2.4 Motivation and Research Scope......................17 Chapter 3 Experimental Procedure.....................20 3.1 Experimental Chemicals and Instrument ........20 3.1.1 Electrochemical Analysis.........................21 3.1.3 Raman Spectroscopy................................24 3.1.4 X-Ray Diffractometer (XRD) ..................26 3.1.5 Field Emission-Scanning Electron Microscopy (FE-SEM)................27 3.1.6 Transmission Electron Microscope (TEM).................................28 3.1.7 Energy-dispersive X-ray Spectroscopy (EDX)................................29 3.1.8 X-ray Photoelectron Spectroscopy (XPS)30 3.1.9 Photoluminescence Spectroscopy (PL)....32 3.1.10 X-ray Absorption Spectroscopy (XAS) .33 3.1.12 Inductivity Coupled Plasma Optical Emission Spectrometry (ICP)...............35 3.2 Experimental Materials...................................37 3.3 Experimental Procedure..................................37 3.3.1 Preparation of Graphene Quantum Dots (GQD)................................37 3.3.2 Synthesis of Nitrogen-doped Graphene Quantum Dots (NGQD) ............38 3.3.3 Functionalized the Screen-Printed Carbon Electrode (SPCE)....................38 3.3.4 Synthesis of NiCo-MOF and NGQD/NiCo-MOF ...........................38 3.3.5 Synthesis of MOF-derived Catalyst.........39 3.3.6 Preparation of MOF-derived LDH modified electrode.......................39 3.3.7 Electrochemical Measurement.................40 Chapter 4 Fine-tuning Sensitivity of non-enzymatic Lactate Detection on Body-sweat Biosensor via Nitrogen Doped Graphene Quantum Dots Incorporated MOF-derived Layered Double ...............................................................41 4.1 Motivation and Conceptual Design...........41 4.2 Results and Discussion....................................44 4.2.1 Characterization of NGQD ......................44 4.2.2 Characterization of NGQD/MOF and NGQD/m-NiCoLDH.......................46 4.2.3 Electrocatalytic activities for NGQD/m-NiCoLDH toward lactate oxidation..................51 4.2.4 LOD, selectivity, stability measurement for NGQD/MOF and NGQD/m-NiCoLDH .....58 4.3 Summary .........................................................62 Chapter 5 Regulating the Valence State and Coordination of MOF Derived NiCo Layered Doubled Hydroxide via tuning the Ni/Co ratio for non-enzymatic electrochemical lactate biosensors ...............................................................63 5.1 Motivation and Conceptual Design.................63 5.2 Results and Discussion....................................66 5.2.1 Characterization of NiCo-MOF ...............66 5.2.2 Characterization of electrocatalysts derived from MOF with varying ratio of metal.......68 5.2.3 Electrochemical performance of m-NiCo with varying ratio of metal .............................73 5.2.4 Interference test, stability, and long-term test of m-Ni5Co1 based lactate biosensor.......80 5.3 Summary .........................................................84 Chapter 6 Conclusion and Suggestion.................85 6.1 General Conclusion.........................................85 6.2 Suggestions and Prospects..............................86 Chapter 7 Reference..............................................88

    [1] L. Meng, Tailoring Conducting Polymer Interface for Sensing and Biosensing, Linköping
    University Electronic Press2020.
    [2] P. Mehrotra, Biosensors and their applications–A review, Journal of oral biology
    craniofacial research 6 (2016) 153-159.
    [3] A. Hasan, M. Nurunnabi, M. Morshed, A. Paul, A. Polini, T. Kuila, M. Al Hariri, Y.-k. Lee, A.A.
    Jaffa, Recent advances in application of biosensors in tissue engineering, BioMed research
    international 2014 (2014).
    [4] J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring,
    Nature biotechnology 37 (2019) 389-406.
    [5] L.C. Clark Jr, C. Lyons, Electrode systems for continuous monitoring in cardiovascular surgery,
    Annals of the New York Academy of sciences 102 (1962) 29-45.
    [6] M. Abdel-Latif, A. Suleiman, G. Guilbault, Enzyme-based fiber optic sensor for glucose
    determination, Analytical letters 21 (1988) 943-951.
    [7] M.D. Ward, D.A. Buttry, In situ interfacial mass detection with piezoelectric transducers, Science
    249 (1990) 1000-1007.
    [8] J. Ngeh-Ngwainbi, A.A. Suleiman, G.G. Guilbault, Piezoelectric crystal biosensors, Biosensors
    Bioelectronics 5 (1990) 13-26.
    [9] D. Rodbard, Continuous glucose monitoring: a review of successes, challenges, and opportunities,
    Diabetes technologytherapeutics 18 (2016) S2-3-S2-13.
    [10] G.S. Wilson, R. Gifford, Biosensors for real-time in vivo measurements,
    BiosensorsBioelectronics 20 (2005) 2388-2403.
    [11] M.S. Mannoor, H. Tao, J.D. Clayton, A. Sengupta, D.L. Kaplan, R.R. Naik, N. Verma, F.G.
    Omenetto, M.C. McAlpine, Graphene-based wireless bacteria detection on tooth enamel, Nature
    communications 3 (2012) 763.
    [12] W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H.
    Shiraki, D. Kiriya, Fully integrated wearable sensor arrays for multiplexed in situ perspiration
    analysis, Nature 529 (2016) 509-514.
    [13] M. Senior, Novartis signs up for Google smart lens, Nature biotechnology 32 (2014) 856-857.
    [14] F. Durand, A. Raberin, Exercise-induced hypoxemia in endurance athletes: consequences for
    altitude exposure, Frontiers in SportsActive Living 3 (2021) 663674.
    [15] G. Banfi, A. Colombini, G. Lombardi, A. Lubkowska, Metabolic markers in sports medicine,
    Advances in clinical chemistry 56 (2012) 1-54.
    [16] D. Sakharov, M. Shkurnikov, M.Y. Vagin, E. Yashina, A. Karyakin, A. Tonevitsky, Relationship
    between lactate concentrations in active muscle sweat and whole blood, Bulletin of experimental
    biologymedicine 150 (2010) 83.
    [17] Y. Seki, D. Nakashima, Y. Shiraishi, T. Ryuzaki, H. Ikura, K. Miura, M. Suzuki, T. Watanabe, T.
    Nagura, M. Matsumato, A novel device for detecting anaerobic threshold using sweat lactate during
    exercise, Scientific reports 11 (2021) 4929.
    [18] T.-T. Luo, Z.-H. Sun, C.-X. Li, J.-L. Feng, Z.-X. Xiao, W.-D. Li, Monitor for lactate in perspiration, The Journal of Physiological Sciences 71 (2021) 26.
    [19] X. Li, Y. Yang, B. Zhang, X. Lin, X. Fu, Y. An, Y. Zou, J.-X. Wang, Z. Wang, T. Yu, Lactate
    metabolism in human health and disease, Signal Transduction
    Targeted Therapy 7 (2022) 305.
    [20] G. Rattu, N. Khansili, V.K. Maurya, P.M. Krishna, Lactate detection sensors for food, clinical
    and biological applications: A review, Environmental Chemistry Letters 19 (2021) 1135-1152.
    [21] A.A. Khan, K.S. Allemailem, F.A. Alhumaydhi, S.J. Gowder, A.H. Rahmani, The biochemical
    and clinical perspectives of lactate dehydrogenase: an enzyme of active metabolism, Endocrine,
    MetabolicImmune Disorders-Drug Targets 20 (2020) 855-868.
    [22] I. Bravo, C. Gutiérrez-Sánchez, T. García-Mendiola, M. Revenga-Parra, F. Pariente, E. Lorenzo,
    Enhanced performance of reagent-less carbon nanodots based enzyme electrochemical biosensors,
    Sensors 19 (2019) 5576.
    [23] K.A. Jannath, M.M. Karim, H.A. Saputra, K.D. Seo, K.B. Kim, Y.B. Shim, A review on the
    recent advancements in nanomaterials for nonenzymatic lactate sensing, Bulletin of the Korean
    Chemical Society 44 (2023) 407-419.
    [24] M. Losurdo, C. NANOTEC, K. Hingerl, Twinning for Improving Capacity of Research in
    Multifunctional Nanosystems for Optronic Biosensing.
    [25] Mordor Intelligence, WEARABLE SENSORS MARKET SIZE & SHARE ANALYSIS -
    GROWTH TRENDS & FORECASTS (2023 - 2028), 2023.
    [26] N. Promphet, S. Ummartyotin, W. Ngeontae, P. Puthongkham, N. Rodthongkum, Non-invasive
    wearable chemical sensors in real-life applications, Analytica Chimica Acta 1179 (2021) 338643.
    [27] M.J. Allen, V.C. Tung, R.B. Kaner, Honeycomb carbon: a review of graphene, Chemical reviews
    110 (2010) 132-145.
    [28] W. Chen, G. Lv, W. Hu, D. Li, S. Chen, Z. Dai, Synthesis and applications of graphene quantum
    dots: a review, Nanotechnology Reviews 7 (2018) 157-185.
    [29] P. Tian, L. Tang, K. Teng, S. Lau, Graphene quantum dots from chemistry to applications,
    Materials today chemistry 10 (2018) 221-258.
    [30] L. Li, G. Wu, G. Yang, J. Peng, J. Zhao, J.-J. Zhu, Focusing on luminescent graphene quantum
    dots: current status and future perspectives, Nanoscale 5 (2013) 4015-4039.
    [31] K. Li, W. Liu, Y. Ni, D. Li, D. Lin, Z. Su, G.J.J.o.M.C.B. Wei, Technical synthesis and biomedical
    applications of graphene quantum dots, Journal of Materials Chemistry B 5 (2017) 4811-4826.
    [32] Y. Yan, J. Gong, J. Chen, Z. Zeng, W. Huang, K. Pu, J. Liu, P. Chen, Recent advances on graphene
    quantum dots: from chemistry and physics to applications, Advanced materials 31 (2019) 1808283.
    [33] H. Tetsuka, A. Nagoya, T. Fukusumi, T. Matsui, Molecularly designed, nitrogen‐functionalized
    graphene quantum dots for optoelectronic devices, Advanced Materials 28 (2016) 4632-4638.
    [34] J. Zhu, Y. Dong, S. Zhang, Z. Fan, Application of carbon-/graphene quantum dots for
    supercapacitors, Acta Physico-Chimica Sinica 36 (2020) 1903052-1903050.
    [35] B.A. Al Jahdaly, M.F. Elsadek, B.M. Ahmed, M.F. Farahat, M.M. Taher, A.M. Khalil,
    Outstanding graphene quantum dots from carbon source for biomedical and corrosion inhibition
    applications: a review, Sustainability 13 (2021) 2127.
    [36] Y.-X. Wang, M. Rinawati, J.-D. Zhan, K.-Y. Lin, C.-J. Huang, K.-J. Chen, H. Mizuguchi, J.-C.
    Jiang, B.-J. Hwang, M.-H. Yeh, Boron-Doped Graphene Quantum Dots Anchored to Carbon
    Nanotubes as Noble Metal-Free Electrocatalysts of Uric Acid for a Wearable Sweat Sensor, ACS
    Applied Nano Materials 5 (2022) 11100-11110.
    [37] W. Gong, Z. Chen, J. Dong, Y. Liu, Y. Cui, Chiral metal–organic frameworks, Chemical Reviews
    122 (2022) 9078-9144.
    [38] J. Yang, Y.W. Yang, Metal–organic frameworks for biomedical applications, Small 16 (2020)
    1906846.
    [39] C. Tang, H.-F. Wang, Q. Zhang, Multiscale principles to boost reactivity in gas-involving energy
    electrocatalysis, Accounts of chemical research 51 (2018) 881-889.
    [40] S.L. Zhang, B.Y. Guan, X.W. Lou, Co–Fe alloy/N‐doped carbon hollow spheres derived from
    dual metal–organic frameworks for enhanced electrocatalytic oxygen reduction, Small 15 (2019)
    1805324.
    [41] Y. Li, W. Han, R. Wang, L.-T. Weng, A. Serrano-Lotina, M.A. Banares, Q. Wang, K.L. Yeung,
    Performance of an aliovalent-substituted CoCeOx catalyst from bimetallic MOF for VOC oxidation
    in air, Applied Catalysis B: Environmental 275 (2020) 119121.
    [42] X. Yang, Q.J. Xu, Bimetallic metal–organic frameworks for gas storage and separation, Crystal
    Growth Design 17 (2017) 1450-1455.
    [43] A. Dhakshinamoorthy, A.M. Asiri, H. Garcia, Mixed-metal or mixed-linker metal organic
    frameworks as heterogeneous catalysts, Catalysis Science Technology 6 (2016) 5238-5261.
    [44] A.M. Rice, G.A. Leith, O.A. Ejegbavwo, E.A. Dolgopolova, N.B. Shustova, Heterometallic
    metal–organic frameworks (MOFs): the advent of improving the energy landscape, ACS Energy
    Letters 4 (2019) 1938-1946.
    [45] X.L. Wang, L.Z. Dong, M. Qiao, Y.J. Tang, J. Liu, Y. Li, S.L. Li, J.X. Su, Y.Q. Lan, Exploring
    the performance improvement of the oxygen evolution reaction in a stable bimetal–organic
    framework system, Angewandte Chemie International Edition 57 (2018) 9660-9664.
    [46] A.R. Puente Santiago, M.F. Sanad, A. Moreno-Vicente, M.A. Ahsan, M.R. Cerón, Y.-R. Yao, S.T.
    Sreenivasan, A. Rodriguez-Fortea, J.M. Poblet, L. Echegoyen, A new class of molecular
    electrocatalysts for hydrogen evolution: Catalytic activity of M3N@ C2 n (2 n= 68, 78, and 80)
    fullerenes, Journal of the American Chemical Society 143 (2021) 6037-6042.
    [47] L. Yan, L. Cao, P. Dai, X. Gu, D. Liu, L. Li, Y. Wang, X. Zhao, Metal‐organic frameworks derived
    nanotube of nickel–cobalt bimetal phosphides as highly efficient electrocatalysts for overall water
    splitting, Advanced Functional Materials 27 (2017) 1703455.
    [48] D.-W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic
    glucose sensors–a review, Analytica chimica acta 1033 (2018) 1-34.
    [49] X. Zhang, Y. Wei, H. Wu, H. Yan, Y. Liu, Ž. Lučev Vasić, H. Pan, M. Cifrek, M. Du, Y. Gao,
    Smartphone‐based Electrochemical On‐site Quantitative Detection Device for Nonenzyme Lactate
    Detection, Electroanalysis 34 (2022) 1411-1421.
    [50] H.S. Hwang, J.W. Jeong, Y.A. Kim, M. Chang, Carbon nanomaterials as versatile platforms for
    biosensing applications, Micromachines 11 (2020) 814.
    [51] S.M. Mugo, J. Alberkant, A biomimetric lactate imprinted smart polymers as capacitive sweat
    sensors, IEEE Sensors Journal 20 (2020) 5741-5749.
    [52] A.J. Bard, L.R. Faulkner, H.S. White, Electrochemical methods: fundamentals and applications,
    John Wiley & Sons2022.
    [53] Y.-X. Wang, M. Rinawati, J.-D. Zhan, K.-Y. Lin, C.-J. Huang, K.-J. Chen, H. Mizuguchi, J.-C.
    Jiang, B.-J. Hwang, M.-H. Yeh, Boron-Doped Graphene Quantum Dots Anchored to Carbon
    Nanotubes as Noble Metal-Free Electrocatalysts of Uric Acid for a Wearable Sweat Sensor, ACS
    Applied Nano Materials 5 (2022) 11100-11110.
    [54] N. Elgrishi, K.J. Rountree, B.D. McCarthy, E.S. Rountree, T.T. Eisenhart, J.L. Dempsey, A
    practical beginner’s guide to cyclic voltammetry, Journal of chemical education 95 (2018) 197-206.
    [55] X. Yang, A.L. Rogach, Electrochemical techniques in battery research: a tutorial for
    nonelectrochemists, Advanced Energy Materials 9 (2019) 1900747.
    [56] S. Mosca, C. Conti, N. Stone, P. Matousek, Spatially offset Raman spectroscopy, Nature Reviews
    Methods Primers 1 (2021) 1-16.
    [57] A.A. Bunaciu, E.G. UdriŞTioiu, H.Y. Aboul-Enein, X-ray diffraction: instrumentation and
    applications, Critical reviews in analytical chemistry 45 (2015) 289-299.
    [58] Y. Jusman, S.C. Ng, N.A. Abu Osman, Investigation of CPD and HMDS sample preparation
    techniques for cervical cells in developing computer-aided screening system based on FE-SEM/EDX,
    The Scientific World Journal 2014 (2014).
    [59] V.-D. Hodoroaba, Energy-dispersive X-ray spectroscopy (EDS), Characterization of
    Nanoparticles, Elsevier2020, pp. 397-417.
    [60] W. Giurlani, E. Berretti, M. Innocenti, A. Lavacchi, Measuring the thickness of metal coatings:
    A review of the methods, Coatings 10 (2020) 1211.
    [61] T.V. Ivanova, D. Permyakov, E. Khestanova, Mechanical deformation of atomically thin layers
    during stamp transfer, Journal of Physics: Conference Series, IOP Publishing, 2021, pp. 012058.
    [62] L. Fu, Y. Tang, Y. Lin, Advances in Synchrotron Radiation‐based X‐ray Absorption Spectroscopy
    to Characterize the Fine Atomic Structure of Single‐atom Nanozymes, Chemistry–An Asian Journal
    15 (2020) 2110-2116.
    [63] S. Cherevko, K. Mayrhofer, On-line inductively coupled plasma spectrometry in
    electrochemistry: Basic principles and applications, (2018).
    [64] A. Sharma, M. Badea, S. Tiwari, J.L. Marty, Wearable biosensors: an alternative and practical
    approach in healthcare and disease monitoring, Molecules 26 (2021) 748.
    [65] D.R. Seshadri, R.T. Li, J.E. Voos, J.R. Rowbottom, C.M. Alfes, C.A. Zorman, C.K. Drummond,
    Wearable sensors for monitoring the physiological and biochemical profile of the athlete, NPJ digital
    medicine 2 (2019) 72.
    [66] J. Heikenfeld, Non‐invasive analyte access and sensing through eccrine sweat: challenges and
    outlook circa 2016, Electroanalysis 28 (2016) 1242-1249.
    [67] P. Kanokpaka, L.-Y. Chang, B.-C. Wang, T.-H. Huang, M.-J. Shih, W.-S. Hung, J.-Y. Lai, K.-C.
    Ho, M.-H. Yeh, Self-powered molecular imprinted polymers-based triboelectric sensor for
    noninvasive monitoring lactate levels in human sweat, Nano Energy 100 (2022) 107464.
    [68] B. Fall, D.D. Sall, M. Hémadi, A.K.D. Diaw, M. Fall, H. Randriamahazaka, S. Thomas, Highly
    efficient non-enzymatic electrochemical glucose sensor based on carbon nanotubes functionalized by
    molybdenum disulfide and decorated with nickel nanoparticles (GCE/CNT/MoS2/NiNPs), Sensors
    Actuators Reports 5 (2023) 100136.
    [69] E. De la Paz, T. Saha, R. Del Caño, S. Seker, N. Kshirsagar, J. Wang, Non-invasive monitoring
    of interstitial fluid lactate through an epidermal iontophoretic device, Talanta 254 (2023) 124122.
    [70] J. Bakker, P. Gris, M. Coffernils, R.J. Kahn, J.-L. Vincent, Serial blood lactate levels can predict
    the development of multiple organ failure following septic shock, The American journal of surgery
    171 (1996) 221-226.
    [71] B.A. MIZOCK, J.L. FALK, Lactic acidosis in critical illness, Critical care medicine 20 (1992)
    80-93.
    [72] S.A. Pereira, F.A. Mota, I. Çay, M.L. Passos, A.R. Araujo, M.L.M. Saraiva, Automatic
    fluorometric lactate determination in human plasma samples, New Journal of Chemistry 44 (2020)
    543-548.
    [73] G. Rattu, P.M. Krishna, Enzyme-free colorimetric nanosensor for the rapid detection of lactic
    acid in food quality analysis, Journal of Agriculture Food Research 7 (2022) 100268.
    [74] Y.-H. Nien, Z.-X. Kang, T.-Y. Su, C.-S. Ho, J.-C. Chou, C.-H. Lai, P.-Y. Kuo, T.-Y. Lai, Z.-X.
    Dong, Y.-Y. Chen, Investigation of flexible arrayed lactate biosensor based on copper doped zinc
    oxide films modified by iron–platinum nanoparticles, Polymers 13 (2021) 2062.
    [75] H.-Y. Zhang, P.-P. Zhang, X.-X. Tan, Z.-Z. Wang, K.-Q. Lian, X.-D. Xu, W.-J. Kang,
    Derivatization method for the quantification of lactic acid in cell culture media via gas
    chromatography and applications in the study of cell glycometabolism, Journal of Chromatography
    B 1090 (2018) 1-6.
    [76] P. Vaňkátová, A. Kubíčková, M. Cigl, K. Kalíková, Ultra-performance chromatographic methods
    for enantioseparation of liquid crystals based on lactic acid, The Journal of Supercritical Fluids 146
    (2019) 217-225.
    [77] K. Rathee, V. Dhull, R. Dhull, S. Singh, Biosensors based on electrochemical lactate detection:
    a comprehensive review. Biochem Biophys Rep 5: 35–54, 2016.
    [78] V. Naresh, N. Lee, A review on biosensors and recent development of nanostructured materialsenabled biosensors, Sensors 21 (2021) 1109.
    [79] M.I. Prodromidis, M.I. Karayannis, Enzyme based amperometric biosensors for food analysis,
    Electroanalysis: An International Journal Devoted to Fundamenta Practical Aspects of
    Electroanalysis 14 (2002) 241-261.
    [80] J. Ahmed, M.A. Rashed, M. Faisal, F.A. Harraz, M. Jalalah, S. Alsareii, Novel SWCNTsmesoporous silicon nanocomposite as efficient non-enzymatic glucose biosensor, Applied Surface
    Science 552 (2021) 149477.
    [81] X. Long, Z. Wang, S. Xiao, Y. An, S. Yang, Transition metal based layered double hydroxides
    tailored for energy conversion and storage, Materials today 19 (2016) 213-226.
    [82] S.A. Chala, M.-C. Tsai, W.-N. Su, K.B. Ibrahim, A.D. Duma, M.-H. Yeh, C.-Y. Wen, C.-H. Yu,
    T.-S. Chan, H. Dai, Site activity and population engineering of NiRu-layered double hydroxide
    nanosheets decorated with silver nanoparticles for oxygen evolution and reduction reactions, Acs
    Catalysis 9 (2018) 117-129.
    [83] S. Anantharaj, K. Karthick, S. Kundu, Evolution of layered double hydroxides (LDH) as high
    performance water oxidation electrocatalysts: A review with insights on structure, activity and
    mechanism, Materials Today Energy 6 (2017) 1-26.
    [84] S.-L. Jian, L.-Y. Hsiao, M.-H. Yeh, K.-C. Ho, Designing a carbon nanotubes-interconnected ZIFderived cobalt sulfide hybrid nanocage for supercapacitors, Journal of Materials Chemistry A 7 (2019)
    1479-1490.
    [85] S.-L. Jian, Y.-J. Huang, M.-H. Yeh, K.-C.J.J.o.M.C.A. Ho, A zeolitic imidazolate frameworkderived ZnSe/N-doped carbon cube hybrid electrocatalyst as the counter electrode for dye-sensitized
    solar cells, 6 (2018) 5107-5118.
    [86] J. Liu, D. Zhu, C. Guo, A. Vasileff, S.Z. Qiao, Design strategies toward advanced MOF‐derived
    electrocatalysts for energy‐conversion reactions, Advanced Energy Materials 7 (2017) 1700518.
    [87] J.M. Gonçalves, P.R. Martins, D.P. Rocha, T.A. Matias, M.S. Juliao, R.A. Munoz, L. Angnes,
    Recent trends and perspectives in electrochemical sensors based on MOF-derived materials, Journal
    of Materials Chemistry C 9 (2021) 8718-8745.
    [88] A.C. Power, B. Gorey, S. Chandra, J. Chapman, Carbon nanomaterials and their application to
    electrochemical sensors: a review, Nanotechnology Reviews 7 (2018) 19-41.
    [89] M.-H. Yeh, Y.-S. Li, G.-L. Chen, L.-Y. Lin, T.-J. Li, H.-M. Chuang, C.-Y. Hsieh, S.-C. Lo, W.-
    H. Chiang, K.-C. Ho, Facile synthesis of boron-doped graphene nanosheets with hierarchical
    microstructure at atmosphere pressure for metal-free electrochemical detection of hydrogen peroxide,
    Electrochimica Acta 172 (2015) 52-60.
    [90] Y.-X. Wang, M. Rinawati, W.-H. Huang, Y.-S. Cheng, P.-H. Lin, K.-J. Chen, L.-Y. Chang, K.-C.
    Ho, W.-N. Su, M.-H. Yeh, Surface-engineered N-doped carbon nanotubes with B-doped graphene
    quantum dots: Strategies to develop highly-efficient noble metal-free electrocatalyst for onlinemonitoring dissolved oxygen biosensor, Carbon 186 (2022) 406-415.
    [91] K. Li, W. Liu, Y. Ni, D. Li, D. Lin, Z. Su, G. Wei, Technical synthesis and biomedical applications
    of graphene quantum dots, Journal of Materials Chemistry B 5 (2017) 4811-4826.
    [92] Y. Li, Y. Zhao, H. Cheng, Y. Hu, G. Shi, L. Dai, L. Qu, Nitrogen-doped graphene quantum dots
    with oxygen-rich functional groups, Journal of the American Chemical Society 134 (2012) 15-18.
    [93] S. Claramunt, A. Varea, D. Lopez-Diaz, M.M. Velázquez, A. Cornet, A. Cirera, The importance
    of interbands on the interpretation of the Raman spectrum of graphene oxide, The Journal of Physical
    Chemistry C 119 (2015) 10123-10129.
    [94] R. Das, S. Parveen, A. Bora, P. Giri, Origin of high photoluminescence yield and high SERS
    sensitivity of nitrogen-doped graphene quantum dots, Carbon 160 (2020) 273-286.
    [95] K. Dutta, S. De, B. Das, S. Bera, B. Guria, M.S. Ali, D. Chattopadhyay, Development of an
    efficient immunosensing platform by exploring single-walled carbon nanohorns (SWCNHs) and
    nitrogen doped graphene quantum dot (N-GQD) nanocomposite for early detection of cancer
    biomarker, ACS Biomaterials Science & Engineering 7 (2021) 5541-5554.
    [96] J. Zhang, J. Chen, Y. Luo, Y. Chen, Y. Luo, C. Zhang, Y. Xue, H. Liu, G. Wang, R. Wang, A
    defect-driven atomically dispersed Fe–N–C electrocatalyst for bifunctional oxygen electrocatalytic
    activity in Zn–air batteries, Journal of Materials Chemistry A 9 (2021) 5556-5565.
    [97] M. Rinawati, Y.-X. Wang, W.-H. Huang, Y.-T. Wu, Y.-S. Cheng, D. Kurniawan, S.-C. Haw, W.-
    H. Chiang, W.-N. Su, M.-H. Yeh, Unraveling the efficiency of heteroatom-doped graphene quantum
    dots incorporated MOF-derived bimetallic layered double hydroxide towards oxygen evolution
    reaction, Carbon 200 (2022) 437-447.
    [98] Z. Wang, J. Huang, J. Mao, Q. Guo, Z. Chen, Y. Lai, Metal–organic frameworks and their
    derivatives with graphene composites: preparation and applications in electrocatalysis and
    photocatalysis, Journal of Materials Chemistry A 8 (2020) 2934-2961.
    [99] T. Zurrer, K. Wong, J. Horlyck, E.C. Lovell, J. Wright, N.M. Bedford, Z. Han, K. Liang, J. Scott, R. Amal, Mixed‐metal MOF‐74 templated catalysts for efficient carbon dioxide capture and methanation, Advanced Functional Materials 31 (2021) 2007624.
    [100] H. Sun, L. Chen, Y. Lian, W. Yang, L. Lin, Y. Chen, J. Xu, D. Wang, X. Yang, M.H. Rümmerli,
    Topotactically transformed polygonal mesopores on ternary layered double hydroxides exposing
    under‐coordinated metal centers for accelerated water dissociation, Advanced Materials 32 (2020)
    2006784.
    [101] H. Jiang, Q. He, X. Li, X. Su, Y. Zhang, S. Chen, S. Zhang, G. Zhang, J. Jiang, Y. Luo, Tracking
    structural self‐reconstruction and identifying true active sites toward cobalt oxychloride precatalyst
    of oxygen evolution reaction, Advanced Materials 31 (2019) 1805127.
    [102] L. Huang, D. Chen, G. Luo, Y.R. Lu, C. Chen, Y. Zou, C.L. Dong, Y. Li, S. Wang, Zirconium‐
    regulation‐induced bifunctionality in 3D cobalt–iron oxide nanosheets for overall water splitting,
    Advanced Materials 31 (2019) 1901439.
    [103] Y. He, X. Liu, G. Chen, J. Pan, A. Yan, A. Li, X. Lu, D. Tang, N. Zhang, T. Qiu, Synthesis of
    Co (II)-Fe (III) hydroxide nanocones with mixed octahedral/tetrahedral coordination toward efficient
    electrocatalysis, Chemistry of Materials 32 (2020) 4232-4240.
    [104] X. Bo, R.K. Hocking, S. Zhou, Y. Li, X. Chen, J. Zhuang, Y. Du, C. Zhao, Capturing the active
    sites of multimetallic (oxy) hydroxides for the oxygen evolution reaction, Energy Environmental
    Science 13 (2020) 4225-4237.
    [105] J. Breczko, B. Grzeskiewicz, E. Gradzka, D.M. Bobrowska, A. Basa, J. Goclon, K. Winkler,
    Synthesis of polyaniline nanotubes decorated with graphene quantum dots: Structural &
    electrochemical studies, Electrochimica Acta 388 (2021) 138614.
    [106] S.S.A. Shah, A. El Jery, T. Najam, M.A. Nazir, L. Wei, E. Hussain, S. Hussain, F.B. Rebah,
    M.S. Javed, Surface engineering of MOF-derived FeCo/NC core-shell nanostructures to enhance
    alkaline water-splitting, International Journal of Hydrogen Energy 47 (2022) 5036-5043.
    [107] S. Wang, J. Shang, Q. Wang, W. Zhang, X. Wu, J. Chen, W. Zhang, S. Qiu, Y. Wang, X. Wang,
    Enhanced electrochemical performance by strongly anchoring highly crystalline polyaniline on
    multiwalled carbon nanotubes, acs applied materials & interfaces 9 (2017) 43939-43949.
    [108] S. Kim, K. Kim, H.-J. Kim, H.-N. Lee, T.J. Park, Y.M. Park, Non-enzymatic electrochemical
    lactate sensing by NiO and Ni (OH) 2 electrodes: A mechanistic investigation, Electrochimica Acta
    276 (2018) 240-246.
    [109] S.G. Heo, W.-S. Yang, S. Kim, Y.M. Park, K.-T. Park, S.J. Oh, S.-J. Seo, Synthesis,
    characterization and non-enzymatic lactate sensing performance investigation of mesoporous copper
    oxide (CuO) using inverse micelle method, Applied Surface Science 555 (2021) 149638.
    [110] S. Kim, W.S. Yang, H.-J. Kim, H.-N. Lee, T.J. Park, S.-J. Seo, Y.M. Park, Highly sensitive nonenzymatic lactate biosensor driven by porous nanostructured nickel oxide, Ceramics International 45
    (2019) 23370-23376.
    [111] A.S. Chang, N.N. Memon, S. Amin, F. Chang, U. Aftab, M.I. Abro, A. dad Chandio, A.A. Shah,
    M.H. Ibupoto, M.A. Ansari, Facile non‐enzymatic lactic acid sensor based on cobalt oxide
    nanostructures, Electroanalysis 31 (2019) 1296-1303.
    [112] Y.-X. Wang, P.-K. Tsao, M. Rinawati, K.-J. Chen, K.-Y. Chen, C.Y. Chang, M.-H. Yeh,
    Designing ZIF-67 derived NiCo layered double hydroxides with 3D hierarchical structure for
    Enzyme-free electrochemical lactate monitoring in human sweat, Chemical Engineering Journal 427 (2022) 131687.
    [113] H.C. Ates, A. Brunauer, F. von Stetten, G.A. Urban, F. Güder, A. Merkoçi, S.M. Früh, C.J.A.F.M.
    Dincer, Integrated devices for non‐invasive diagnostics, 31 (2021) 2010388.
    [114] L.B. Baker, Physiology of sweat gland function: The roles of sweating and sweat composition
    in human health, Temperature 6 (2019) 211-259.
    [115] P. Li, G.-H. Lee, S.Y. Kim, S.Y. Kwon, H.-R. Kim, S.J.A.n. Park, From diagnosis to treatment:
    recent advances in patient-friendly biosensors and implantable devices, ACS nano 15 (2021) 1960-
    2004.
    [116] Z. Xu, J. Song, B. Liu, S. Lv, F. Gao, X. Luo, P. Wang, A conducting polymer PEDOT: PSS
    hydrogel based wearable sensor for accurate uric acid detection in human sweat, Sensors Actuators
    B: Chemical 348 (2021) 130674.
    [117] M. Dervisevic, M. Alba, L. Esser, N. Tabassum, B. Prieto-Simon, N.H. Voelcker, Silicon
    micropillar array-based wearable sweat glucose sensor, acs applied materials & interfaces 14 (2021)
    2401-2410.
    [118] P. Delamarche, A. Gratas, J. Beillot, J. Dassonville, P. Rochcongar, Y. Lessard, Extent of lactic
    anaerobic metabolism in handballers, International journal of sports medicine 8 (1987) 55-59.
    [119] G. Rattu, P.M. Krishna, F. Research, Enzyme-free colorimetric nanosensor for the rapid
    detection of lactic acid in food quality analysis, Journal of Agriculture 7 (2022) 100268.
    [120] K. Rathee, V. Dhull, R. Dhull, S. Singh, Biosensors based on electrochemical lactate detection:
    a comprehensive review., Biochem Biophys Rep, 2016.
    [121] A. Biswas, L.R. Bornhoeft, S. Banerjee, Y.-H. You, M.J. McShane, Composite hydrogels
    containing bioactive microreactors for optical enzymatic lactate sensing, ACS sensors 2 (2017) 1584-
    1588.
    [122] G. Rocchitta, A. Spanu, S. Babudieri, G. Latte, G. Madeddu, G. Galleri, S. Nuvoli, P. Bagella,
    M.I. Demartis, V. Fiore, Enzyme biosensors for biomedical applications: Strategies for safeguarding
    analytical performances in biological fluids, Sensors 16 (2016) 780.
    [123] A. Rengaraj, Y. Haldorai, C.H. Kwak, S. Ahn, K.-J. Jeon, S.H. Park, Y.-K. Han, Y.S. Huh,
    Electrodeposition of flower-like nickel oxide on CVD-grown graphene to develop an electrochemical
    non-enzymatic biosensor, Journal of Materials Chemistry B 3 (2015) 6301-6309.
    [124] T. Dayakar, K.V. Rao, K. Bikshalu, V. Rajendar, S.-H. Park, Novel synthesis and structural
    analysis of zinc oxide nanoparticles for the non enzymatic glucose biosensor, Materials Science
    Engineering: C 75 (2017) 1472-1479.
    [125] Z. Cai, X. Bu, P. Wang, J.C. Ho, J. Yang, X. Wang, Recent advances in layered double hydroxide
    electrocatalysts for the oxygen evolution reaction, Journal of Materials Chemistry A 7 (2019) 5069-
    5089.
    [126] K. Patil, P. Babar, D.M. Lee, V. Karade, E. Jo, S. Korade, J.H. Kim, Bifunctional catalytic
    activity of Ni–Co layered double hydroxide for the electro-oxidation of water and methanol,
    Sustainable Energy Fuels 4 (2020) 5254-5263.
    [127] J. Zhou, Y. Dou, A. Zhou, R.M. Guo, M.J. Zhao, J.R. Li, MOF template‐directed fabrication of
    hierarchically structured electrocatalysts for efficient oxygen evolution reaction, Advanced Energy
    Materials 7 (2017) 1602643.
    [128] X. Zhang, J. Luo, K. Wan, D. Plessers, B. Sels, J. Song, L. Chen, T. Zhang, P. Tang, J.R. Morante,
    CHAPTER 6
    From rational design of a new bimetallic MOF family with tunable linkers to OER catalysts, Journal
    of Materials Chemistry A 7 (2019) 1616-1628.
    [129] M. Ren, J. Lei, J. Zhang, B.I. Yakobson, J.M. Tour, Tuning metal elements in open frameworks
    for efficient oxygen evolution and oxygen reduction reaction catalysts, ACS applied materials &
    interfaces 13 (2021) 42715-42723.
    [130] M. Rinawati, Y.-X. Wang, K.-Y. Chen, M.-H. Yeh, Designing a spontaneously deriving NiFeLDH from bimetallic MOF-74 as an electrocatalyst for oxygen evolution reaction in alkaline solution,
    Chemical Engineering Journal 423 (2021) 130204.
    [131] Y. Li, L. Xie, Y. Liu, R. Yang, X. Li, Favorable hydrogen storage properties of M (HBTC)(4,
    4′-bipy)· 3DMF (M= Ni and Co), Inorganic chemistry 47 (2008) 10372-10377.
    [132] S. Tang, Y. Yao, T. Chen, D. Kong, W. Shen, H.K. Lee, Recent advances in the application of
    layered double hydroxides in analytical chemistry: A review, Analytica Chimica Acta 1103 (2020)
    32-48.
    [133] T.-H. Wu, B.-W. Hou, Superior catalytic activity of α-Ni (OH) 2 for urea electrolysis, Catalysis
    Science Technology 11 (2021) 4294-4300.
    [134] M.L. Baker, M.W. Mara, J.J. Yan, K.O. Hodgson, B. Hedman, E.I. Solomon, K-and L-edge Xray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of
    differential orbital covalency (DOC) of transition metal sites, Coordination chemistry reviews 345
    (2017) 182-208.
    [135] Z. Li, H. Duan, M. Shao, J. Li, D. O'Hare, M. Wei, Z.L. Wang, Ordered-vacancy-induced cation
    intercalation into layered double hydroxides: a general approach for high-performance
    supercapacitors, Chem 4 (2018) 2168-2179.
    [136] Y. Zheng, R. Gao, Y. Qiu, L. Zheng, Z. Hu, X. Liu, Tuning Co2+ coordination in cobalt layered
    double hydroxide nanosheets via Fe3+ doping for efficient oxygen evolution, Inorganic Chemistry
    60 (2021) 5252-5263.
    [137] L. Liu, A. Liu, Y. Xu, H. Yu, F. Yang, J. Wang, Z. Zeng, S. Deng, Agglomerated nickel–cobalt
    layered double hydroxide nanosheets on reduced graphene oxide clusters as efficient asymmetric
    supercapacitor electrodes, Journal of Materials Research 35 (2020) 1205-1213.
    [138] J.-L. Bantignies, S. Deabate, A. Righi, S. Rols, P. Hermet, J.-L. Sauvajol, F. Henn, New insight
    into the vibrational behavior of nickel hydroxide and oxyhydroxide using inelastic neutron scattering,
    far/mid-infrared and Raman spectroscopies, The Journal of Physical Chemistry C 112 (2008) 2193-
    2201.
    [139] T.-H. Kim, K.-Y. Koo, C.-S. Park, S.-U. Jeong, J.-E. Kim, S.-H. Lee, Y.-H. Kim, K.-S. Kang,
    Effect of Fe on Calcined Ni (OH) 2 Anode in Alkaline Water Electrolysis, J Catalysts 13 (2023) 496.
    [140] S.-H. Lin, E. Lefeuvre, C.-H. Tai, H.-Y. Wang, Fabrication of high-performance non-enzymatic
    sensor by direct electrodeposition of nanomaterials on porous screen-printed electrodes, Journal of
    the Taiwan Institute of Chemical Engineers 137 (2022) 104386.
    [141] H. Jin, X. Liu, S. Chen, A. Vasileff, L. Li, Y. Jiao, L. Song, Y. Zheng, S.-Z. Qiao, Heteroatomdoped transition metal electrocatalysts for hydrogen evolution reaction, ACS Energy Letters 4 (2019)
    805-810.
    [142] N. Sun, F. Lu, Y. Yu, L. Su, X. Gao, L. Zheng, Alkaline double-network hydrogels with high
    conductivities, superior mechanical performances, and antifreezing properties for solid-state zinc–air
    batteries, ACS applied materials & interfaces 12 (2020) 11778-11788

    無法下載圖示 全文公開日期 2028/08/24 (校內網路)
    全文公開日期 2028/08/24 (校外網路)
    全文公開日期 2028/08/24 (國家圖書館:臺灣博碩士論文系統)
    QR CODE