簡易檢索 / 詳目顯示

研究生: 蒙娜麗莎
MONA-LISA HASAN
論文名稱: The Different Routes Of Synthesizing of PtCo/C Electrocatalysts for Oxygen Reduction Reaction
The Different Routes Of Synthesizing of PtCo/C Electrocatalysts for Oxygen Reduction Reaction
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
江志強
Jyh-Chiang Jiang
杜景順
Jing-Shan Do
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 132
中文關鍵詞: 陰極觸媒微波
外文關鍵詞: X-ray Absorption Spectroscopy, DMFCs, microwave, cathode electrocatalyst, colloid method, urea method
相關次數: 點閱:191下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • ABSTRACT

    One of the major goals of this research was to investigate relationship between the catalyst structure and the electrochemical activity of the bimetallic electrocatalyst prepared in different protocol. The carbon-supported Pt-Co is one of electrocatalyst for oxygen reduction reaction which has the enchancement than platinum. The XAS technique had been used for investigating the structure aspects which extracted from EXAFS data. The electrochemical measurement had been employed for investigating oxygen reduction reaction (ORR) by thin film on rotating disk electrode (RDE).
    Microwave synthesis method was applied to prepare PtCo/C oxygen reduction electrocatalysts. The microwave irradiation combine with the modified-Watanabe method and the urea method were used for preparation of PtCo/C electrocatalysts. The different preparation yield different electrocatalyst of structure aspect and electrochemical properties. The modified-Watanabe has developed in our group but some of midification has been done for obtaining different structure. The urea method combine with microwave irradiation has been introduced as new approach for preparing PtCo/C electrocatalysts. Hydrolysis of urea at 90 oC was used to achieve the homogeneous production of hydroxyl ions to increase the pH from acidic to around neutral at this temperature, a pH of around 6. But by using microwave irradiation, the final pH value attained at pH 8. After preparation, the heat treatment was applied for as-synthesized at 300 oC and 400 oC in 10% H2 atmosphere.
    The synthesized PtCo/C were characterized by various techniques for investigating its structure. XRD and TEM data showed that the as-synthesized catalyst have average particles size about 2 - 3 nm for the samples synthesized by the Watanabe method and 8 - 11 nm for the samples synthesized by the urea method after heat treatment at 400 oC. The cyclic voltammogram measurement in 0.5 M H2SO4 have been performed on all the prepared as well as commercial Pt/C-Etek and PtCo/C-Etek. The linear scan voltammogram have also been performed for investigating ORR in 0.5 M H2SO4 after purging O2 for 30 minutes. The activities of some of the as-synthesized are nearly similar and some are slightly higher when compared to commercially available Pt/C-Etek and PtCo/C-Etek. Expecially the samples had prepared by modified-Watanabe microwave method offer good performance than any other samples
    XAS analysis on all the prepared and commercial samples has shown that the the catalyst contains Pt rich in its core and Co rich in the shell of bimetallic catalyst. And some of the catalyst has reversed structure where Co rich in core and Pt rich in shell.

    Keywords: Cathode electrocatalysts, Microwave, DMFCs, Urea method, Colloid method, X-ray absorption spectroscopy, Oxygen reduction reaction

    LIST OF CONTENTS ABSTRACT i ACKNOWLEDGEMENT iii TABLE OF CONTENTS iv LIST OF FIGURES xiii LIST OF TABLES xiv CHAPTER I INTRODUCTION 1 1.1.GENERAL ASPECTS OF FUEL CELLS 1 1.2.DIRECT METHANOL FUEL CELL (DMFCS) 8 1.2.1. Solid Polymer Electrolyste: PEM 10 1.2.2. Direct Methanol Fuel Cell Anode 13 1.2.3. Direct Methanol Fuel Cell Cathode 15 1.3. THE OBJECTIVITY OF THESIS 19 1.4. ANALYSIS TECHNIQUE 19 CHAPTER II ELECTOCATALYST 21 2.1. GENERAL FEATURES OF ELECTROCATALYST 21 2.1.1. PREPARATION OF CARBON-SUPPORTED METAL NANOPARTICLES 22 2.1.1.1. Impregnation Methods 22 2.1.1.2. Colloidal Methods 22 2.1.1.3. Microwave 24 2.1.1.4. The Homogeneous Deposition-Precipitation Technique 26 2.1.2. CATALYST SUPPORT 27 2.1.3. ELECTROCATALYSTS FOR ORR 28 2.2.FUNDAMENTAL ASPECTS BEHIND CHARACTERISTIC AND PROPERTIES OF ELECTROCATALYST 32 2.2.1. ELECTROCHEMICAL PROPERTIES 32 2.2.1.1. Cyclic Voltammogram 32 2.2.1.2. Determination of EAS Area 36 2.2.1.3. The Rotating Disk Electrode Setup 38 2.2.2. STRUCTURAL MODEL AND ATOMIC DISTRIBUTION OF BIMETALLIC NPs AS INVESTIGED BY XAS 42 CHAPTER III EXPERIMENTAL 45 3.1. EXPERIMENT MATERIALS AND EQUIPMEENTS 45 3.1.1. Experiment Materials 45 3.1.2. Instrument and Equipments 46 3.2. EXPERIMENT METHODS 46 3.2.1. Treatment of Carbon Black 46 3.2.2. Modified-Watanabe Method Using Microwave 46 3.2.2.1. Alloying Nanoparticles 47 3.2.2.2. Ptcore-Coshell Nanoparticles 47 3.2.2.3. Cocore-Ptshell Nanoparticles 50 3.2.3. Urea Method Using Microwave 51 3.2.4. Heat Treatment for PtCo/C as-synthesized 53 3.3.ELECTROCATALYST CHARACTERIZATION 54 3.3.1. X-ray Powder Diffraction (XRD) 54 3.3.2. Energy Disperse X-ray (EDX) Microanalysis 55 3.3.3. Transmission Electron Miscoscope (TEM) 55 3.3.4. X-ray Absorption Spectroscopy (XAS) 56 3.3.5. Temperature-Programmed Reduction (TPR) 56 3.4.ELECTROCHEMICAL MEASUREMENT 56 3.4.1. Electrode preparation 56 3.4.2. Cyclic Voltammetry (CV) and Linear Sweep Voltammetry (LSV) 57 CHAPTER IV RESULTS 58 4.1.ELECTROCATALYST CHARACTERIZATION 59 4.1.1. X-Ray Diffraction 59 4.1.2. Energy Disperse X-ray (EDX) microanalysis 63 4.1.3. Transmission Electron Microscopy (TEM) 65 4.1.4. Temperature Programmed Reduction (TPR) 67 4.2.ELECTROCATALYST PROPERTIES 70 4.2.1. Cyclic Voltammograms (CVs) 70 4.2.2. Oxygen Reduction Reaction (ORR) 75 4.2.3. Effect of acid treatment on electrochemical properties 77 4.2.4. Effect of heat treatment on electrochemical properties 79 4.3. ELECTROCATALYST STRUCTURE 81 4.3.1. X-ray Absorption Near Edge Spectroscopy (XANES) 81 4.3.2. Extended X-ray Absorption Fine Structure (EXAFS) 85 CHAPTER V DISCUSSION 96 5.1. Structure Parameters of Oxygen Reduction Reaction Electrocatalyst 96 5.2. Electrochemical Activity of ORR electrocatalysts 101 5.3. Comparison Between Electrochemical Activity and Structure for Oxygen Reduction Reaction (ORR) Electrocatalysts 106 CHAPTER VI CONCLUSION 108 REFERENCES xv

    REFERENCES

    1. Bossel, U., 'The Birth of the Fuel Cell 1835 - 1845', 1st ed., 2000, European Fuel Cell Forum, Oberrohrdorf, Switzerland
    2. Ledjeff, K., Ed., 'Brennstoffzellen: Entwicklung - Technologie - Anwendung'. 1st ed., 1995, C.F.Müller, Heidelberg
    3. Kinoshita, K., McLarnon, F.R. and Cairns, E.J., 'Fuel Cells - A Handbook'. 1988, U.S. Department of Energy, Morgantown, West Virginia
    4. Mauritz, K. A.; Hora, C. J.; Hopfinger, A. J. in: Ions in Polymers; ed. A. Eisenberg, ACS Advances in Chemistry Ser. No. 187, American Chemical Society: Washington, DC, 1980; pp. 124-154.
    5. Yeager, H. L.; Steck, A. J. Electrochem. Soc. 1981, 128, 1880.
    6. Eisenberg, A.; Hird, B.; Moore, R. B. Macromolecules 1990, 23, 4098.
    7. Gierke, T. D.; Munn, G. E.;, Wilson, F. C. J. Polym. Sci. Polym. Phys. Ed. 1981,19, 1687.
    8. Butler, G. B.; O’Driscoll, K. F.; Wilkes, G. L. JMS., Macromol. Chem. Phys. 1994, C34, 325-373.
    9. Yeager, H. J.; Eisenberg, A. in: Perfluorinated Ionomer Membranes; eds. A. Eisenberg and H. L. Yeager, ACS Symp. Ser. No.180, American Chemical Society: Washington, DC, 1982; pp. 1-6, 41-63.
    10. Mauritz, K. A.; Storey, R. F.; Jones, C. K. in: Multiphase Polymer Materials: Blends, Ionomers, and Interpenetrating Networks; eds. L.A. Utracki and R.A. Weiss, ACS Symp. Ser. No. 395; American Chemical Society: Washington, DC, 1989; pp. 401-417.
    11. A. Eisenberg and M. King, Ion-Containing Polymers: Physical Properties and Structure, Vol. 2., Academic Press: New York, 1977, pp. 163-169.
    12. Hsu, W. Y.; Gierke, T. D. Macromolecules 1982, 15, 101.
    13. Anantaraman, A. V.; Gardner; C. L. J. Electroanal. Chem. 1996, 414, 115-120
    14. Tilak, B. V.; Conway, B. E.; Angerstein-Kozlawska, H. W. J. Electroanal. Chem. 1973, 48, 1.
    15. Li, N. H.; Sun, S. G.; Chen, S. P. J. Electroanal. Chem. 1997, 430, 57.
    16. Janssen, M. M. P.; Moolhuysen, J. Electrochim. Acta 1976, 21, 869.
    17. Parsons, R.; & Vandernoot, T. J. Electroanal. Chem. 1989, 257, 9.
    18. Lamy, C.; Léger, J-M.; Hahn, F.; Bedan, B.; Durand, R.; Kabbabi, A. in Electrode Process IV, Weickowski, A., Itaya, K., Eds.; The Electrochem. Society:Pennington, NJ, PV96-8, 1996; pp 356-370.
    19. Ianniello, R.; Schmidt, V. M.; Stimming, U.; Stumper, J.; Wallau, A. Electrochim. Acta 1994, 39,1863.
    20. Lamy, C.; Léger, J-M.; Srinivasan, S.; Direct Methanol Fuel Cells: From a Twentieth Century Electrochemist’s Dream to a Twenty-first Century Technology, in Modern Aspects of Electrochemistry, No. 34, Bockris, J. O’M.; Conway, B. E., Eds.; KluwerAcademic/Plenum Publishers: New York, 2001; pp 53-118.
    21. Hamann, C.H., Hamnett, A. and Vielstich, W., 'Electrochemistry', 1st ed. 1998, Wiley-VCH, Weinheim
    22. Tarasevich, M.R., Sadkowski, A. and Yeager, E., 'Oxygen Electrochemistry', in 'Comprehensive Treatise of Electrochemistry', Bockris, J.O., Conway, E.E., Yeager, E., Khan, S.U.M. and White, R.E., Eds., 1983, Plenum: New York. pp. 301
    23. Markovic, N.M., Schmidt, T.J., Stamenkovic, V. and Ross, P.N., 'Oxygen Reduction Reaction on Pt and Pt Bimetallic Surfaces: A Selective Review', Fuel Cells, 2001, 1, 105
    24. Wroblowa, H.S., Pan, Y.-C. and Razumney, G., 'Electroreduction of Oxygen - A New Mechanistic Criterion', Journal of the Electroanalytical Chemistry, 1976, 69, 195
    25. Bagotskii, V.S., Tarasevich, M.R. and Filinovskii, V.Y., 'Calculation of the Kinetic Parameters of Conjugated Reactions of Oxygen and Hydrogen Peroxide', Elektrokhimiya, 1969, 5, 1218
    26. Yeager, E., 'Dioxygen Electrocagalysis: Mechanisms in Relation to Catalyst Structure', Journal of Molecular Catalysis, 1986, 38, 5
    27. Yeager, E., 'Electrocatalysts for O2 Reduction', Electrochimica Acta, 1984, 29, 1527
    28. LaConti, A.B., Fragala, A.R. and Boyack, J.R. 'Solid Polymer Electrolyte Electrochemical Cells:Electrode and other Materials Considerations'. in 'Proceedings of the Symposium on "Electrode Materials and Processes for Energy Conversion and Storage"', McIntyre, D.E., Srinivasan, S. and Will, E.G., Eds., Vol. 77-6, pp. 354, 1977, The Electrochemical Society, Pennington
    29. Gottesfeld, S. and Zawodzinski, T.A., 'Polymer Electrolyte Fuel Cells', in 'Advances in Electrochemical Science and Engineering', Alkire, R.C., Gerischer, H., Kolb, D.M. and Tobias, C.W., Eds., 1997, Wiley-VCH: Weinheim. p. 195
    30. S. Mukerjee, S. Srinivasan, J. Electroanal. Chem. 1993, 357, 201.
    31. T. R. Ralph, G. A. Hards, S. D. Flint, J. M. Gascoyane, Fuel Cell Seminar Abstracts, Palm Springs, CA, Nov. 16-19, 1998; pp. 536
    32. M. T. Paffet, G. J. Beery, S. Gottesfeld, J. Electrochem. Soc. 1998, 135, 1431.
    33. M. Watanabe, K. Tsurumi, T. Mizukami, T. Nakamura, P. Stonehart, J. Electrochem. Soc. 1994, 141, 2659.
    34. A. Freund, J. Lang, T. Lehman, K. A. Starz, Cat. Today 1996, 27, 279.
    35. V. Jalan, E. J. Taylor, J. Electrochem. Soc. 1983, 130, 2299.
    36. S. Gottesfeld, M. T. Paffett, A. Redondo, J. Electroanal. Chem. 1986, 205, 163.
    37. B. C. Beard, P. N. Ross, J. Electrochem. Soc. 1970, 137, 3368.
    38. K. T. Kim, J. T. Whang, Y. G. Kim, J. S. Chung, J. Electrochem. Soc. 1993, 140, 31.
    39. S. Mukerjee, S. Srinivasan, M. P. Soriaga, J. McBreen, J. Electrochem. Soc. 1995, 142, 1409.
    40. M. Neergat, A. K. Shukla, K. S. Gandhi, J. Appl. Electrochem. 2001, 31, In press.
    41. M. Faraday, Philos. T rans. R. Soc. London, 1857, 147, 145.
    42. M. Kerker, J. Colloid Interface Sci., 1986, 112, 302.
    43. H. Hirai and N. Toshima, in Tailored Metal Catalysts, ed. Y. Iwasawa, D. Reidel, Dordrecht, 1986, pp. 87È140.
    44. H. Hirai, Y. Nakao, N. Toshima and K. Adachi, Chem. Lett., 1976, 905.
    45. H. Hirai, J. Macromol. Sci., Chem., 1979, A13, 633.
    46. H. Hirai, H. Chawanya and N. Toshima, Reactive Polym., 1985, 3, 127.
    47. B. Zhao and N. Toshima, Kobunshi Ronbunshu, 1989, 46, 551.
    48. Hoz, A. de la, Diaz-Ortiz, A., Moreno, A., “Microwaves in organic synthesis. Thermal and non-thermal microwave effects”, Chem. Soc. Rev., 2005, 164-178
    49. Developments in Microwave-assisted Organic Chemistry. C. Strauss, R. Trainor. Aust. J. Chem., 48 1665 (1995).
    50. Pastoriza-Santos, I.; Liz-Marza´n, L. M. Langmuir 2002, 18, 2888.
    51. Fie´vet, F.; Lagier, J. P.; Figlarz, M. MRS Bull. 1989, 24, 29.
    52. Yu, W.; Tu, W.; Liu, H. Langmuir 1999, 15, 6.
    53. Palchik, O.; Avivi, S.; Pinkert, D.; Gedanken, A. Nanostruct. Mater. 1999, 11, 415.
    54. Zhu, J.; Palchik, O.; Chen, S.; Gedanken, A. J. Phys. Chem. B 2000, 104, 7344
    55. Palchik, O.; Zhu, J.; Gedanken, A. J. Mater. Chem. 2000, 10, 1251.
    56. Palchik, O.; Kerner, R.; Gedanken, A.; Weiss, A. M.; Slifkin, M. A.; Palchik, V. J. Mater. Chem. 2001, 11, 874.
    57. Grisaru, H.; Palchik, O.; Gedanken, A.; Palchik, V.; Slifkin, M. A.; Weiss, A. M. J. Mater. Chem. 2002, 12, 339.
    58. Kerner, R.; Palchik, O.; Gedanken, A. Chem. Mater. 2001, 13, 1413.
    59. A.J. van Dillen, J.W. Geus, L.A.M. Hermans, J. van der Meijden, Proc. 6th Int. Congr. Catal. 2 (1977) 677.
    60. L.A.M. Hermans, J.W. Geus, Stud. Surf. Sci. Catal. 3 (1979) 113.
    61. P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 102 (1998) 2722.
    62. P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 101 (1997) 7060.
    63. K.P. de Jong, Stud. Surf. Sci. Catal. 63 (1991) 19.
    64. P. Burattin, M. Che, C. Louis, J. Phys. Chem. B 103 (1999) 6171.
    65. Shukla, A. K., Neergat, M., Parthasarathi, B., Jayaram, V., and Hegde, M. S. 2001, J. Electroanal. Chem., 504, 111.
    66. Fuel Cell Handbook, fifth ed., EG & G Services Parsons, Inc., 2000.
    67. El Hourch, A., Coutanceau, C., Léger, J. M., and Lamy, C. 1997, J. Electroanal. Chem., 426, 117.
    68. Bittins-Cattaneo, B., Wasmus, S., and Vielstich, W. 1993, J. Appl. Electrochem., 23, 625.
    69. Jiang, R. Z., and Chu, D. Y. 2000, J. Electrochem. Soc., 147, 4605.
    70. Convert, P., Coutanceau, C., Gloaguen, F., and Lamy, C. 2001, J. Appl. Electrochem. 31, 945.
    71. Chu, D., and Gilman, S. 1994, J. Electrochem. Soc., 173, 2601.
    72. Alonso-Vante, N. 1996, J. Chim. Phys., 93, 702.
    73. Schmidt, T. J., Paulus, U. A., Gasteiger, H. A., Alonso-Vante, N., and Behm, R. J. 2000, J. Electrochem. Soc., 147, 2620.
    74. Alonso-Vante, N., Tributsch, H. 1986, Nature, 323, 431.
    75. Alonso-Vante, N., Bogdanoff, P., and Tributsch, H. 2000, J. Cata., 190, 240.
    76. Bron, M., Bogdanoff, P., Fiechter, S., Hilgendorff, M. 2001, J. Electroanal. Chem., 517, 85.
    77. Reeve, R. W., Christense, P. A., Hamnett, A., Haydock, S. A. and Roy, S. C. 1998, J. Electrochem. Soc., 145, 3463.
    78. Yang, H., Alonso-Vante, N., Léger, J.-M., and Lamy, C. 2004, J. Phys. Chem. B, 108, 1938.
    79. Mailard, F., Martin, M., Gloaguen, F., and Léger, J.-M. 2002, Electrochim. Acta, 47, 3431.
    80. Li, W., Zhou, W., Li, H., Zhou, Z., Zhou, B., Sun, G., and Xin, Q. 2003, Electrochim. Acta, 49, 1045.
    81. Murthi, V. S., Urian, C., and Mukerjee, S. 2004, J. Phys. Chem. B, 108, 11011.
    82. Paulus, U. A., Wokaun, A., Scherer, G. G., Schmidt, T. J., Stamenkovic, J., Radmikovic, V., Markovic, N. M., and Ross, P. N. 2002, J. Phys. Chem. B, 106, 4181.
    83. Aricò, A. S., Shukla, A. K., Kim, H., Park, S., Min, M., and Antonucci, V. 2001, Appl. Surf. Sci., 172, 33.
    84. Neergat, M., Shukla, A. K., and Gandhi, K. S. 2001, J. Appl. Electrochem. 31, 373.
    85. Paffett, M. T., Beery, J. G., and Gottesfeld, S. 1988, J. Electrochem. Soc., 135, 1431.
    86. Kinoshita, K. 1990, J. Electrochem. Soc. 137, 845.
    87. Jalan, V., and Taylor, E. J. 1983, J. Electrochem. Soc., 130, 2299.
    88. Beard, B. C., and Ross, P. N. 1990, J. Electrochem. Soc., 130, 3368.
    89. Mukerjee, S., Srinivasan, S., and Soriaga, M. P. 1995, J. Phys. Chem. B, 99, 4577.
    90. Mukerjee, S. 1990, J. Appl. Electrochem., 20, 537.
    91. Adzic, R. R. 1998, Electrocatalysis, J. Lipkowski and P. N. Ross (Eds.,), Wiley-VCH, New York, 197.
    92. Conway, B. E., and Novak, D. M. 1981, J. Electrochem. Soc., 128, 956.
    93. Mukerjee, S., Srinivasan, S., Soriaga, M. P., and McBreen, J. 1995, J. Phys. Chem. 99, 4577.
    94. Markovic, N. M., Gasteiger, H. A., and Ross, P. N. 1997, J. Electrochem. Soc., 144, 1591.
    95. K. Kinoshita. 1992, Electrochemical Oxygen Technology, John Wiley & Sons, New York.
    96. Ross, P. N. Jr. 1998, Electrocatalysis, J. Lipkowski and P. N. Ross (Eds.,), Wiley-VCH, New York, 43.
    97. Stonehart, P. 1992, J. Appl. Electrochem., 22, 995.
    98. Maoka, T., Kitai, T., Segawa, N., and Ueno, M. 1996, J. Appl. Electrochem., 26, 1267.
    99. Stamenkovic, V., Schmidt, T. J., Markovic, N. M., and Ross, P. N. Jr. 2002, J. Phys. Chem. B, 106, 11970.
    100. Markovic, N.M., Gasteiger, H.A. and Ross Jr., P.N., 'Oxygen Reduction on Platinum Low-Index Single-Crystal Surfaces in Sulfuric Acid Solution: Rotating Ring - Pt(hkl) Disk Studies', Journal of Physical Chemistry, 1995, 99, 3411
    101. Hamann, C.H., Hamnett, A. and Vielstich, W., 'Electrochemistry', 1st ed. 1998, Wiley-VCH, Weinheim
    102. Gilman, S. J. Phys. Chem. 1962, 67, 78
    103. Gilman, S.; In Electroanaylytical Chemistry – A Series of Advances, A. J. Bard (Ed), Marcel Dekker, New York, Vol. 2, 1967. p. 112
    104. Bard, A.J. and Faulkner, L.R., 'Electrochemical Methods - Fundamentals and Applications', 2nd ed., 2001, John Wiley & Sons, New York
    105. Levich, V.G., 'Physicochemical Hydrodynamics', 2nd ed., 1962, Prentice-Hall, Inc., Englewood Cliffs, NJ
    106. Pleskov, Y.V. and Filinovskii, V.Y., 'The Rotating Disc Electrode', 1st ed, 1976, Consultants Bureau, New York.
    107. Hwang, B. J., Sarma, L. S., Chen, J. M., Chen, C. H., Liu, D. G., Lee, J. F., and Tang, M. T. 2005, J. Am. Chem. Soc., 127, 11140-11145, 2005.

    QR CODE