簡易檢索 / 詳目顯示

研究生: 陳冠合
Guan-He Chen
論文名稱: 以微波通氧處理高介電係數閘極絕緣層應用於可撓式有機薄膜電晶體特性改善之研究
Investigation on Flexible Organic Thin-Film Transistors with High-K Gate Insulators treated by Microwave Heating in Oxygen Ambient
指導教授: 范慶麟
Ching-Lin Fan
口試委員: 范慶麟
劉舜維
顏文正
李志堅
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2020
畢業學年度: 109
語文別: 中文
論文頁數: 84
中文關鍵詞: 微波通氧處理可撓有機薄膜電晶體
外文關鍵詞: Microwave, Atomic Layer Deposition, Flexible, OTFT
相關次數: 點閱:208下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討微波通入氧氣退火High-k氧化物閘極絕緣層應用於可撓式元件上,我們起初探討High-k氧化物閘極絕緣層塑膠基板的製程,藉此找到High-k氧化物閘極絕緣層應用於塑膠基板的最佳製程條件,最後再將此製程條件進行微波通氧退火增強電特性。
    第一部分我們利用原子層沉積沉積Al2O3和HfO2與旋轉塗佈之PVP比較,藉此發現High-k閘極絕緣層的效果顯著。其次,透過交互疊層Al2O3和HfO2結合各自的優點,我們從中發現互疊層後,由於粗糙度下降,使五苯環沉積晶粒較大,不過HfO2較不緻密,影響了其off state的特性,故我們增加閘極絕緣層厚度,犧牲了些許的Ion,換取更好的S.S.、Ion/Ioff。
    第二部分結構與第一部分相同,此部分是在閘極絕緣層上做表面處理,將沉積好ALD的多層交疊之High-k閘極絕緣層,在通入氧氣下的腔體,施予50W的微波功率,藉此消除表面不利於pentacene成長的O-H鍵,以的道教大的晶格尺寸,以利載子傳輸,並由遲滯、sttess、以及撓曲多次後數據,加以說明表面改善不僅提升特性,同時增加電晶體穩定度,並利用FT-IR與Contact angle證明O-H鍵結得減少,及使用SEM證明,撓曲對主動層劣化的影響造成電特性的下降。


    This paper mainly discusses the application of microwave-induced oxygen to anneal High-k gate oxide insulating layer on flexible devices. We initially discussed the process of high-k gate oxide insulating layer plastic substrate to find the optimal process conditions of the material gate insulating layer applied to the plastic substrate, and finally the best process conditions are subjected to microwave-induced oxygen annealing to enhance the electrical characteristics.
    In the first part, we compared the deposition of Al2O3 and HfO2 by Atomic Layer Deposition (ALD) with spin-coated PVP, and found that the effect of High-k gate oxide insulating layer is remarkable. Secondly, by combining the advantages of Al2O3 and HfO2 in alternating stacks, we found that after interstacking, due to the reduction in roughness, the pentacene deposition grain sizes are larger, but HfO2 is less dense, which affects the characteristics of its off state. Therefore, we increased the thickness of the gate oxide insulation layer and sacrificed some Ion in exchange for better subthreshold swing and Ion/Ioff.
    The structure of the second part is the same as that of the first part. This part is to perform surface treatment on the gate oxide insulating layer area. The ALD multi-layer overlapping high-k gate oxide insulating layer is applied to the cavity under oxygen supply, 50W microwave power, thereby eliminating the O-H bonding on the surface that is not conducive to the growth of pentacene. The larger grain sizes lead to facilitate carrier transmission, and the stability after multiple times of hysteresis, stress, and many times of mechanical bending to small bending radius. To illustrate the surface improvement not only improve the electrical characteristics, but also increase the stability of the transistor, and use FT-IR and contact angle to prove the reduction of O-H bonding, and use SEM to prove that the effect of deflection on the deterioration of the active layer causes the reduction of the electrical characteristics.

    論文摘要 I ABSTRACT II 目錄 V 圖目錄 IX 表目錄 XIV 第一章 概論 1 1.1 研究背景 1 1.1.1 有機薄膜電晶體 1 1.1.2 微波與傳統退火 3 1.2 研究動機 4 第二章 有機薄膜電晶體介紹 5 2.1 有機半導體介紹 5 2.1.1 有機半導體材料介紹 5 2.1.2 有機半導體Pentacene之特性介紹 8 2.2 閘極絕緣層的介紹 9 2.2.1 閘極絕緣層材料 9 2.2.2 高介電常數(High-K)之介紹 10 2.3 有機半導體之傳輸機制 11 2.3.1 載子跳躍模型機制 (Hopping Model)[43,44] 12 2.3.2 陷阱補捉與熱釋放模型機制(Multiple Trapping and Release)[44,45] 13 2.3.3 偏極子模型機制(The polaron model)[46] 14 2.4 有機薄膜電晶體結構 15 2.5 有機薄膜電晶體之操作模式 17 2.6 電性參數萃取方式 21 2.6.1 載子移動率(Mobility, μ) 21 2.6.2 臨界電壓(Threshold Voltage, Vth) 23 2.6.3 次臨界斜率(Subthreshold Swing, S.S.) 24 2.6.4 開關電流比(On/Off Current Ratio, Ion/Ioff) 25 第三章 有機薄膜電晶體製程方法及分析機台 26 3.1 塑膠基板(PI Substrate) 26 3.1.1 基板 26 3.1.2 載片(holder) 27 3.1.3 閘極 29 3.2 閘極絕緣層(Gate Dielectric) 30 3.3 主動層 33 3.4 源極/汲極(Source/Drain) 34 3.5 製程機台及分析設備介紹 36 3.5.1 製程機台 37 3.5.2 原子層沉積系統(Atomic Layer Deposition, ALD) 39 3.5.3 半導體參數分析儀(Semiconductor Parameter Analyze) 41 3.5.4 原子力顯微鏡(ATOMIC FORCE MICROSCOPE,AFM) 42 3.5.5 接觸角量測儀(Contact angle) 43 3.5.6 電感電容阻抗量測儀(LCR METER) 44 3.5.7 傅立葉轉換紅外線光譜儀(Fourier Transform Infrared Spectrometer,FTIR) 45 3.5.8 掃描式電子顯微鏡(Scanning Electron Microscope,SEM) 45 第四章 多層交疊ALD High-K絕緣層結構有機薄膜電晶體實驗結果 47 4.1 使用High-K閘極絕緣層元件電特性 47 4.2 使用ALD HfO2/Al2O3交互堆疊當閘極絕緣層實驗結果與分析 50 4.3 HfO2/Al2O3交疊閘極絕緣層厚度調變實驗結果 54 第五章 微波通氧處理閘極絕緣層表面應用於可撓式有機薄膜電晶體 60 5.1 微波通氧元件電特性結果與分析 60 5.2 微波通氧元件可靠度結果分析 65 第六章 結論與未來展望 77 6.1 結論 77 6.2 未來展望 78 參考文獻 79

    [1] V. Subramanian, J. M. J. Frechent, P. C. Chang, and S. K. Volkman”, Progress Toward Development of All-Printed RFID Tags: Materials, Processes, and Devices”,44Proceeding Of The IEEE, Vol. 93, p. 1330 (2005).
    [2] Z. Tao, J. T. Mason, R. Dieckmann, and George G. Malliaras, Applied Physics Letters, Vol. 1, p.4643 (2002).
    [3] J. J., S. Nam, J. H., J. J. Park, J. Im, C. E. Park, and J. M. Kim, Journal of Material Chemistry, Vol. 22, p.1054 (2012).
    [4] T. T. Kawase, T. Shimoda, C. Newsome, H. Sirringhaus, and R. H. Friend, Thin Solid Films, Vol. 438, p.279 (2003).
    [5] Y. L. Loo, R. L. Willett, K. W. Baldwin, and J. A. Rogers, Applied Physics Letters, Vol, 81, p.562 (2002).
    [6] R. Schroeder, L. A. Majewski, M. Grell, J. Maunoury, J. Gautrot, P. Hodge, and M Turner, Applied Physics Letters, Vol. 87, p.113501 (2005).
    [7] T. Ji, J. Xie and V. K. Varadan, Proceedings of SPIE, Vol. 5763, p. 77 (2005).
    [8] https://www.azom.com
    [9] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, Thin Solid Films, Vol. 464-465, p. 437 (2004).
    [10] M. W. Shin and S. H. Jang, Organic Electronics, Vol. 13, p.767–770 (2012).
    [11] C. B. Park and J. D. Lee, Current Applied Physics, Vol. 13, p.170-175 (2013).
    [12] T. Ahn, H. Jung, H. J. Suk, and M. H. Yi, Synthetic Metals, vol. 159, p. 1277 (2009).
    [13] A. Tsumura, H. Koezuka, and T. Ando, Applied Physics Letters, vol. 49, p. 1210 (1986).
    [14] A. Assadi, C. Svensson, M. Willander, and O. Ingans, Applied Physics Letters, vol. 53. p. 195 (1988).
    [15] J. Paloheimo, E. Punkka, H. Stubb, P.Kuivalainen, in Lower Dimensional Systems and Molecular Devices, Proceedings of NATO ASI, Spetses, Greece (Ed: R. M. Mertzger), Plenum, New York, (1989).
    [16] Z. Bao, A. Dodabalapur, and A. J. Lovinger, Applied Physics Letters, vol. 69, p. 4108 (1996).
    [17] H. Sirringhaus, N. Tessler, and R. H. Friend, Science, vol. 280, p. 1741 (1998).
    [18] F. Ebisawa, T. Kurokawa, and S. Nara, Journal of Applied Physics, vol. 54, p. 3255 (1983).
    [19] J. H. Burroughes, C. A. Jones, and R. H. Friend, Nature, vol. 335, p. 137 (1988).
    [20] H. Fuchigami, A. Tsumura, and H. Koezuka, Applied Physics Letters, vol. 63, p. 1372, (1993).
    [21] F. Garnier, A. Yassar, R. Hajlaoui, G. Horowitz, F. Deloffre, B. Servet, S. Ries, and P. Alnot, Journal of the American Chemical Society, vol. 115, p. 8716 (1993).
    [22] B.Servet, G. Horowitz, S. Ries, O. Lagorsse, P. Alnot, A. Yassar, F. Deloffre, P. Srivastava, R. Hajlaoui, P. Lang, and F. Garnier, Chemistry of Materials, vol. 6, pp 1809 (1994).
    [23] A. Dodabalapur, L. Torsi, and H. E. Katz, Science, vol. 268, p. 270 (1995).
    [24] C. D. Dimitrakopoulos, B. K. Furman, T. Graham, S. Hegde, and S. Purushothaman, Synthetic Metals, vol. 92, p. 47 (1998).
    [25] H. E. Katz, L. Torsi, and A. Dodabalapur, Chemistry of Materials, vol. 7, p. 2235 (1995).
    [26] R. Hajlaoui, D. Fichou, G. Horowitz, B. Nessakh, M. Constant, and F. Garnier, Advanced Material, vol. 9, p. 557 (1997).
    [27] R. Hajlaoui, G. Horowitz, F. Garnier, A. Arce-Brouchet, L. Laigre, A. Elkassmi, F. Demanze, and F. Kouki, Advanced Material, vol. 9, p. 389 (1997).
    [28] J. H. Schön, Ch. Kloc, and B. Batlogg, Organic Electronics, vol. 1, p. 57 (2000).
    [29] Y. -Y. Lin, D. J. Gundlach, S. Nelson, and T. N. Jackson, IEEE Electron Device Letters, vol. 18, p. 606 (1997).
    [30] C. D. Dimitrakopoulos, A. R. Brown, and A. Pomp, Journal of Applied Physics, vol. 80, p. 2501 (1996).
    [31] Y. Y. Lin, D. J. Gundlach, and T. N. Jackson, “High Mobility Pentacene Organic Thin Film Transistors,” 54th Annual Device Research Conference Digest, New York, p. 80 (1996).
    [32] G. Horowitz, X. Peng, D. Fichou, and F. Garnier, Synthetic Metals, vol. 51, p. 419 (1992).
    [33] R. C. Haddon, A. S. Perel, R. C. Morris, T. T. M. Palstra, A. F. Hebard, and R. M. Fleming, Applied Physics Letter, vol. 67, p. 121 (1995).
    [34] J. Kastner, J. Paloheimo, and H. Kuzmany, in Solid State Sciences, edited by H. Kuzmany, M. Mehring, and J. Fink, Springer, New York, p. 512 (1993).
    [35] A. R. Brown, D. M. de Leeuw, E. J. Lous, and E. E. Havinga, Synthetic Metals, vol. 66, p. 257 (1994)
    [36] J. G. Laquindanum, H. E. Katz, A. Dodabalapur, and A. J. Lovinger, Journal of the American Chemical Society, vol. 118, p. 11331 (1996).
    [37] G. Guillaud, M. Al Sadound, and M. Maitrot, Chemical Physics Letters, vol. 167, p. 503 (1990).
    [38 ]Z. Bao, A. J. Lovinger, and J. Brown, Journal of the American Chemical Society, vol. 120, p. 207 (1998).
    [39] H. Fuchigami, A. Tsumura, and H. Koezuka, Applied Physics Letter, vol. 63, p. 1372 (1993).
    [40] Ke Zhou, Huanli Dong, Hao-li Zhang, and Wenping Hu, Chem. Phys, vol. 16, p. 22448 (2014).
    [41] J. M. Shaw and P. F. Seidler, IBM Journal of Research and Development, vol.45, no.1, p.3 (2001).
    [42] M. Baldo, M. Deutsch, P. Burrows, H. Gossenberger, M. Gerstenberg, V. Ban, and S. Forrest, Advanced Material, vol. 10, p. 234 (1998).
    [43] E. M. Conwell, Physical Review Letters, vol. 103, p. 51 (1956).
    [44] N. F. Mott, Canadian Journal of Physics. vol. 34, p. 1356 (1956).
    [45] S. Locci, Masters Thesis, University of Cagliari (2009).
    [46] P. G. Le Comber, and W. E. Spear, Physical Review Letters, vol. 25, p. 509 (1970).
    [47] R. Ye, M. Baba, K. Suzuki, Y. Ohishi, and K. Mori, Thin Solid Films, vol. 464-465, p. 437 (2004).
    [48] D. Kumaki, T. Umeda, and S. Tokito, Applied Physics Letter, vol. 92, p. 093309 (2008).
    [49] Y. H. Noh, Y. Park, S. M. Seo, and H. H. Lee, Organic Electronics, vol. 7, p. 271 (2006).
    [50] Y. Roichman and N. Tessler, Applied Physics Letter, vol. 80, p. 151 (2002).
    [51] I. Kymissis, C. D. Dimitrakopoulos, and S. Purushothaman, IEEE Transactions on electron devices, vol. 48, no. 6 (2001).
    [52] G. B. Blanchet, C. R. Fincher, and M. Lefenfeld, Applied Physics Letters, vol. 84, no. 2 (2004).
    [53] A. R. Brown, C. P. Jarrett, D. M. de Leeuw and M. Matters, Synthetic Metals, vol. 88, p. 37 (1997).
    [54] S. M. Sze, Physics of Semiconductor Devices, Second Edition, Wiley, New York, CH. 7 (1981).
    [55] A. R. Brown, C. P. Jarrett, D. M. de Leeuw, and M. Matters, Synthetic Metals, Vol. 88, p. 37 (1997).
    [56] F. C. Chen, T. D. Chen, B. R. Zeng, and Y. W. Chung, Semiconductor Science and Technology, Vol. 26, p. 034005 (2011).
    [57] D. J. Yun, S. H. Lim, T. W. Lee, and S. W. Rhee, Organic Electronics, Vol. 10, p. 970 (2009).
    [58] 曾東雄,「可撓式塑膠基板上研製有機薄膜電晶體和場效電晶體」,碩士論文,國立成功大學,台南 (2009).
    [59] E. Kessels, “ALD presentation Vacuum Expo,” Technische Universiteit Eindhoven.
    [60] W.M.M. Kessels and M. Putkonen, MRS Bulletin, vol. 36, 11, p. 907 (2011).
    [61] D. J. Griffiths, Introduction to Electrodynamics,USA(1999)

    無法下載圖示 全文公開日期 2025/11/01 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE