簡易檢索 / 詳目顯示

研究生: 林永欽
Yung-Chin Lin
論文名稱: 製備與研究奈米鑽石薄膜沉積於矽及鈮酸鋰基板
Fabrication and Characterization of NCD films deposited on Si and LiNbO3
指導教授: 陳貴賢
Kuei-Hsien Chen
林麗瓊
Li-Chyong Chen
林舜天
Shun-Tian Lin
口試委員: 周賢鎧
Shyankay Jou
學位類別: 碩士
Master
系所名稱: 工程學院 - 機械工程系
Department of Mechanical Engineering
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 99
中文關鍵詞: 低溫多京矽表面聲波奈米鑽石微波電漿輔助氣相沉積
外文關鍵詞: NCD, SAW, MWPECVD, LTPS
相關次數: 點閱:488下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們研究使用微波輔助化學氣相沉積系統來成長奈米鑽石薄膜於矽及鈮酸鋰基板上,藉由控制溫度、氣體組成及成長壓力,我們可得到表面平坦且品質良好的鑽石薄膜。
    鈮酸鋰有很高的機電耦合係數,和奈米鑽石薄膜整合可得到很高的表面聲波波速與機電轉換效率以適合高頻上的應用。不過,鈮酸鋰與鑽石之間的熱膨脹係數差異太大,造成很大的薄膜應力,很難直接將鑽石薄膜沉積於鈮酸鋰基板上。於是,我們加入一層薄的矽緩衝層以提高鑽石膜與鈮酸鋰之間的黏著性。
    根據之前的研究,我們發現多晶矽薄膜比較適合用來整合此架構。廣泛地在薄膜電晶體和低溫多晶矽領域裡使用的技術如固相結晶、快速升溫退火、準分子雷射退火,在本研究中被用來將非晶的矽薄膜轉變成有結晶。我們相信奈米鑽石/矽/鈮酸鋰結構可以得到高的機電偶合係數與表面聲波波速,非常適合在表面聲波元件上應用。


    The growth of the nanocrystalline diamond (NCD) films on Si and LiNbO3 (LN) substrates using CH4/H2/O2 in microwave plasma enhanced chemical vapor deposition (MWPECVD) reactor had been investigated in this study. By controlling the temperature, gas composition, and processing pressure during the growth, smooth NCD films of good quality are obtained.
    LN has high electromechanical coupling coefficient (K2), which can be integrated with NCD films to achieve fast velocity and large K2 of SAW devices for high frequency applications. However, the large mismatch of thermal expansion coefficient between LN and diamond is the major issue to cause the large stress in the deposited films. So, a thin amorphous Si (α-Si) layer is used to promote a good adhesion between NCD film and LN.
    In our previous studies, a poly-Si thin layer is suitable for integrating the structure. Solid Phase Crystallization (SPC), Rapid Thermal Annealing (RTA), and Excimer Laser Annealing (ELA), the techniques widely used in TFT and LTPS fields, are used to convert the thin layer to crystallized one. We believe that the NCD/Si/LN structure is capable of achieving a high K2 and high SAW velocity, which is highly desirable for SAW devices.

    摘要……………………………………………………………................Ⅰ Abstract…………………………………………………………………...Ⅱ Acknowledgement………………………………………………………..Ⅲ Content……………………………………………………………………Ⅳ List of figures……………………………………………………………..Ⅷ List of tables…………………………………………..…..………...........ⅩⅠ Chapter 1. Introduction………………………………………………...1 1.1 Properties of diamond…………………………..……………………...1 1.2 Properties of LiNbO3…………………………………..........................6 1.3 Properties of ZnO……………………………………………………...6 1.4 SAW materials...…………..……………………………………..........7 1.5 Motivation………………………………………………………........9 Chapter 2. Theory and Review……………..………….…….................11 2.1 CVD diamond…………………………………..……………………..11 2.1.1 Development history……………..………….…...……...................12 2.1.2 Growth techniques...……………………..…...………..…………..14 2.1.3 Nucleation enhancement mechanism…………..……….....................15 2.1.4 Growth Mechanism…………………………….....…….................16 2.1.5 The role of atomic and ionic hydrogen in diamond growth…..................17 2.1.6 The role of oxygen in diamond growth…………..…...…..…………..17 2.1.7 Nanocrystalline diamond (NCD)……………………..……………...18 2.2 Surface acoustic wave (SAW)…………………...………………............19 2.2.1 History of SAW Device…………………………..………………...19 2.2.2 SAW theory………………………….………………………........21 2.2.3 SAW parameters………..…………………….……………….......22 2.2.4 Diamond SAW devices……………….……….………………........23 2.2.5 Reducing IDT line-width……………………….…………………..25 2.3 Low temperature polycrystalline silicon (LTPS)………...………………...27 2.3.1 Crystallization of amorphous silicon (α-Si)…………………………...27 2.3.2 Solid phase crystallization (SPC)……………………….……...........28 2.3.3 Excimer laser annealing (ELA)……………………..….....................28 2.3.4 Rapid thermal annealing (RTA)……………………..…...…..….......30 2.3.5 Metal induced crystallization (MIC)……...……………….................30 Chapter 3. Instrument…………………………………………………..31 3.1 Microwave plasma enhanced chemical vapor deposition ……...…………...31 3.2 Ion beam sputtering deposition (IBSD)………….…….….……………...33 3.3 Rapid thermal process (RTP)…………………………..……..................35 3.4 Field emission scanning electron microscopy (FESEM)………....................36 3.5 X-ray diffraction (XRD)………………………….…………………….38 3.6 Raman spectrometers……………...…………………………………...39 3.7 Atomic force microscopy (AFM)………………….…………………….41 3.8 Excimer laser annealing (ELA)…………………………....…………….43 3.9 SAW dispersion measurement..…………...………………..…………...44 Chapter 4. Experimental issue……………………….….…..................45 4.1 NCD/Si structure……………………………………..……..................45 4.1.1 Oxygen effect…………………………….……….…………........45 4.1.2 Temperature effect………………………..………….…………….47 4.2 NCD/Si-layer/LN structure…………………………….…...…………..49 Chapter 5. Results and Discussions……….………….…….…..............52 5.1 NCD/Si structure……..………………………….……….....................52 5.1.1 Oxygen effect…..………………………….…….……………...52 (a) SEM images………………………....…………….……………...52 (b) Growth rate……………………….……………….……………...56 (c) XRD pattern………………………………………………………57 (d) Raman spectra……………………………..……….……………..58 (e) Young’s modulus………………………………….…………...….61 (f) Other results……………………………………….……………...62 5.1.2 Temperature effect…………….……………………...……………64 (a) SEM images……………..……………………….……………….64 (b) Growth rate…………………………………....………………….67 (c) XRD pattern…………………………………...….………………68 (d) Raman spectra……………………………....…….………………69 (e) Other results………………………………….….………………..71 5.2 NCD/Si/LN structure………………………………………………......72 5.2.1 SPC-growth route…….……………..……………………………..72 (a) SEM images………………………………………………………72 (b) XRD pattern………………………………………..…………….75 (c) UV-Raman spectra…………………..…………………………….76 5.2.2 SPC-annealing temperature……………….…………….…………..77 (a) SEM images……………………………………..………………..77 (b) XRD pattern……………………………………….…..................80 (c) UV-Raman spectra…………………………..…………………….81 5.2.3 RTP………………………………..……………….…………….82 (a) SEM images………………………………………...…………….82 (b) VIS-Raman spectra……………….…………..…….…………......84 (c) XRD pattern………………………………………..…………….85 (d) UV-Raman spectra………………………………..……………….86 5.2.4 ELA…………………………………………………..………….87 (a) SEM images………………………….…………………………...87 (b) VIS-Raman spectra………………………………………………..88 (c) XRD pattern…………………………………….………………...90 Chapter 6. Conclusions…………………………………………………91 References………………………………………………………………..93

    [1.1] J. M. Perez and R. E. Stallcup, ENN 1, 147 (2004).
    [1.2] S. T. Lee, Zhangda Lin, and Xin Jiang, Mater. Sci. & Eng. 25, 123 (1999).
    [1.3] Tarun Shrada and Somnath Bhattacharyya, ENN 2, 337 (2004).
    [1.4] Maheshwar Sharon, ENN 1, 517 (2004).
    [1.5] C. Kittel, Introduction to Solid State Physics, 7th education, John Wiley & Sons, New York, 1996.
    [1.6] J. C. Angus and C. C. Hayman, Science 214, 913 (1988).
    [1.7] W. Yarbrough and R. Messier, Science 247, 688 (1990).
    [1.8] J. E. Field, The Properties of Diamond, Academic Press, Oxford, 1979.
    [1.9] Paul W. May, Endeavour Magazine 19(3), 101 (1995).
    [1.10] Huimin Liu and D. S. Dnady, Diamond & Relat. Mater. 10, 1173 (1995).
    [1.11] R. S. Weis and T. K. Gaylord, Appl. Phys. Lett. 37, 191 (1985).
    [1.12] H. Nakahata, K. Higahi, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe, Y. Seki, and S. Shikata, Ultrasonics Symp. Proc., 361 (1995).
    [1.13] Yoshino Y, Kadota M, Ieki H, Kasanami T, and Wakino K. Eighth, Inter. Symp. on Plasma Chem. 2, Tokyo, Japan, 2271 (1987).
    [1.14] Narendra B. Dahotre and Padmakar D. Kichambare, ENN 6, 435 (2004).
    [1.15] Y. C. Lee, Growth and mechanicl properties of diamond thin films, Master Thesis in NTUST, Taipei, Taiwan (2003).
    [1.16] K. Jagannadham, M. J. Lance, and T. R. Watkins, J. Vac. Sci. Technol. A 22, 1105 (2004).
    [1.17] J. P. Huang, Nanocrystalline diamond SAW filter, Master Thesis in NTUST, Taipei, Taiwan (2004).
    [2.1] R. Berman, Clarendon Press, Oxford, 371 (1965).
    [2.2] H. P. Bovenkerk, F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf,
    Nature 184, 1094 (1959).
    [2.3] J. Wilks and E. Wilks, Butterworth-Heinemann, Oxford, 1991.
    [2.4] Biwu Sun, Xiaopin Zhang, Qinzhe Zhang, and Zhangda Lin, J. Appl. Phys.
    73(9), 4614 (1993).
    [2.5] F. P. Bundy, H. T. Hall, H. M. Strong, and R. H. Wentorf, Nature 176, 51
    (1955).
    [2.6] W. G. Eversoleu, U. S. Patent office, Nos. 3030187 and 3030188, (1962).
    [2.7] J. C. Angus, H. A. Will, and W. S. Stanko, J. Appl. Phys. 39, 2915 (1968).
    [2.8] B. V. Derjaguin and D. V. Fedoseev, Sci. Am. 233, 102 (1975).
    [2.9] S. Matsumoto, Y. Sato, M. Kamo, and N. Setaka, Jpn. J. Appl. Phys. 21,
    183 (1982).
    [2.10] M. Kamo, Y. Sato, S. Matsumoto, and N. Setaka, J. Cryst. Growth 62, 642
    (1983).
    [2.11] R. A. Rudder, J. B. Posthill, and R. J. Markunas, Electron. Lett. 25, 1220
    (1989).
    [2.12] L. Sekaric, J. M. Parpia, H. G. Craighead, T. Feygelson, B. H. Houston,
    and J. E. Bulter, Appl. Phys. Lett 81, 4455 (2002).
    [2.13] W. Yang, O. Auciello, J. E. Bulter, W. Cai, J. A. Carlisle, J. Gerbi, D. M. Gruen, T. Knickerbocker, T. L. Lasseter, J. N. Russel, L. M. Smith, and R. J. Hamers, Nature Mater. 1, 253 (2002).
    [2.14] X. S. Sun, H. K. Woo, I. Bello, C. S. Lee, and S. T. Lee, Diamond & Relat. Mater. 8, 48 (1999).
    [2.15] R. S. Weis and T. K. Gaylord, Appl. Phys. A 37, 191 (1985).
    [2.16] Huimin Liu and David S. Dandy, Diamond & Relat. Mater. 4, 1173 (1995).
    [2.17] M. Tsuda, M. Nakajima, and S. Oikawa, J. Am. Chem. Soc. 108, 5780
    (1986).
    [2.18] M. Tsuda, M. Nakajima, and S. Oikawa, Jpn. J. Appl. Phys. 26, 527
    (1987).
    [2.19] S.J. Harris, Appl. Phys. Lett. 56, 2298 (1990).
    [2.20] Biwu Sun, Xiaopin Zhang, Qinzhe Zhang, and Zhangda Lin, Appl. Phys.
    Lett. 62(1), 31 (1993).
    [2.21] M. Frenklach, J. Appl. Phys. 65, 5142 (1989).
    [2.22] M. Frenklach and H. Wang, Phys. Rev. B 43, 1520 (1991).
    [2.23] D. Huang and M. Frenklach, J. Phys. Chem. 95, 3692 (1991).
    [2.24] P. K. Bachmann, H. J. Hagemann, H. Lade, D. Leers, D. U. Wiechert, H.
    Wilson, D. Fournier, and K. Plamann, Diamond & Relat. Mater. 4, 820
    (1995).
    [2.25] S. Matsumoto, Y. Sato, M. Tsutsimi, and N. Setaka, J. Mat. Sci. 17, 3106
    (1982).
    [2.26] Biwu Sun, Xiaopin Zhang, and Zhangda Lin, Phys. Rev. B. 47, 9816
    (1993).
    [2.27] B. J. Waclawski, D. T. Pierce, N. Swanson, and R. J. Celotta, J. Vac. Sci.
    Technol. 21, 368 (1982).
    [2.28] T. R. Anthony, Vacuum 41, 1356 (1990).
    [2.29] K. Ishibashi and S. Furukawa, Jpn. J. Appl. Phys. 24, 912 (1985).
    [2.30] X. Jiang, W. J. Zhang, M. Paul, and C. P. Klages, Appl. Phys. Lett. 68,
    1927 (1996).
    [2.31] T. Soga, T. Sharda, and T. Jimbo, Phys. Solid state 46(4), 720 (2004).
    [2.32] Y. Muranaka, H. Yamashita, and H. Miyadera, J. Vac. Sci. Technol. 9, 76
    (1991).
    [2.33] S.J. Harris and A.M. Weiner, Appl. Phys. Lett. 55, 2179 (1989).
    [2.34] Y.Muranaka, H.Y amashita, and H. Miyadera, J.Appl. Phys. 69, 8145
    (1991).
    [2.35] Y.Muranaka, H.Y amashita, and H.Miyadera, Diamond & Relat. Mater. 3, 313(1994).
    [2.36] Y. Liou, A. Inspektor, R. Weimer, D. Knight, and R. Messier, J. Mater.
    Res. 5, 2305 (1990).
    [2.37] Maheshwar Sharon, ENN 1, 517 (2004).
    [2.38] Lord Rayleigh, Proc. London Math. Soc. 17, 4 (1885).
    [2.39] W. S. Mortley, British patent 988, 102 (1963).
    [2.40] R. M. White and F. W. Voltmer, Appl. Phys. Lett. 7, 314 (1965).
    [2.41] R. H. Tancrell, M. B. Schulz, H. H. Barrett, L. Davies, and M.G. Holland,
    Proc. IEEE 57, 1211 (1969).
    [2.42] David P. Morgan, Intl. J. of High Speed Electron. and Sys. 10, 553 .
    (2000).
    [2.43] T. W. Bristol, W. R. Jones, P. B. Snow, and W. R. Smith, IEEE Ultrason.
    Symp., 343 (1972).
    [2.44] E. G. Lean and A. N. Broers, IEEE Intl. Solid State Circuits Conf., 130
    (1970).
    [2.45] I. B. Yakovkin, R. M. Taziev, and A. S. Kozlov, IEEE Ultrason. Symp.
    Proc., 389 (1995).
    [2.46] M. P. da Cunha and S. de A. Fagundes, IEEE Trans. UFFC 46, 1583 (1999)
    [2.47] T.Sato and H. Abe, IEEE Ultrason. Symp. Proc., 287 (1994).
    [2.48] J. Koike, K. Shimoe, and H. Ieki, Jpn. J. Appl. Phys 32, 2337 (1993).
    [2.49] S. Tomabechi, S. Kameda, K. Masu, and K.Tsubouchi, IEEE Ultrason.
    Symp. Proc., 73 (1998).
    [2.50] H. Nakahata, S. Fujii, K. Higaki, A. Hachigo, H. Kitabayashi, S. Shikata, and N. Fujimori, Semicond. Sci. Technol. 18, 96 (2003).
    [2.51] S. Shikata and H. Nakahata, Semicond. and Semimet. 77, 339 (2004).
    [2.52] K. Yamanouchi, N. Sakurai, and T. Satoh, IEEE Ultrason. Symp. Proc.,
    351 (1989).
    [2.53] H. Nakahata, A. Hachigo, S. Shikata, and N. Fujimori, IEEE Ultrason.
    Symp. Proc., 377 (1992).
    [2.54] S. Shikata, H. Nakahata, K. Higaki, A. Hachigo, and N. Fujimori, IEEE
    Ultrason. Symp. Proc., 277 (1993).
    [2.55] H. Nakahata, K. Higaki, S. Fujii, A. Hachigo, H. Kitabayashi, K. Tanabe,
    Y. Seki, and S. Shikata, IEEE Ultrason. Symp. Proc., 361 (1995).
    [2.56] H. Nakahata, H. Kitabayashi, A. Hachigo, K. Higaki, S. Fujii, T. Uemura,
    and S. Shikata, IEEE Ultrason. Symp. Proc., 319 (1998).
    [2.57] T. Uemura, S. Fujii, H. Kitabayashi, K. Itakura, A. Hachigo, H. Nakahata,
    and S. Shikata, Jpn. J. Appl. Phys. 41, 3476 (2002).
    [2.58] M. Ishihara, T. Manabe, T. Kumagai, T. Nakamura, S. Fujiwara, Y. Ebata, S. Shikata, H. Nakahata, A. Hachigo, and Y. Koga., Jpn. J. Appl. Phys. 40, 5065 (2001).
    [2.59] E. Dogheche, V. Sadaune, X. Lansiaux, D. Remiens, and T. Gryba, Appl.
    Phys. Lett. 81, 1329 (2002).
    [2.60] F. Benedic, M. B.Assouar, F. Mohasseb, O. Elmazria, P. Alnot, and
    A. Gicquel, Diamond & Relat. Mater. 13, 347 (2004).
    [2.61] K. Yamanouchi, H. Odagawa, T. Meguro, Y. Wagatsuma, and
    K. Yamamoto, IEEE Ultrason. Symp. Proc., 1263 (1993).
    [2.62] K. Yamanouchi, T. Meguro, Y. Wagatsuma, H. Odagawa, and
    K. Yamamoto, Electron. Lett. 30, 1010 (1994).
    [2.63] K. Yamanouchi, T. Meguro, Y. Wagatsuma, H. Odagawa, and
    K. Yamamoto, Jpn. J. Appl. Phys. 33, 3018 (1994).
    [2.64] K. Yamanouchi, H. Odagawa, T.Meguro, Y. Wagatsuma, and
    K. Yamamoto, IEEE Inter. Freq. Contr. Symp., 251 (1994).
    [2.65] T. Meguro, H. Odagawa, and K. Yamanouchi, IEEE Ultrason. Symp.
    Proc., 99 (1995).
    [2.66] K. Yamanouchi, Y. Wagatsuma, K. Aoki, T. Tsuji, and H. Odagawa,
    IEEE Inter. Freq. Contr. Symp., 387 (1996).
    [2.67] H. Odagawa, T. Tsuji, and K. Yamanouchi, IEEE Ultrason. Symp. Proc.,
    1587 (1996).
    [2.68] G. Harbeke, L. Krausbauer, E. F. Steigmeie, and A. E. Windmer, Appl.
    Phys. Lett. 42, 249 (1983).
    [2.69] S. D. Malhi, H. Shichijo, S. K. Banerjee, R. Sundaresan, M. Elaly, G.
    Pollack, W. Richardson, A. H. Shah, L. R. Hite, R. H. Womack, P. K.
    Chatterjee, and H. W. Lam, IEEE Trans. Electron Devices 32, 258 (1985).
    [2.70] A. Mimura, N. Konishi, K. Ono, J. Ohwada, Y. Hosokawa, Y. A. Ono, T.
    Suzuki, K. Miyata, and H. Kawakami, IEEE Trans. Electron Devices 36,
    351 (1989).
    [2.71] K. Nakazawa and K. Tanaka, J. Appl. Phys. 68, 1029 (1990).
    [2.72] James S. Im, Robert S. Sposili, and M. A. Crowder, Appl. Phys. Lett. 70,
    3434 (1997).
    [2.73] M. A. Crowder, P. G. Carey, P. M. Smith, Robert S. Sposili, Hans S. Cho,
    and James S. Im, IEEE Electron Device Lett. 19, 306 (1998).
    [2.74] Subramanian and K. C. Saraswat, IEEE Trans. Electron Devices 45, 1934
    (1998).
    [2.75] M. K. Hatalis and D. W. Greve, J. Appl. Phys. 63, 2260 (1988).
    [2.76] T. Sameshima, S. Usui, and M. Sekiya, IEEE Electron Device Lett. 7, 276
    (1986).
    [2.75] Y. Morita and T. Noguchi, Jpn. J. Appl. Phys. 28, 309 (1989).
    [2.78] K. Sera, F. Okumura, H. Uchida, S. Itoh, S. Kaneko, and K. Hotta, IEEE
    Trans. Electron Devices 36, 2868 (1989).
    [2.79] R. Kakkad, J. Smith, W. S. Lau, and S. J. Fonash, J. Appl. Phys. 65, 2069
    (1989).
    [2.80] Yunosuke Kawazu, Hiroshi Kudo, Seinosuke Onari, and Toshihiro Arai,
    Jpn. J. Appl. Phys. 29, 2698 (1990).
    [2.81] W. Czubatyj, D. Beglau, G. Wicker, D. Jablonski, and S. Guha, IEEE
    Electron Device Lett. 10, 349 (1989).
    [2.82] I. Mizushima, W. Tabuchi, and H. Kuwano, Jpn. J. Appl. Phys. 27, 2310
    (1988).
    [2.83] M. K. Hatalis and D. W. Greve, J. Appl. Phys. 63, 2260 (1988).
    [2.84] Noma, T. Yonehara and H. Kumomi, Appl. Phys. Lett. 59, 653 (1991).
    [2.85] K. S. Nam, Y. H. Song, J. T. Baek, H. J. Kong, and S. S. Lee, Jpn. J. Appl. Phys. 32, 1908 (1993).
    [2.86] J. Narayan, O. W. Holland, C. W. White, and R. T. Young, J. Appl. Phys.
    55, 1125 (1984).
    [2.87] J. M. Poate and J. W. Mayer, Laser Annealing of Semiconductors, Academic Press, New York, 1982.
    [2.88] Hiroyuki Kuriyama, Tomoyuki Nohda, Satoshi Ishida, Takashi Kuwahara,
    ShigeruNoguchi, Seiichi Kiyama, Shinya Tsuda, and Shoichi Nakano, Jpn.
    J. Appl. Phys. 32, 6190 (1993).

    [2.89] S. D. Brotherton, D. J. McCulloch, J. P. Gowers, J. R. Ayres, and M. J.
    Trainor, J. Appl. Phys. 82, 4086 (1997).
    [2.90] Apostolos T. Voutsas, Aaron M. Marmorstein, and Raj Solanki, J.
    Electrochem. Soc. 146, 3500 (1999).
    [2.91] D. Toet, P. M. Smith, T. W. Sigmon, T. Takehara, C. C. Tsai, W. R.
    Harshbarger, and M. O. Thompson, J. Appl. Phys. 85,7914 (1999).
    [2.92] J. H. Jeon, J. S. Yoo, C. M. Park, H. S. Choi, and M. K. Han, IEEE
    Electron Device Lett. 21, 152 (2000).
    [2.93] Aaron Marmorstein, Apostolos T. Viutsas, and Rai Solanki, J. Appl. Phys.
    82, 4303 (1997).
    [2.94] G. Radnoczi, A. Robertsson, H. T. G. Hentzell, S. F. Gong, and M. A.
    Hasan, J. Appl. Phys. 69, 6394 (1991).
    [2.95] S. W. Russel, J. Li, and J. W. Mayer, J. Appl. Phys. 70, 5153 (1991).
    [2.96] L. Hultman, A. Robertsson, H. T. G. Hentzell, I. Engstrom, and P. A.
    Psaras, J. Appl. Phys. 62, 3647 (1987).
    [2.97] B. Bian, J. Yie, B. Li, and Z. Wu, J. Appl. Phys. 73, 7402 (1993).
    [2.98] R. J. Nemanich, C. C. Tsai, M. J. Thompson, and T. W. Sigmon, J. Vac.
    Sci. Technol. 19, 685 (1981).
    [2.99] Y. Kawazu, H. Kudo, S. Onari, and T. Arai, Jpn. J. Appl. Phys. 29, 2698
    (1990).
    [2.100] S. Y. Yoon, K. H. Kim, C. O. Kim, J. Y. Oh, and J. Jang, J. Appl. Phys.
    82, 5865 (1997).
    [2.101] S. Y. Yoon, S. K. Kim, J. Y. Oh, Y. J. Choi, W. S. Shon, C. O. Kim, and J. Jang, Jpn. J. Appl. Phys. 37, 7193 (1998).
    [2.102] S. Y. Yoon, S. J. Park, K. H. Kim, and J. Jang, J. Appl. Phys. 87, 609 (2000).
    [3.1] S. T. Lee, Zhangda Lin, and Xin Jiang, Mater. Sci. & Eng. 25, 123 (1999).
    [3.2] M. Ohring, Academic Press, San Diego, CA, 1992.
    [3.3] T. S. Wong, C. T. Wang, K. H. Chen, L. C. Chen, and K. J. Ma, Diamond & Relat. Mater. 10, 1810 (2001).
    [3.4] William D. Callister Jr., Materials Science and Engineering-an introduction, John Wiley & Sons, New York, 1996.
    [3.5] Guozhong Cao, Nanostructures & Nanomaterials: Synthesis, Properties & Applications, Imperial College Press, London, 2003.
    [3.6] Charles P. Poole, Jr, Frank J. Owens, Introduction to Nanotechnology, John Wiley & Sons, New Jersey, 2003.
    [3.7] H. Coufal, R. Grygier, P. Hess, and A. Neubrand, J. Acoust. Soc. Am. 92, 2980 (1992).
    [3.8] A. Neubrand and P. Hess, J. Appl. Phys. 71, 277 (1991).
    [5.1] B. D. Cullity and S. R. Stock, Elements of X-Ray Diffraction Third Edition, Prentice Hall, New Jersey, 2001.
    [5.2] J. Wagner, M. Ramsteiner, Ch. Wild, and P. Koidl, Phys. Rev. B. 40, 1817 (1989).
    [5.3] M. Yoshikawa, G. Katagiri, H. Ishida, A. Ishitani, and T. A kamatsu, Appl.
    Phys. Lett. 52, 1639 (1988).
    [5.4] M. Yoshikawa, N. Nagai, M. Matsuki, H. Fukuda, G. Katagiri, H. Ishida,
    and A. Ishitani, Phys. Rev. B 46, 7169 (1992).
    [5.5] V. I. Merkulov, J. S. Lannin, C. H. Munro, S. A. Asher, V. S. Veerasamy,
    and W. I. Milne, Phys. Rev. Lett. 78, 4869 (1997).
    [5.6] R.J. Nemanich, J.T. Glass, G. Lucovsky, and R.E. Shroder, J. Vac. Sci.
    Technol. A 6, 1783 (1988).
    [5.7] S. M. Leeds, T. J. Davis, P. W. May, C. D. O. Pickard, and M. N. R.
    Ashfold, Diamond & Relat. Mater. 7, 233 (1998).
    [5.8] L. C. Nistor, J. Van Landuyt, V. G. Ralchenko, E. D. Obraztsova, and A.
    A. Smolin, Diamond & Relat. Mater. 6, 159 (1997).
    [5.9] K. Okada, H. Kanda, S. Komatsu, and S. Matsumoto, Mater. Res. Soc.
    Symp. Proc. 593, 459 (2000).
    [5.10] Z. Sun, J. R. Shi, B. K. Tay, and S. P. Lau, Diamond & Relat. Mater. 9,
    1979 (2000).
    [5.11] O. Sanchez, C.Gomez-Aleixandre, F. agullo, and J. M. Albella, Diamond & Relat. Mater. 3, 1183 (1994).
    [5.12] Y. Liou, A. Inspektor, and R. Weimer et. al., J. Mater. Res. 5, 2305(1990).
    [5.13] H. Jeon, C. Wang, A. Hatta, and T. Ito, Jpn. J. Appl. Phys. 38, 4500
    (1999).
    [5.14] Y. Muranaka, H. Yamashita, and H. Miyadera, Diamond & Relat. Mater. 3, 313 (1994).
    [5.15] K. Jagannadham, T. R. Watkins, and R. B. Dinwiddie, J. Mater. Sci. 37, 1363 (2002)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE