簡易檢索 / 詳目顯示

研究生: 曾翌進
I-Chin Tseng
論文名稱: 二硫化鉬複合結構之光電特性分析
The studies for the optoelectronic properties of MoS2-based composite structures
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyankay Jou
張立
Li Chang
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 220
中文關鍵詞: 二硫化鉬超奈米鑽石碳化矽光導體
外文關鍵詞: MoS2, Ultra-nanocrystalline diamond, Silicon carbide, Photoconductor
相關次數: 點閱:360下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報

  • 中文摘要 I Abstract II 致謝 III 目錄 IV 圖目錄 VIII 表目錄 XVIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 4 第二章 文獻探討 5 2.1 二維材料合成方法 5 2.1.1 液相剝離法 (Liquid Phase Exfoliation) 6 2.1.2 水熱法 (Hydrothermal) 6 2.1.3 化學氣相成沉積法 (Chemical Vapour Deposition) 7 2.2 二硫化鉬(MoS2)之特性簡介 9 2.2.1 二硫化鉬(MoS2)之晶體相位介紹 10 2.2.2 MoS2能帶結構 11 2.3 碳化矽(Silicon Carbide, SiC)之特性簡介 12 2.3.1 碳化矽(SiC)之物理特性介紹 13 2.3.2 碳化矽晶體相位與能帶結構 13 2.4 鑽石材料之特性簡介 15 2.4.1 碳系材料概述 15 2.4.2 超奈米鑽石成長機制 17 2.5 光偵測器的種類與機制 19 2.5.1光導體(Photoconductors)介紹 19 2.5.2 電性量測之重要參數 22 第三章 實驗方法 25 3.1 實驗設計與流程圖 25 3.2 製備之材料介紹 30 3.3 基板清洗流程 32 3.4 矽基板之氫氟酸處理 33 3.5 雙區化學氣相沉積成長二硫化鉬 34 3.6 微波電漿輔助化學氣相沉積法成長超奈米鑽石 36 3.7 磁控薄膜濺鍍系統濺鍍碳化矽薄膜 38 3.9 儀器設備與材料分析方法 39 3.9.1 場發射掃描式電子顯微鏡 (Scanning Electron Microscope, FE-SEM) 39 3.9.2 拉曼光譜儀 (Micro-Raman Spectrum) 40 3.9.3 X射線繞射儀 (X-ray Diffraction, XRD) 40 3.9.4 紫外光-可見光/進紅外光分析儀(UV-VIS/NIR Spectrophotometer) 41 3.9.5 進階型原子力顯微鏡(Atomic Force Microscope, AFM) 42 3.9.6光感測器(Photodetector, PD) 43 第四章 二硫化鉬 (MoS2) 之合成及光電特性分析 45 4.1 二硫化鉬(MoS2)實驗流程介紹 45 4.2 拉曼光譜分析 46 4.3 X-ray 繞射儀分析 51 4.4 二硫化鉬的合成機制 57 4.5 不同第一加溫區溫度條件成長MoS2之表面形貌分析(OM、SEM、AFM) 61 4.6 紫外光-可見光光譜分析 69 4.7 MoO2的性質與變溫量測分析 70 4.8 二硫化鉬之光電特性分析 74 4.9 總結 84 第五章 二硫化鉬於碳化矽結構上之合成及光電特性分析 86 5.1 二硫化鉬於碳化矽結構上成長之複合結構實驗流程介紹 86 5.2 非晶相碳化矽薄膜SiCα之特性分析 88 5.2.1 大氣退火之非晶相碳化矽薄膜SiCα-Ax 紫外光-可見光光譜分析 88 5.2.2 大氣退火之非晶相碳化矽薄膜SiCα-Ax 拉曼光譜分析 89 5.2.3 氮氣退火之非晶相碳化矽薄膜SiCα-Nx 紫外光-可見光光譜分析 89 5.2.4 氮氣退火之非晶相碳化矽薄膜SiCα-Nx X-ray繞射儀分析 91 5.2.5 氮氣退火之非晶相碳化矽薄膜SiCα-Nx 表面型態分析 92 5.2.6 氮氣退火之非晶相碳化矽薄膜SiCα-Nx 能量色散X射線光譜(EDS) 94 5.2.7 氮氣退火之非晶相碳化矽薄膜SiCα-Nx 拉曼光譜分析 97 5.2.8 氮氣退火之非晶相碳化矽薄膜SiCα-Nx 光電特性分析 100 5.3 MoS2 / SiCα-N9複合結構之特性分析 105 5.3.1 MoS2 / SiCα-N9複合結構之拉曼光譜分析 106 5.3.2 MoS2 / SiCα-N9複合結構之表面形貌分析(SEM、AFM) 108 5.3.3 MoS2 / SiCα-N9複合結構之X-ray繞射儀分析 114 5.3.4 MoS2 / SiCα-N9複合結構之光電特性分析 115 5.4 MoS2 / 4H-SiC 複合結構之特性分析 124 5.4.1 MoS2 / 4H-SiC複合結構之拉曼光譜分析 125 5.4.2 MoS2 / 4H-SiC複合結構之表面形貌分析(SEM、AFM) 128 5.4.3 MoS2 / 4H-SiC複合結構之X-ray繞射儀分析 132 5.4.4 MoS2 / 4H-SiC複合結構之光電特性分析 134 5.5 總結 137 第六章 二硫化鉬於鑽石結構上之合成及光電特性分析 144 6.1 二硫化鉬於鑽石結構上成長之複合結構實驗流程介紹 144 6.2 氮摻雜超奈米鑽石結構(N-UNCD)之特性分析 146 6.2.1 氮摻雜超奈米鑽石結構(N-UNCD)之表面形貌分析(SEM) 146 6.2.2 氮摻雜超奈米鑽石結構(N-UNCD)之拉曼光譜分析 148 6.2.3 氮摻雜超奈米鑽石結構(N-UNCD)之X-ray繞射分析 150 6.2.4 氮摻雜超奈米鑽石結構(N-UNCD)之光電特性分析 151 6.3 氬電漿超奈米鑽石結構(Ar-UNCD)之特性分析 153 6.3.1 氬電漿超奈米鑽石結構(Ar-UNCD)之表面形貌分析(SEM) 153 6.3.2 氬電漿超奈米鑽石結構(Ar-UNCD)之拉曼光譜分析 155 6.3.3 氬電漿超奈米鑽石結構(Ar-UNCD)之X-ray繞射分析 157 6.3.4 氬電漿超奈米鑽石結構(Ar-UNCD)之光電特性分析 158 6.4 MoS2/N-UNCD複合結構之特性分析 160 6.4.1 MoS2/N-UNCD複合結構之拉曼光譜分析 160 6.4.2 MoS2/N-UNCD複合結構之表面形貌分析(SEM) 163 6.4.3 MoS2/N-UNCD複合結構之X-ray繞射儀分析 167 6.4.4 MoS2/N-UNCD複合結構之光電特性分析 169 6.5 MoS2/Ar-UNCD複合結構之特性分析 177 6.5.1 MoS2/Ar-UNCD複合結構之拉曼光譜分析 177 6.5.2 MoS2/Ar-UNCD複合結構之表面形貌分析(SEM) 180 6.5.3 MoS2/Ar-UNCD複合結構之X-ray繞射儀分析 184 6.5.4 MoS2/Ar-UNCD複合結構之光電特性分析 186 6.6 總結 194 第七章 結論與未來展望 198 7.1 結論 198 7.2 未來展望 203 附錄 206 Reference 214

    1. Radisavljevic, B., et al., Single-layer MoS2 transistors. Nature nanotechnology, 2011. 6(3): p. 147-150.
    2. Bernardi, M., M. Palummo, and J.C. Grossman, Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials. Nano letters, 2013. 13(8): p. 3664-3670.
    3. Wadhwa, R., A.V. Agrawal, and M. Kumar, A strategic review of recent progress, prospects and challenges of MoS2 based photodetector. Journal of Physics D: Applied Physics, 2021.
    4. Morkoc, b.H., et al., Large‐band‐gap SiC, III‐V nitride, and II‐VI ZnSe‐based semiconductor device technologies. Journal of Applied physics, 1994. 76(3): p. 1363-1398.
    5. Xu, M., et al., Recent advances and challenges in silicon carbide (SiC) ceramic nanoarchitectures and their applications. Materials Today Communications, 2021. 28: p. 102533.
    6. Krueger, A., The structure and reactivity of nanoscale diamond. Journal of Materials Chemistry, 2008. 18(13): p. 1485-1492.
    7. Lin, Y., et al., Enhancing electron field emission properties of UNCD films through nitrogen incorporation at high substrate temperature. Diamond and related materials, 2011. 20(2): p. 191-195.
    8. Krishnan, U., et al., A synoptic review of MoS2: Synthesis to applications. Superlattices and Microstructures, 2019. 128: p. 274-297.
    9. Xiao, Y., et al., Facile integration of MoS2/SiC photodetector by direct chemical vapor deposition. Nanophotonics, 2020. 9(9): p. 3035-3044.
    10. Wang, F., et al., Dual-wavelength photodetector based on monolayer MoS2/GaN heterostructure. Applied Physics A, 2022. 128(5): p. 1-7.
    11. Samy, O., et al., A Review on MoS2 properties, synthesis, sensing applications and challenges. Crystals, 2021. 11(4): p. 355.
    12. Forsberg, V., et al., Exfoliated MoS2 in water without additives. PloS one, 2016. 11(4): p. e0154522.
    13. Liu, H., et al., Production of mono-to few-layer MoS2 nanosheets in isopropanol by a salt-assisted direct liquid-phase exfoliation method. Journal of colloid and interface science, 2018. 515: p. 27-31.
    14. Miao, H., et al., Hydrothermal synthesis of MoS2 nanosheets films: Microstructure and formation mechanism research. Materials Letters, 2016. 166: p. 121-124.
    15. Liu, H., S.L. Wong, and D. Chi, CVD growth of MoS2‐based two‐dimensional materials. Chemical Vapor Deposition, 2015. 21(10-11-12): p. 241-259.
    16. Wang, Y., et al., Coverage-dependent differential reflectance spectra of MoS2 atomic films synthesized by CVD using a large-diameter quartz tube. Solid State Communications, 2020. 318: p. 113976.
    17. Huo, N. and G. Konstantatos, Recent progress and future prospects of 2D‐based photodetectors. Advanced Materials, 2018. 30(51): p. 1801164.
    18. Toh, R.J., et al., 3R phase of MoS 2 and WS 2 outperforms the corresponding 2H phase for hydrogen evolution. Chemical Communications, 2017. 53(21): p. 3054-3057.
    19. Li, Z., et al., Metallic 1T phase MoS2/MnO composites with improved cyclability for lithium-ion battery anodes. Journal of Alloys and Compounds, 2019. 796: p. 25-32.
    20. Somoano, R. and A. Rembaum, Superconductivity in intercalated molybdenum disulfide. Physical Review Letters, 1971. 27(7): p. 402.
    21. Splendiani, A., et al., Emerging photoluminescence in monolayer MoS2. Nano letters, 2010. 10(4): p. 1271-1275.
    22. Li, X., et al., Graphene and related two-dimensional materials: Structure-property relationships for electronics and optoelectronics. Applied Physics Reviews, 2017. 4(2): p. 021306.
    23. Xiao, D., et al., Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Physical review letters, 2012. 108(19): p. 196802.
    24. Aldalbahi, A., et al., A new approach for fabrications of SiC based photodetectors. Scientific reports, 2016. 6(1): p. 1-10.
    25. Mastro, M.A., et al., Perspective—opportunities and future directions for Ga2O3. ECS Journal of Solid State Science and Technology, 2017. 6(5): p. P356.
    26. Weisman, R.B., New Frontiers in Nanocarbons. The Electrochemical Society Interface, 2013. 22(3): p. 49.
    27. Novoselov, K.S., et al., Two-dimensional gas of massless Dirac fermions in graphene. nature, 2005. 438(7065): p. 197-200.
    28. Yang, N., et al., Conductive diamond: synthesis, properties, and electrochemical applications. Chemical Society Reviews, 2019. 48(1): p. 157-204.
    29. Matsumoto, S., et al., Vapor deposition of diamond particles from methane. Japanese Journal of applied physics, 1982. 21(4A): p. L183.
    30. Hartmann, P., R. Haubner, and B. Lux, Deposition of thick diamond films by pulsed dc glow discharge CVD. Diamond and related materials, 1996. 5(6-8): p. 850-856.
    31. Arora, S. and V. Vankar, Field emission characteristics of microcrystalline diamond films: Effect of surface coverage and thickness. Thin Solid Films, 2006. 515(4): p. 1963-1969.
    32. Lin, C., et al., Development of high-performance UV detector using nanocrystalline diamond thin film. International Journal of Photoenergy, 2014. 2014.
    33. Yang, J. and Y. Zhang, Nanocrystalline diamond films grown by microwave plasma chemical vapor deposition and its biocompatible property. Advances in Materials Physics and Chemistry, 2018. 8(4): p. 157-176.
    34. Rani, R., et al., Superlubrication properties of ultra-nanocrystalline diamond film sliding against a zirconia ball. RSC advances, 2015. 5(122): p. 100663-100673.
    35. Ikeda, T., et al., Effect of the sp 2 carbon phase on n-type conduction in nanodiamond films. Journal of Applied Physics, 2008. 104(7): p. 073720.
    36. Nakotte, T., H. Luo, and J. Pietryga, PbE (E= S, Se) colloidal quantum dot-layered 2D material hybrid photodetectors. Nanomaterials, 2020. 10(1): p. 172.
    37. Munoz, E., et al., Photoconductor gain mechanisms in GaN ultraviolet detectors. Applied physics letters, 1997. 71(7): p. 870-872.
    38. Dennig, P.A. and D.A. Stevenson, Influence of substrate topography on the nucleation of diamond thin films. Applied physics letters, 1991. 59(13): p. 1562-1564.
    39. Özden, A., et al., CVD growth of monolayer MoS2: Role of growth zone configuration and precursors ratio. Japanese Journal of Applied Physics, 2017. 56(6S1): p. 06GG05.
    40. Lu, D., et al., Influence of interlayer interactions on the relaxation dynamics of excitons in ultrathin MoS 2. Nanoscale Advances, 2019. 1(3): p. 1186-1192.
    41. Lee, S.K., et al., Electrical and photovoltaic properties of residue-free MoS2 thin films by liquid exfoliation method. Nanotechnology, 2017. 28(19): p. 195703.
    42. Camacho‐Lopez, S., et al., Laser Fluence Dependence of the Electrical Properties of MoO2 Formed by High Repetition Femtosecond Laser Pulses. physica status solidi (a), 2018. 215(19): p. 1800226.
    43. Arreola, V.M.A., et al., Direct growth of monolayer 1T–2H MoS2 heterostructures using KCl-assisted CVD process. 2D Materials, 2021. 8(2): p. 025033.
    44. Yang, L., et al., Lattice strain effects on the optical properties of MoS2 nanosheets. Scientific reports, 2014. 4(1): p. 1-7.
    45. Nath, M., A. Govindaraj, and C.N.R. Rao, Simple synthesis of MoS2 and WS2 nanotubes. Advanced Materials, 2001. 13(4): p. 283-286.
    46. Hao, Q., et al., Flower-like MoSe2/MoO2 composite with high capacity and long-term stability for lithium-ion battery. Nanomaterials, 2019. 9(9): p. 1256.
    47. Gopika, M. and B. Bindhu, Preparation and characterization of few layered mos2 nano flakes. Int. J. Recent Technol. Eng, 2019. 8: p. 146-148.
    48. Holzwarth, U. and N. Gibson, The Scherrer equation versus the'Debye-Scherrer equation'. Nature nanotechnology, 2011. 6(9): p. 534-534.
    49. Li, Q., et al., A comparison of MoO3 nanorods and C/MoO3 nanocomposites for high-performance supercapacitor electrode. Chalcogenide Letters, 2021. 18(7): p. 413-420.
    50. Chen, X., et al., Selective synthesis of metastable MoO2 nanocrystallites through a solution-phase approach. Chemical Physics Letters, 2006. 418(1-3): p. 105-108.
    51. Hyun, C.-M., et al., Synthesis mechanism of MoS2 layered crystals by chemical vapor deposition using MoO3 and sulfur powders. Journal of Alloys and Compounds, 2018. 765: p. 380-384.
    52. Spevack, P. and N. McIntyre, Thermal reduction of molybdenum trioxide. The Journal of Physical Chemistry, 1992. 96(22): p. 9029-9035.
    53. Xie, Y., et al., Controllable growth of monolayer MoS2 by chemical vapor deposition via close MoO2 precursor for electrical and optical applications. Nanotechnology, 2017. 28(8): p. 084001.
    54. Wang, W., et al. Growth Mechanism of Continuous Monolayer MoS2 Prepared by Chemical Vapor Deposition. in IOP Conference Series: Materials Science and Engineering. 2019. IOP Publishing.
    55. Luo, J., et al., Direct growth of 2D MoO2 single crystal on SiO2/Si substrate by atmospheric pressure chemical vapor deposition. Materials Chemistry and Physics, 2020. 251: p. 123166.
    56. Guo, Y., et al., Experimental study on an evaporation process to deposit MoO2 microflakes. Chemical Physics Letters, 2017. 687: p. 14-18.
    57. Feng, L., et al., Growth of S-doped MoO2 nanosheets with a controlled bandgap by chemical vapor deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018. 36(5): p. 05G507.
    58. DeGregorio, Z.P., Y. Yoo, and J.E. Johns, Aligned MoO2/MoS2 and MoO2/MoTe2 freestanding core/shell nanoplates driven by surface interactions. The Journal of Physical Chemistry Letters, 2017. 8(7): p. 1631-1636.
    59. Dong, J., et al., The epitaxy of 2D materials growth. Nature communications, 2020. 11(1): p. 1-8.
    60. Wang, S., et al., Shape evolution of monolayer MoS2 crystals grown by chemical vapor deposition. Chemistry of Materials, 2014. 26(22): p. 6371-6379.
    61. Lee, C., et al., Anomalous lattice vibrations of single-and few-layer MoS2. ACS nano, 2010. 4(5): p. 2695-2700.
    62. Lee, Y.H., et al., Synthesis of large‐area MoS2 atomic layers with chemical vapor deposition. Advanced materials, 2012. 24(17): p. 2320-2325.
    63. Amani, M., et al., Electrical performance of monolayer MoS2 field-effect transistors prepared by chemical vapor deposition. Applied Physics Letters, 2013. 102(19): p. 193107.
    64. Ahmad, R., et al., Functionalized molybdenum disulfide nanosheets for 0D–2D hybrid nanostructures: photoinduced charge transfer and enhanced photoresponse. The journal of physical chemistry letters, 2017. 8(8): p. 1729-1738.
    65. Kopaczek, J., et al., Direct optical transitions at K-and H-point of Brillouin zone in bulk MoS2, MoSe2, WS2, and WSe2. Journal of Applied Physics, 2016. 119(23): p. 235705.
    66. Wazir, N., et al., Vertically Stacked MoSe2/MoO2 Nanolayered Photodetectors with Tunable Photoresponses. ACS Applied Nano Materials, 2020. 3(8): p. 7543-7553.
    67. Lin, X., et al., Solid-phase synthesis of atomically thin two-dimensional non-layered MoO 2 nanosheets for surface enhanced Raman spectroscopy. Journal of Materials Chemistry C, 2019. 7(24): p. 7196-7200.
    68. Wu, H., et al., Ultrathin molybdenum dioxide nanosheets as uniform and reusable surface‐enhanced Raman spectroscopy substrates with high sensitivity. Small, 2018. 14(37): p. 1802276.
    69. Pu, E., et al., Ultrathin MoO2 nanosheets with good thermal stability and high conductivity. AIP Advances, 2017. 7(2): p. 025015.
    70. Sze, S.M., Semiconductor devices: physics and technology. 2008: John wiley & sons.
    71. Young, R., A. Broadbridge, and C. So, Analysis of SiC fibres and composites using Raman microscopy. Journal of microscopy, 1999. 196(Pt 2)): p. 257-265.
    72. Todi, R., et al., Investigation of oxygen annealing effects on RF sputter deposited SiC thin films. Solid-state electronics, 2006. 50(7-8): p. 1189-1193.
    73. Makuła, P., M. Pacia, and W. Macyk, How to correctly determine the band gap energy of modified semiconductor photocatalysts based on UV–Vis spectra. 2018, ACS Publications. p. 6814-6817.
    74. Akshara, P.C., G. Rajaram, and M.G. Krishna, Single composite target magnetron sputter deposition of crystalline and amorphous SiC thin films. Materials Research Express, 2018. 5(3): p. 036410.
    75. Singh, A.V., et al., Mechanical and structural properties of RF magnetron sputter-deposited silicon carbide films for MEMS applications. Journal of Micromechanics and Microengineering, 2012. 22(2): p. 025010.
    76. Yu, X., et al., Synthesis of transfer-free graphene on cemented carbide surface. Scientific reports, 2018. 8(1): p. 1-10.
    77. Lafon-Placette, S., et al., Tribological characterization of silicon carbide and carbon materials. Journal of the European Ceramic Society, 2015. 35(4): p. 1147-1159.
    78. Ferrari, A.C. and J. Robertson, Interpretation of Raman spectra of disordered and amorphous carbon. Physical review B, 2000. 61(20): p. 14095.
    79. Jin, C., X. Wu, and L. Zhuge, Room-temperature growth of SiC thin films by dual-ion-beam sputtering deposition. Research Letters in Physical Chemistry, 2008. 2008.
    80. Gołasa, K., et al., Multiphonon resonant Raman scattering in MoS2. Applied Physics Letters, 2014. 104(9): p. 092106.
    81. Guo, Z., et al., Controlling the morphology of ultrathin MoS2/MoO2 nanosheets grown by chemical vapor deposition. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2018. 36(5): p. 05G509.
    82. Wan, L., et al., Quality evaluation of homopetaxial 4H-SiC thin films by a Raman scattering study of forbidden modes. Optical Materials Express, 2018. 8(1): p. 119-127.
    83. Asghar, M., et al., Simple method for the growth of 4H silicon carbide on silicon substrate. AIP Advances, 2016. 6(3): p. 035201.
    84. Ghaleghafi, E., M.B. Rahmani, and Z.-H. Wei, Photoluminescence and UV photosensitivity of few-layered MoS2 nanosheets synthesized under different hydrothermal growth times. Journal of Materials Science, 2021. 56(20): p. 11749-11768.
    85. Yang, C., et al., Deriving MoS2 nanoribbons from their flakes by chemical vapor deposition. Nanotechnology, 2019. 30(25): p. 255602.
    86. Li, Q., et al., SiC/MoS2 layered heterostructures: Promising photocatalysts revealed by a first-principles study. Materials Chemistry and Physics, 2018. 216: p. 64-71.
    87. Ling, Z., et al., Large-scale two-dimensional MoS 2 photodetectors by magnetron sputtering. Optics express, 2015. 23(10): p. 13580-13586.
    88. Cho, B., et al., Bifunctional sensing characteristics of chemical vapor deposition synthesized atomic-layered MoS2. ACS applied materials & interfaces, 2015. 7(4): p. 2952-2959.
    89. Liu, X., et al., Self-powered, high response and fast response speed metal–insulator–semiconductor structured photodetector based on 2D MoS 2. RSC advances, 2018. 8(49): p. 28041-28047.
    90. Gomathi, P.T., P. Sahatiya, and S. Badhulika, Large‐area, flexible broadband photodetector based on ZnS–MoS2 hybrid on paper substrate. Advanced Functional Materials, 2017. 27(31): p. 1701611.
    91. Sun, B., et al., Sensitive, fast, and stable photodetector based on perovskite/MoS2 hybrid film. Applied Surface Science, 2019. 493: p. 389-395.
    92. Yin, Z., et al., Single-layer MoS2 phototransistors. ACS nano, 2012. 6(1): p. 74-80.
    93. Shen, W.-C., R.-S. Chen, and Y.-S. Huang, Photoconductivities in MoS2 nanoflake photoconductors. Nanoscale Research Letters, 2016. 11(1): p. 1-7.
    94. Shin, J.-H., Y.-S. Choi, and H.-J. Park, Remote Plasma-Induced Synthesis of Self-Assembled MoS2/Carbon Nanowall Nanocomposites and Their Application as High-Performance Active Materials for Supercapacitors. Nanomaterials, 2022. 12(8): p. 1338.
    95. Park, J., et al., Highly sensitive two-dimensional MoS2 gas sensor decorated with Pt nanoparticles. Royal Society Open Science, 2018. 5(12): p. 181462.

    無法下載圖示 全文公開日期 2024/09/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE