簡易檢索 / 詳目顯示

研究生: 王驊民
Hua-Min Wang
論文名稱: 二硫化鉬層狀半導體歐姆接觸探討
Investigation of Ohmic Contacts on MoS2 Layered Semiconductors
指導教授: 趙良君
Liang-Chiun Chao
陳瑞山
Ruei-San Chen
口試委員: 李奎毅
Kuei-Yi Lee
何清華
Ching-Hwa Ho
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 81
中文關鍵詞: 二硫化鉬歐姆接觸層狀半導體
外文關鍵詞: Ohmic Contacts, MoS2, Layered Semiconductors
相關次數: 點閱:219下載:11
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討以化學氣相傳導法所成長的六方晶系二硫化鉬層狀半導體與不同功函數金屬之歐姆接觸。我們利用機械剝離法移除暴露在大氣中之層狀晶體表面的電子聚集層,使我們可以探討具有新鮮表面的二硫化鉬(fresh MoS2)電性。研究發現在鉻、鎳、白金三種電極中,白金最為適合做為歐姆電極的材料,不論是在具有新鮮或是舊有表面的二硫化鉬(non-fresh MoS2)都能展現良好的歐姆接觸,其最佳的電導率大約為0.05~0.25 Ω-1cm-1。另外在本文中發現沉積薄膜前使用反向式濺鍍蝕刻(inverse sputter etching)做表面的處理,藉由降低接觸電阻,能有效的提升半導體的電導率,因此能將歐姆接觸較差的鉻電極之二硫化鉬電導率從0.002~0.004 Ω-1cm-1提高到0.061~0.131 Ω-1cm-1。


    The quality of ohmic contacts on molybdenum disulfide (MoS2) layered semiconductors grown by chemical vapor transport using the metals with different work functions have been investigated. We studied the electrical properties in the MoS2 without surface electron accumulation fabricated by mechanical exfoliation. Among Cr (chromium), Ni (nickel) and Pt (platinum) metals, it is found that Pt is the optimal ohmic metal for the MoS2 single crystals with the fresh and non-fresh surface. The optimized conductivity of MoS2 using Pt electrodes is 0.25 Ω-1cm-1. In addition, the conductivity values of MoS2 using Cr electrodes have been improved from 0.002~0.004 Ω-1cm-1 to 0.061~0.131 Ω-1cm-1 by the pretreatment of inverse sputter etching technique.

    中文摘要 Abstract 致謝 目錄 圖目錄 表目錄 第一章 緒論 1.1 過渡性金屬硫屬化合物(transition metal dichalcogenide, TMD) 1.2 費米能階釘扎效應 (Fermi Level Pinning Effect) 1.3表面電子聚集效應(Surface Electron Accumulation, SEA) 第二章 實驗方法 2.1 二硫化鉬(MoS2)製備方法 2.2 二硫化鉬層狀半導體結構特性檢測 2.2.1 X光繞射儀 (X-ray Diffractometer, XRD) 2.2.2 拉曼散射光譜儀 (Raman scattering spectroscopy) 2.2.3 X射線光電子能譜儀 (X-Ray Photoelectron Spectroscopy, XPS) 2.2.4 原子力顯微鏡 (atomic force microscopy, AFM) 2.3 二硫化鉬塊材元件製作 2.3.1 機械式剝離法 (Mechanical Exfoliation) 2.3.2 磁控濺鍍法 (Magnetron Sputter) 2.3.3 反向式濺鍍蝕刻法 (Inverse Sputter Etching) 2.3.4 漆包線接合 2.4 二硫化鉬元件電性量測 2.4.1 電流對電壓曲線量測(current-voltage measurement) 第三章 結果與討論 3.1 二硫化鉬單晶結構分析 3.2 二硫化鉬元件製作 3.3 原子力顯微鏡定義濺鍍薄膜厚度 3.3.1 鉻(Cr)薄膜 3.3.2 鎳(Ni)薄膜 3.3.3 金(Au)薄膜 3.3.4 白金(Pt)薄膜 3.4 鉻金屬與二硫化鉬接面之歐姆接觸電性分析 3.4.1 鉻電極與反向式濺鍍蝕刻non-fresh MoS2電性分析 3.5 鎳電極與二硫化鉬接面電性分析 3.6 白金電極與二硫化鉬接面電性分析 3.6.1 白金電極與反向式濺鍍蝕刻二硫化鉬電性分析 3.6.2 二硫化鉬X射線光電子能譜儀分析 第四章 結論 參考文獻

    [1] Q. H. Wang et al. “Electronics and optoelectronics of two-dimensional transition metal dichalcogenides”, Nat. Nanotechnol. 7, 699 (2012).
    [2] M. Chhowalla et al. “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets”, Nat. Chem. 5, 263 (2013).
    [3] S. Z. Butler et al. “Challenges, and opportunities in two-dimensional materials beyond graphene”, ACS Nano 7, 2898 (2013).
    [4] O. V. Yazyev et al. “MoS2 and semiconductors in the flatland”, Mater. Today 18, 20 (2015).
    [5] S. Min et al. “Sites for High Efficient Photocatalytic Hydrogen Evolution on a Limited-Layered MoS2 Co-catalyst Confined on Graphene Sheets―The Role of Graphene”, J. Phys. Chem. C. 22, 21057 (2012).
    [6] Q. Xiang et al. “Effect of MoS2 and graphene as cocatalysts for enhanced photocatalytic H2 production activity of TiO2 nanoparticles”, J. Am. Chem. Soc. 134, 6575 (2012).
    [7] K. Roy et al. “Graphene–MoS2 hybrid structures for multifunctional photoresponsive memory devices”, Nature Nanotech. 8, 826 (2013).
    [8] W. Zhang et al. “Ultrahigh-Gain Photodetectors Based on Atomically Thin Graphene-MoS2 Heterostructures”, Sci Rep. 4, 3826 (2014).
    [9] C. J. Liu et al. “Facile synthesis of MoS2/graphene nanocomposite with high catalytic activity toward triiodide reduction in dye-sensitized solar cells”, J. Mater. Chem. 22, 21057 (2012).

    [10] B. Radisavljevic et al. “Single-layer MoS2 transistors”, Nature Nanotech. 6, 147 (2011).
    [11] B. Radisavljevic et al. “Mobility engineering and a metal-insulator transition in monolayer MoS2”, Nature Mater. 12, 815 (2013).
    [12] H. Liu, et al. “Channel length scaling of MoS2 MOSFETs”, ACS Nano 6, 8563 (2012).
    [13] W Wu. et al. “High mobility and high on/off ratio field-effect transistors based on chemical vapor deposited single-crystal MoS2 grains”, Appl. Phys. Lett. 102, 142106 (2013).
    [14] M. D. Xiao et al. “Two-dimensional electronic transport and surface electron accumulation in MoS2”, Nat. Commun. 9, 1442 (2018).
    [15] P. D. C. King et al. “Surface band-gap narrowing in quantized electron
    accumulation layers”, Phys. Rev. Lett. 104, 256803 (2010).
    [16] G. R. Bell et al. “Plasmon excitations and accumulation layers in heavily doped InAs (001)”, Phys. Rev. B 54, 2654 (1996).
    [17] M. Noguchi et al. “Intrinsic electron accumulation layers on reconstructed clean InAs (100) surfaces”, Phys. Rev. Lett. 66, 2243 (1991).
    [18] M. G. Betti et al. “Density of states of a two-dimensional electron gas at semiconductor surfaces”, Phys. Rev. B 63, 155315 (2001).
    [19] I. Mahboob et al. “Intrinsic electron accumulation at clean InN surfaces”, Phys. Rev. Lett. 92, 036804 (2004).
    [20] L. Colakerol et al. “Quantized electron accumulation states in indium nitride studied by angle-resolved photoemission spectroscopy”, Phys. Rev. Lett. 97, 237601 (2006).
    [21] L. F. J. Piper et al. “Observation of quantized subband states and evidence for surface electron accumulation in CdO from angle-resolved photoemission spectroscopy”, Phys. Rev. B 78, 165127 (2008).
    [22] P. D. C. King et al. “Unification of the electrical behavior of defects, impurities, and surface states in semiconductors: virtual gap states in CdO”, Phys. Rev. B 79, 035203 (2009).
    [23] C. Kim et al. “Fermi Level Pinning at Electrical Metal Contacts of Monolayer Molybdenum Dichalcogenides”, ACS Nano 11, 1588 (2017)
    [24] B. Radisavljevic et al. “Single layer MoS2 transistors”, Nat. Nanotechnol. 6, 147 (2011).
    [25] H. Liu et al. “Channel length scaling of MoS2 MOSFETs”, ACS Nano 6, 8563 (2012).
    [26] S. Das et al. “High performance multi-layer MoS2 transistors with scandium contacts”, Nano Lett. 13, 100 (2013).
    [27] A. T. Neal et al. “Metal contacts to MoS2: a two dimensional semiconductor”, In 70th Annual Device Research Conference (DRC) 65 (University Park, TX, 2012).
    [28] H. Qiu et al. “Electrical characterization of back-gated bi-layer MoS2 field effect transistors and the effect of ambient on their performances”, Appl. Phys. Lett. 100, 123104 (2012).
    [29] B. W. H. Baugher et al. “Intrinsic electronic transport properties of high quality monolayer and bilayer MoS2”, Nano Lett. 13, 4212 (2013).

    [30] H. Liu et al. “Statistical study of deep submicron dual-gated field-effect transistors on monolayer chemical vapor deposition molybdenum disulfide films”, Nano Lett. 13, 2640 (2013).
    [31] E. Gourmelon et al. “Textured MoS2 thin films obtained on tungsten: electrical properties of the W/MoS2 contact”, J. Appl. Phys. 87, 1182 (2000).
    [32] S. McDonnell et al. “Defect dominated doping and contact resistance in MoS2”, ACS Nano 8, 2880 (2014).
    [33] Q. H. Wang et al. “Electronics and Optoelectronics of Two- Dimensional Transition Metal Dichalcogenides”, Nature Nanotech. 7, 699 (2012).
    [34] B. D. Cullity et al. “Elements of X-ray diffraction. Prentice Hall”, New Jersey (2001).
    [35] https://zh.wikipedia.org/wiki/拉曼光譜學.
    [36] F. Braet et al. “Drying cells for SEM, AFM and TEM by hexamethyldisilazane: a study on hepatic endothelial cells”, Journal of Microscopy. 186, 84 (1997).
    [37] 黃世傑, “二硒化鎢p型層狀半導體之電傳輸特性” 2017, 國立台灣科技大學光電所碩士學位論文.
    [38] Y. M. Chang et al. “Multilayered graphene efficiently formed by mechanical exfoliation for nonlinear saturable absorbers in fiber mode-locked lasers”, Appl. Phys. Lett. 97, 211102 (2010).

    [39] H. Li et al. “From bulk to monolayer MoS2: Evolution of Raman scattering”, Adv. Funct. Mater. 22, 1385 (2012).
    [40] K. Dolui et al. “Origin of the n-type and p-type conductivity of MoS2 monolayers on a SiO2 substrate”, Phys. Rev. B. 87, 7 (2013)

    QR CODE