簡易檢索 / 詳目顯示

研究生: 彭鈺婷
Yu-Ting Peng
論文名稱: 利用石墨烯轉移層直接成長二硫化鉬異質結構應用於光催化二氧化碳還原
Direct Growth of MoS2 on Graphene via Transfer Supporting Layer for Photocatalytic CO2 Reduction
指導教授: 王丞浩
Chen-Hao Wang
林麗瓊
Li-Chyong Chen
陳貴賢
Kuei-Hsien Chen
口試委員: 王丞浩
林麗瓊
陳貴賢
黃炳照
林昇佃
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 中文
論文頁數: 83
中文關鍵詞: 化學氣相沉積法石墨烯二硫化鉬異質結構光催化二氧化碳還原
外文關鍵詞: CVD, graphene, MoS2, heterostructure, photocatalytic CO2RR
相關次數: 點閱:281下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究以化學氣相沉積法,合成高品質石墨烯薄膜,並成功藉由石墨烯轉移支撐層作為鉬前驅物,直接成長二硫化鉬於石墨烯上,形成異質結構,應用於光催化二氧化碳還原。此成長方式和粉末作為前驅物的方法相比,因為不需要去除支撐層,除了能減少製程的步驟與時間,更可有效地避免粉末前驅物不易成核於石墨烯上的問題。經由拉曼光譜儀鑑定,光譜顯示出石墨烯及二硫化鉬之特徵峰,證實二硫化鉬/石墨烯異質結構成功被合成。
    本研究分別以1 mM、2.5 mM以及5 mM三種不同濃度的前驅物,合成二硫化鉬/石墨烯異質結構。透過原子力顯微鏡檢測異質結構之厚度,觀測到二硫化鉬厚度約為一至三層。藉由X射線光電子能譜分析,比較鉬原子峰值位置,顯示異質結構往低束縛能位移,表示有電子轉移至鉬原子端,證實有電子轉移之機制。
    此外,本研究亦探討異質結構對於光催化二氧化碳效率的提升。三種濃度所合成之異質結構,在產物的選擇性發生改變,其原因可能來自於二硫化鉬層數之改變。量子轉換效率於濃度2.5 mM與5 mM分別提高二倍及四倍,其效率提升之原因可能來自於石墨烯/二硫化鉬異質結構,降低二硫化鉬載子複合率,幫助電子電洞分離,達到提高催化活性之目的。


    In this research, we achieved direct growth of MoS2/graphene heterostructure via chemical vapor deposition (CVD) method as photocatalyst for photocatalytic carbon dioxide reduction (CO2RR) by utilizing graphene transfer supporting layer as molybdenum precursor. Compared to conventional powder-based CVD growth method, this method could simplify manufacturing steps and effectively solve the difficulties of powder precursor nucleating on graphene. Raman spectra of synthesized thin film clearly show the characteristic peaks of graphene and MoS2, indicating the successful synthesis of MoS2/graphene heterostructure.
    In this study, 1 mM, 2.5 mM and 5 mM precursors concentration are used to synthesize MoS2/graphene heterostructure, respectively. By AFM analysis, we could observe that the thickness of MoS2 vary from monolayer to tri-layer. In XPS spectra, we noticed that the MoS2/graphene heterostructure Mo peaks shifted to lower binding energy compared with pure MoS2. The shift could assign to charge transfer to molybdenum atom. Moreover, We found that the CO2RR selectivity of products changed when precursor of different concentration was utilized. This result might result from the changes of number of layers of MoS2. Quantum efficiency of CO2RR doubled and quadrupled while using 2.5 mM and 5 mM precursor, respectively. The improvement of efficiency might be attributed to the heterostructure could facilitate the separation of excited electron-hole pair, which could reduce the possibility of carrier recombination and enhance photocatalytic activity.

    致謝 I 中文摘要 II Abstract III 目錄 IV 圖目錄 VII 表目錄 X 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧與實驗原理 3 2.1 光催化二氧化碳還原原理 3 2.2 異質結構光觸媒系統 9 2.3 二維光觸媒材料 11 2.4 二維材料異質結構常見的合成方式 15 2.5 石墨烯的材料性質 16 2.6 二硫化鉬的材料性質 18 第三章 實驗儀器與方法 21 3.1 實驗藥品 21 3.2 實驗步驟 22 3.2.1 材料成長-化學氣相沉積(Chemical Vapor Deposition, CVD) 22 3.2.2 基板清洗 25 3.2.3 銅箔拋光 25 3.2.4 石墨烯合成 26 3.2.5 石墨烯轉移 27 3.2.6 二硫化鉬合成 28 3.3 材料鑑定與分析儀器 29 3.3.1 場發射掃描式電子顯微鏡(Field-Emission Scanning Microscope, FESEM) 29 3.3.2 紫外-可見光光譜儀(UV-visible Spectrum) 30 3.3.3 X射線光電子能譜儀(X-ray Photoelectron Spectroscopy, XPS) 31 3.3.4 拉曼光譜儀(Raman Spectrum) 33 3.3.5 光致激發光譜儀(Photoluminescence spectrum) 35 3.3.6 原子力顯微鏡(Atomic Force Microscopy, AFM) 36 3.3.7 氣相層析儀(Gas chromatography) 38 第四章 實驗結果與討論 40 4.1 石墨烯鑑定與分析 40 4.1.1 石墨烯光學顯微影像 40 4.1.2 石墨烯光學性質分析–拉曼光譜 41 4.1.3 不同成分的轉移支撐層對石墨烯的影響 43 4.2 純相二硫化鉬的鑑定與分析 45 4.2.1 純相二硫化鉬光學影像分析 45 4.2.2 純相二硫化鉬光學性質分析-拉曼光譜 46 4.2.3 純相二硫化鉬原子力顯微鏡分析 47 4.2.4 純相二硫化鉬光致激發光譜分析 48 4.2.5 純相二硫化鉬之紫外–可見光譜儀分析 49 4.2.6 純相二硫化鉬X射線光電子能譜分析 50 4.3 二硫化鉬/石墨烯異質結構的鑑定與分析 51 4.3.1 二硫化鉬/石墨烯異質結構影像分析 51 4.3.2 異質結構光學性質分析–拉曼光譜 52 4.3.3 異質結構光致激發光譜分析 54 4.3.4 異質結構原子力顯微鏡分析 56 4.3.5 異質結構紫外–可見光譜儀分析 57 4.3.6 異質結構X射線光電子能譜儀 59 4.4 光催化二氧化碳還原效率分析 61 4.4.1 效率量測方法 61 4.4.2 空白測試 61 4.4.3 光催化二氧化碳還原產物及產量效率分析 63 4.4.4 量子轉換效率比較 64 第五章 結論 66 第六章 參考資料 67

    1. Shen, H., et al., Photocatalytic Reduction of CO2 by Metal‐Free‐Based Materials: Recent Advances and Future Perspective. Solar RRL, 2020. 4(8).
    2. Shehzad, N., et al., A critical review on TiO2 based photocatalytic CO2 reduction system: Strategies to improve efficiency. Journal of CO2 Utilization, 2018. 26: p. 98-122.
    3. Bushuyev, O.S., et al., What should we make with CO2 and how can we make it? Joule, 2018. 2(5): p. 825-832.
    4. Shit, S.C., et al., Integrated nano-architectured photocatalysts for photochemical CO 2 reduction. Nanoscale, 2020. 12(46): p. 23301-23332.
    5. Ola, O. and M.M. Maroto-Valer, Review of material design and reactor engineering on TiO2 photocatalysis for CO2 reduction. Journal of Photochemistry and Photobiology C: Photochemistry Reviews, 2015. 24: p. 16-42.
    6. Huang, Y.-F., et al., Thickness-Dependent Photocatalysis of Ultra-Thin MoS2 Film for Visible-Light-Driven CO2 Reduction. Catalysts, 2021. 11(11): p. 1295.
    7. Swain, G., S. Sultana, and K. Parida, A review on vertical and lateral heterostructures of semiconducting 2D-MoS2 with other 2D materials: a feasible perspective for energy conversion. Nanoscale, 2021. 13(22): p. 9908-9944.
    8. Yang, M.-Q. and Y.-J. Xu, Photocatalytic conversion of CO 2 over graphene-based composites: current status and future perspective. Nanoscale Horizons, 2016. 1(3): p. 185-200.
    9. Xiang, Q., B. Cheng, and J. Yu, Graphene‐based photocatalysts for solar‐fuel generation. Angewandte Chemie International Edition, 2015. 54(39): p. 11350-11366.
    10. Fujishima, A. and K. Honda, Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature, 1972. 238(5358): p. 37-38.
    11. Halmann, M., Photoelectrochemical reduction of aqueous carbon dioxide on p-type gallium phosphide in liquid junction solar cells. Nature, 1978. 275(5676): p. 115-116.
    12. Sun, Z., et al., g-C3N4 based composite photocatalysts for photocatalytic CO2 reduction. Catalysis Today, 2018. 300: p. 160-172.
    13. Xie, S., et al., Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun (Camb), 2016. 52(1): p. 35-59.
    14. Liu, L., et al., Surface sites engineering on semiconductors to boost photocatalytic CO2 reduction. Nano Energy, 2020. 75.
    15. Curtiss, L.A., et al., Assessment of Gaussian-2 and density functional theories for the computation of enthalpies of formation. The Journal of Chemical Physics, 1997. 106(3): p. 1063-1079.
    16. Alvarez, A., et al., CO2 Activation over Catalytic Surfaces. Chemphyschem, 2017. 18(22): p. 3135-3141.
    17. Fu, J., et al., Product selectivity of photocatalytic CO2 reduction reactions. Materials Today, 2020. 32: p. 222-243.
    18. Dou, W., et al., Time-Domain Ab Initio Insights into the Reduced Nonradiative Electron–Hole Recombination in ReSe2/MoS2 van der Waals Heterostructure. The Journal of Physical Chemistry Letters, 2021. 12(10): p. 2682-2690.
    19. Su, Q., et al., Heterojunction Photocatalysts Based on 2D Materials: The Role of Configuration. Advanced Sustainable Systems, 2020. 4(9).
    20. Novoselov, K.S. and A. Geim, The rise of graphene. Nat. Mater, 2007. 6(3): p. 183-191.
    21. Zhou, Y., et al., Engineering 2D Photocatalysts toward Carbon Dioxide Reduction. Advanced Energy Materials, 2021. 11(8).
    22. Ong, W.J., L.K. Putri, and A.R. Mohamed, Rational Design of Carbon-Based 2D Nanostructures for Enhanced Photocatalytic CO2 Reduction: A Dimensionality Perspective. Chemistry, 2020. 26(44): p. 9710-9748.
    23. Ganji, P., et al., Toward Commercial Carbon Dioxide Electrolysis. Advanced Sustainable Systems, 2020. 4(8).
    24. Dean, C.R., et al., Boron nitride substrates for high-quality graphene electronics. Nature nanotechnology, 2010. 5(10): p. 722-726.
    25. McManus, D., et al., Water-based and biocompatible 2D crystal inks for all-inkjet-printed heterostructures. Nature nanotechnology, 2017. 12(4): p. 343-350.
    26. Fu, D., et al., Molecular beam epitaxy of highly crystalline monolayer molybdenum disulfide on hexagonal boron nitride. Journal of the American Chemical Society, 2017. 139(27): p. 9392-9400.
    27. Jie, W., et al., Observation of room-temperature magnetoresistance in monolayer MoS2 by ferromagnetic gating. ACS nano, 2017. 11(7): p. 6950-6958.
    28. Li, M.-Y., et al., Epitaxial growth of a monolayer WSe2-MoS2 lateral pn junction with an atomically sharp interface. Science, 2015. 349(6247): p. 524-528.
    29. Zhang, Z., et al., Robust epitaxial growth of two-dimensional heterostructures, multiheterostructures, and superlattices. Science, 2017. 357(6353): p. 788-792.
    30. Zhang, T. and L. Fu, Controllable Chemical Vapor Deposition Growth of Two-Dimensional Heterostructures. Chem, 2018. 4(4): p. 671-689.
    31. Yoon, D., Y.-W. Son, and H. Cheong, Negative Thermal Expansion Coefficient of Graphene Measured by Raman Spectroscopy. Nano Letters, 2011. 11(8): p. 3227-3231.
    32. Low, J., J. Yu, and W. Ho, Graphene-based photocatalysts for CO2 reduction to solar fuel. The journal of physical chemistry letters, 2015. 6(21): p. 4244-4251.
    33. Li, X. and H. Zhu, Two-dimensional MoS2: Properties, preparation, and applications. Journal of Materiomics, 2015. 1(1): p. 33-44.
    34. Toh, R.J., et al., 3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution. Chem Commun (Camb), 2017. 53(21): p. 3054-3057.
    35. Yazyev, O.V. and A. Kis, MoS 2 and semiconductors in the flatland. Materials Today, 2015. 18(1): p. 20-30.
    36. Jaramillo, T.F., et al., Identification of active edge sites for electrochemical H2 evolution from MoS2 nanocatalysts. science, 2007. 317(5834): p. 100-102.
    37. Wang, H., et al., Structural and electronic optimization of MoS2 edges for hydrogen evolution. Journal of the American Chemical Society, 2019. 141(46): p. 18578-18584.
    38. Dong, N., et al., Optical limiting and theoretical modelling of layered transition metal dichalcogenide nanosheets. Scientific reports, 2015. 5(1): p. 1-10.
    39. Sun, L., et al., Chemical vapour deposition. Nature Reviews Methods Primers, 2021. 1(1): p. 1-20.
    40. Siegbahn, K., Electron spectroscopy for atoms, molecules, and condensed matter. Reviews of Modern Physics, 1982. 54(3): p. 709.
    41. Cho, Y.C. and S.I. Ahn, Fabricating a Raman spectrometer using an optical pickup unit and pulsed power. Scientific reports, 2020. 10(1): p. 1-8.
    42. Binnig, G. and H. Rohrer, In touch with atoms, in More Things in Heaven and Earth. 1999, Springer. p. 543-554.
    43. Maver, U., et al., Polymer characterization with the atomic force microscope. Polym. Sci, 2013. 4: p. 113-131.
    44. Malard, L., et al., Raman spectroscopy in graphene. Physics reports, 2009. 473(5-6): p. 51-87.
    45. Zhang, Z., et al., Rosin-enabled ultraclean and damage-free transfer of graphene for large-area flexible organic light-emitting diodes. Nat Commun, 2017. 8: p. 14560.
    46. Hao, Q., et al., Boosting the Photoluminescence of Monolayer MoS2
    on High-Density Nanodimer Arrays with Sub-10 nm Gap. Advanced Optical Materials, 2018. 6(2).
    47. Goswami, T., et al., Ultrafast Carrier Dynamics of the Exciton and Trion in MoS2 Monolayers Followed by Dissociation Dynamics in Au@MoS2 2D Heterointerfaces. J Phys Chem Lett, 2019. 10(11): p. 3057-3063.
    48. Kumar Singh Patel, S., et al., Synthesis of α-MoO3 nanofibers for enhanced field-emission properties. Advanced Materials Letters, 2018. 9(8): p. 585-589.
    49. Eda, G., et al., Photoluminescence from chemically exfoliated MoS2. Nano letters, 2011. 11(12): p. 5111-5116.
    50. Golovynskyi, S., et al., Exciton and trion in few-layer MoS2: Thickness-and temperature-dependent photoluminescence. Applied Surface Science, 2020. 515: p. 146033.
    51. Luo, S., et al., Investigation of growth-induced strain in monolayer MoS2 grown by chemical vapor deposition. Applied Surface Science, 2020. 508: p. 145126.
    52. Huang, S., et al., Probing the interlayer coupling of twisted bilayer MoS2 using photoluminescence spectroscopy. Nano Lett, 2014. 14(10): p. 5500-8.
    53. Wang, Z., Q. Chen, and J. Wang, Electronic structure of twisted bilayers of graphene/MoS2 and MoS2/MoS2. The Journal of Physical Chemistry C, 2015. 119(9): p. 4752-4758.
    54. Lu, C.-I., et al., Moiré-related in-gap states in a twisted MoS2/graphite heterojunction. npj 2D Materials and Applications, 2017. 1(1).

    無法下載圖示 全文公開日期 2024/09/22 (校內網路)
    全文公開日期 2027/09/22 (校外網路)
    全文公開日期 2027/09/22 (國家圖書館:臺灣博碩士論文系統)
    QR CODE