簡易檢索 / 詳目顯示

研究生: 王升韋
Sheng-Wei Wang
論文名稱: 二硫化鉬與多層石墨烯雙極性接面電晶體之製備與應用
Fabrication and Electronic Characteristics of MoS2/graphene/MoS2 Bipolar Junction Transistor
指導教授: 李奎毅
Kuei-Yi Lee
趙良君
Liang-Chiun Chao
口試委員: 何清華
Ching-Hwa Ho
陳瑞山
Ruei-San Chen
學位類別: 碩士
Master
系所名稱: 電資學院 - 電子工程系
Department of Electronic and Computer Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 96
中文關鍵詞: 過渡金屬硫屬化物石墨烯二硫化鉬p-n接面二極體雙極性接面電晶體
外文關鍵詞: TMDs, graphene, MoS2, p-n junction diodes, BJT
相關次數: 點閱:241下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 二維材料,像是石墨烯和過渡金屬硫屬化合物已成為現今電子和光電應用中的重要趨勢。石墨烯是目前宇宙中已知最薄和高機械強度的物質。它具有高電子遷移率,零有效質量,高透光率和高電導率等許多優良的特性。石墨烯會吸收大氣中的氧原子和水氣呈現 p型的性質。二硫化鉬是過渡金屬硫屬化合物中的材料,呈現 n型的半導體材料特性。它具有高光響應度,高的載子遷移率和高電導率等特性。在本實驗中,我們透過化學氣相傳導法成長二硫化鉬單晶塊材。用甲烷作為碳源以化學氣相沉積法在銅箔基板上成長石墨烯。透過量測掃描式電子顯微鏡,X射線能量散佈光譜分析儀和拉曼光譜儀來分析二硫化鉬和石墨烯的基本特性。透過電荷中性點量測來判斷二硫化鉬和石墨烯的半導體特性。在p-n接面電晶體的應用上,我們將二硫化鉬塊材和石墨烯薄膜堆疊合成p-n接面電晶體。在-4 到 +4 V偏壓下量測p-n接面電晶體 I-V特性曲線,並量測其半波整流。結果表明,在輸入電壓為2 V,頻率為100 Hz的訊號下,整流性能可以很好地顯示出來。另一方面,我們成功設計並製作出垂直堆疊的雙極性接面電晶體,並用不同接觸電極進行嘗試,通過比較,量測共射極直流電流放大係數β值最大的值約為2.7。


    Two-dimensional materials, such as graphene and transition-metal dichalcogenides (TMDs) have recently become an important trend in electronic and photoelectric applications. Graphene is the thinnest known material in the universe and the strongest ever measured. It is a wonder material with many superior characteristics, such as high electron mobility, zero effective mass, high light transmittance and high electrical conductivity. The synthesized graphene exhibits p-type behaviors because of oxygen and water vapor in air. Molybdenum disulfide (MoS2) is an n-type semiconductor material of the TMDs. It has high optical responsivity, high carrier mobility, and high electrical conductivity. In this experiment, we used chemical vapor transport method (CVT) to synthesize MoS2 single crystals. Graphene was used CH4 gas as the carbon source to grow onto a copper foil substrate. The basic properties of synthesized MoS2 and graphene were measured by SEM, EDS and Raman spectrometry. Measuring the charge-neutrality point (CNP) to examine the semiconductor properties of MoS2 and graphene. In the application of p-n junction diodes, we combined MoS2 and graphene to produce p-n junction diodes. The I-V characteristics of p-n junction diodes were measured of applied voltage ranged within -4 to +4 V. The results of half-wave rectification experiment were conducted. It showed that the rectifying behavior could be well shown under 100 Hz of applied voltage with 2 V. In addition, we designed and fabricated a compact vertically stacked n-MoS2/p-graphene/n-MoS2 bipolar junction transistor (BJT). The bipolar junction transistor was successfully fabricated, and we used different contact materials as electrode, the maximum common-emitter current gain (β) was about 2.7.

    中文摘要 I Abstract II 誌謝 III 目錄 IV 圖目錄 VII 表目錄 XII Chapter 1 緒論 1 1.1. 研究背景與動機 1 1.1.1 電晶體的歷史 1 1.1.2 半導體製程的微縮與演進 2 1.1.3 二維材料的發展與應用 5 1.2. 石墨烯介紹 7 1.2.1 晶體結構 7 1.2.2 電子能帶結構 8 1.3. 過渡金屬硫屬化合物介紹 11 1.3.1 過渡金屬硫屬化合物 (TMDs) 11 1.3.2 二硫化鉬 (MoS2) 14 1.4. 石墨烯與過渡金屬硫屬化合物的製備 18 1.4.1 機械剝離法 18 1.4.2 化學氣相沉積法 19 1.4.3 化學氣相傳導法 20 1.5. p-n接面二極體 22 1.5.1 背景介紹 22 1.5.2 工作原理 22 1.5.3 理想因子 26 1.5.4 整流特性 27 1.6. 雙極性接面電晶體 28 1.6.1 背景介紹 28 1.6.2 工作原理 29 1.7. 論文架構 32 Chapter 2 實驗方法與設備 33 2.1. 實驗流程圖 33 2.2. 製備過程 34 2.2.1 二硫化鉬單晶晶體成長 34 2.2.2 基板準備工作 36 2.2.3 純石墨烯 36 2.2.4 轉印石墨烯 39 2.2.5 p-n接面二極體的製作 40 2.3. 分析量測儀器 41 2.3.1 拉曼光譜儀 41 2.3.2 掃描式電子顯微鏡 43 2.3.3 X光射線能量散佈光譜分析儀 44 2.4. 電性量測 45 2.4.1 電荷中性點量測 45 2.4.2 p-n 接面二極體量測 47 2.5. 半波整流電路 47 2.6. 雙極性接面電晶體 48 2.6.1 雙極性接面電晶體的製作 48 2.6.2 雙極性接面電晶體的量測 49 Chapter 3 結果與討論 51 3.1. 拉曼光譜圖 51 3.1.1 石墨烯 51 3.1.2 二硫化鉬 52 3.2. 掃描式電子顯微鏡 54 3.3. X光射線能量散佈光譜分析儀 55 3.4. 電荷中性點 57 3.5. p-n 接面二極體特性分析 59 3.6. 半波整流 64 3.7. 雙極性接面電晶體 67 3.8. 量測分析與討論 70 Chapter 4 結論 73 參考文獻 74

    [1] J. Bardeen and W. H. Brattain, “The transistor, a semi-conductor triode,” Phys. Rev., vol. 74, no. 2, pp. 230, 1948.
    [2] I. M. Ross, “The invention of the transistor,” Proc. IEEE, vol. 86, no. 1, pp. 7-28, 1998.
    [3] R. R. Schaller, “Moore's law: past, present and future,” IEEE Spectr., vol. 34, no. 6, pp. 52-59, 1997.
    [4] M. M. Waldrop, “The chips are down for Moore’s law,” Nature News, vol. 530, no. 7589, pp. 144, 2016.
    [5] D. Hisamoto, W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, “FinFET-a self-aligned double-gate MOSFET scalable to 20 nm,” IEEE Trans. Electron Devices, vol. 47, no. 12, pp. 2320-2325, 2000.
    [6] I. L. Markov, “Limits on fundamental limits to computation,” Nature, vol. 512, no. 7513, pp. 147-154, 2014.
    [7] M. L. García-Betancourt, S. I. R. Jiménez, A. González-Hodges, Z. E. N. Salazar, I. L. Escalante-García, and J. R. Aparicio, "Low dimensional nanostructures: measurement and remediation technologies applied to trace heavy metals in water," Trace Metals in the Environ.-New Approaches Recent Adv., 2020.
    [8] V. Kohlschütter and P. Haenni, “Zur Kenntnis des graphitischen Kohlenstoffs und der Graphitsäure,” Z. Anorg. Allg. Chem., vol. 105, no. 1, pp. 121-144, 1919.
    [9] G. Ruess and F. Vogt, “Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd,” Monatsh. Chem.Verw. Teile anderer Wiss., vol. 78, no. 3-4, pp. 222-242, 1948.
    [10] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, “Electric field effect in atomically thin carbon films,” Science, vol. 306, no. 5696, pp. 666-669, 2004.
    [11] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nanosci. Technol., pp. 11-19: World Scientific, 2010.
    [12] M. Acik and Y. J. Chabal, “A review on thermal exfoliation of graphene oxide,” J. Mater. Sci. Res., vol. 2, no. 1, pp. 101, 2013.
    [13] D. Van Tuan, Charge and spin transport in disordered graphene-based materials: Springer, 2015.
    [14] Y. S. Chui, “Synthesis, characterization and application of molybdenum disulfide nanomaterials,” City University of Hong Kong, 2014.
    [15] P. Avouris, “Graphene: electronic and photonic properties and devices,” Nano Lett., vol. 10, no. 11, pp. 4285-4294, 2010.
    [16] Y. Liu, N. O. Weiss, X. Duan, H.-C. Cheng, Y. Huang, and X. Duan, “Van der waals heterostructures and devices,” Nat. Rev. Mater., vol. 1, no. 9, pp. 1-17, 2016.
    [17] D. Jariwala, V. K. Sangwan, L. J. Lauhon, T. J. Marks, and M. C. Hersam, “Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides,” ACS Nano, vol. 8, no. 2, pp. 1102-1120, 2014.
    [18] W. S. Yun, S. Han, S. C. Hong, I. G. Kim, and J. Lee, “Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te),” Phys. Rev. B, vol. 85, no. 3, pp. 033305, 2012.
    [19] R. J. Toh, Z. Sofer, J. Luxa, D. Sedmidubský, and M. Pumera, “3R phase of MoS2 and WS2 outperforms the corresponding 2H phase for hydrogen evolution,” Chem. Commun., vol. 53, no. 21, pp. 3054-3057, 2017.
    [20] C.-H. Lee, G.-H. Lee, A. M. Van Der Zande, W. Chen, Y. Li, M. Han, X. Cui, G. Arefe, C. Nuckolls, and T. F. Heinz, “Atomically thin p-n junctions with van der waals heterointerfaces,” Nat. Nanotechnol., vol. 9, no. 9, pp. 676, 2014.
    [21] T. Georgiou, R. Jalil, B. D. Belle, L. Britnell, R. V. Gorbachev, S. V. Morozov, Y.-J. Kim, A. Gholinia, S. J. Haigh, and O. Makarovsky, “Vertical field-effect transistor based on graphene-WS2 heterostructures for flexible and transparent electronics,” Nat. Nanotechnol., vol. 8, no. 2, pp. 100-103, 2013.
    [22] A. M. Afzal, M. Z. Iqbal, G. Dastgeer, G. Nazir, S. Mumtaz, M. Usman, and J. Eom, “WS2/GeSe/WS2 bipolar transistor-based chemical sensor with fast response and recovery times,” ACS Appl. Mater. Interfaces, vol. 12, no. 35, pp. 39524-39532, 2020.
    [23] C. M. Torres Jr, Y.-W. Lan, C. Zeng, J.-H. Chen, X. Kou, A. Navabi, J. Tang, M. Montazeri, J. R. Adleman, and M. B. Lerner, “High-current gain two-dimensional MoS2-base hot-electron transistors,” Nano Lett., vol. 15, no. 12, pp. 7905-7912, 2015.
    [24] S. Bertolazzi, D. Krasnozhon, and A. Kis, “Nonvolatile memory cells based on MoS2/graphene heterostructures,” ACS Nano, vol. 7, no. 4, pp. 3246-3252, 2013.
    [25] M. Bernardi, M. Palummo, and J. C. Grossman, “Extraordinary sunlight absorption and one nanometer thick photovoltaics using two-dimensional monolayer materials,” Nano Lett., vol. 13, no. 8, pp. 3664-3670, 2013.
    [26] B. W. Baugher, H. O. Churchill, Y. Yang, and P. Jarillo-Herrero, “Optoelectronic devices based on electrically tunable p-n diodes in a monolayer dichalcogenide,” Nat. Nanotechnol., vol. 9, no. 4, pp. 262-267, 2014.
    [27] D. J. Late, C. S. Rout, D. Chakravarty, and S. Ratha, “Emerging energy applications of two-dimensional layered materials,” Can. Chem. Trans., vol. 3, no. 118-157, pp. 118-157, 2015.
    [28] M. Chhowalla, H. S. Shin, G. Eda, L.-J. Li, K. P. Loh, and H. Zhang, “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem., vol. 5, no. 4, pp. 263-275, 2013.
    [29] P. Tonndorf, R. Schmidt, P. Böttger, X. Zhang, J. Börner, A. Liebig, M. Albrecht, C. Kloc, O. Gordan, and D. R. Zahn, “Photoluminescence emission and Raman response of monolayer MoS2, MoSe2, and WSe2,” Opt. Express, vol. 21, no. 4, pp. 4908-4916, 2013.
    [30] A. V. Kolobov and J. Tominaga, Two-dimensional transition-metal dichalcogenides: Springer, 2016.
    [31] Y. Yoon, K. Ganapathi, and S. Salahuddin, “How good can monolayer MoS2 transistors be?,” Nano Lett., vol. 11, no. 9, pp. 3768-3773, 2011.
    [32] E. S. Kadantsev and P. Hawrylak, “Electronic structure of a single MoS2 monolayer,” Solid State Commun., vol. 152, no. 10, pp. 909-913, 2012.
    [33] B. Radisavljevic, A. Radenovic, J. Brivio, V. Giacometti, and A. Kis, “Single-layer MoS2 transistors,” Nat. Nanotechnol., vol. 6, no. 3, pp. 147-150, 2011.
    [34] H. Liu, A. T. Neal, and P. D. Ye, “Channel length scaling of MoS2 MOSFETs,” ACS Nano, vol. 6, no. 10, pp. 8563-8569, 2012.
    [35] X. Yan, D. W. Zhang, C. Liu, W. Bao, S. Wang, S. Ding, G. Zheng, and P. Zhou, “High performance amplifier element realization via MoS2/GaTe heterostructures,” Adv. Sci., vol. 5, no. 4, pp. 1700830, 2018.
    [36] W. Zhang, C.-P. Chuu, J.-K. Huang, C.-H. Chen, M.-L. Tsai, Y.-H. Chang, C.-T. Liang, Y.-Z. Chen, Y.-L. Chueh, and J.-H. He, “Ultrahigh-gain photodetectors based on atomically thin graphene-MoS2 heterostructures,” Sci. Rep., vol. 4, no. 1, pp. 1-8, 2014.
    [37] A. Ubaldini, J. Jacimovic, N. Ubrig, and E. Giannini, “Chloride-driven chemical vapor transport method for crystal growth of transition metal dichalcogenides,” Cryst. Growth Des., vol. 13, no. 10, pp. 4453-4459, 2013.
    [38] M. Yi and Z. Shen, “A review on mechanical exfoliation for the scalable production of graphene,” J. Mater. Chem. A, vol. 3, no. 22, pp. 11700-11715, 2015.
    [39] B. Das, “Fabrication of chemical vapor deposition (CVD) setup & preparation of copper oxide (CuO)-CdX (X = Se, S) nanoparticles decorated core-shell heterostructure,” 2015.
    [40] R. Nitsche and P. Wild, “Crystal growth of metal-phosphorus-sulfur compounds by vapor transport,” Mater. Res. Bull., vol. 5, no. 6, pp. 419-423, 1970.
    [41] N. Alfaraj, “Characterization of red, blue and green light-emitting diodes,” 2017.
    [42] X. Y. Yu, Y. Feng, Y. Jeon, B. Guan, X. W. Lou, and U. Paik, “Formation of Ni-Co-MoS2 nanoboxes with enhanced electrocatalytic activity for hydrogen evolution,” Adv. Mater., vol. 28, no. 40, pp. 9006-9011, 2016.
    [43] S. M. Sze, Semiconductor devices: physics and technology: John wiley & sons, 2008.
    [44] D. A. Neamen, Semiconductor physics and devices: basic principles: New York, NY: McGraw-Hill, 2012.
    [45] O. Breitenstein, P. Altermatt, K. Ramspeck, and A. Schenk, "The origin of ideality factors n > 2 of shunts and surfaces in the dark IV curves of Si solar cells." Eur. Photovol. Sol. Energy Conf., pp. 625-628, 2006.
    [46] L. Ye, H. Li, Z. Chen, and J. Xu, “Near-infrared photodetector based on MoS2/black phosphorus heterojunction,” Acs Photonics, vol. 3, no. 4, pp. 692-699, 2016.
    [47] G. W. Neudeck and R. Pierret, "Modular series on solid state devices, volume II: The p-n junction diode," Addison-Wesley Publishing Company, 1989.
    [48] C. H. Sharp, “The Edison effect and its modern applications,” J. Am. Inst. Electr. Eng., vol. 41, no. 1, pp. 68-78, 1922.
    [49] H. Dylla and S. T. Corneliussen, “John Ambrose Fleming and the beginning of electronics,” J. Vac. Sci. Technol. A, vol. 23, no. 4, pp. 1244-1251, 2005.
    [50] S. Chaudhary, Principles of Electronics: Laxmi Publications, 2014.
    [51] R. Singh, “CV Raman and the discovery of the Raman effect,” Phys. Perspect., vol. 4, no. 4, pp. 399-420, 2002.
    [52] M. S. Dresselhaus, G. Dresselhaus, R. Saito, and A. Jorio, “Raman spectroscopy of carbon nanotubes,” Phys. Rep., vol. 409, no. 2, pp. 47-99, 2005.
    [53] M. Wall, “The Raman spectroscopy of graphene and the determination of layer thickness,” Thermo. Sci., vol. 5, 2011.
    [54] H. Li, Q. Zhang, C. C. R. Yap, B. K. Tay, T. H. T. Edwin, A. Olivier, and D. Baillargeat, “From bulk to monolayer MoS2: Evolution of Raman scattering,” Adv. Funct. Mater., vol. 22, no. 7, pp. 1385-1390, 2012.
    [55] C. Lee, H. Yan, L. E. Brus, T. F. Heinz, J. Hone, and S. Ryu, “Anomalous lattice vibrations of single-and few-layer MoS2,” ACS Nano, vol. 4, no. 5, pp. 2695-2700, 2010.
    [56] C. A. Nijhuis, W. F. Reus, A. C. Siegel, and G. M. Whitesides, “A molecular half-wave rectifier,” J. Am. Chem. Soc., vol. 133, no. 39, pp. 15397-15411, 2011.
    [57] S. Kim and S. Lee, “A transistor based on 2D material and silicon junction,” J. Korean Phys. Soc., vol. 71, no. 2, pp. 92-100, 2017.
    [58] Y. Deng, Z. Luo, N. J. Conrad, H. Liu, Y. Gong, S. Najmaei, P. M. Ajayan, J. Lou, X. Xu, and P. D. Ye, “Black phosphorus-monolayer MoS2 van der waals heterojunction p-n diode,” ACS Nano, vol. 8, no. 8, pp. 8292-8299, 2014.
    [59] K. Lew, S. Yoon, W. Loke, H. Tanoto, C. Dohrman, D. Isaacson, and E. Fitzgerald, “High gain AlGaAs/GaAs heterojunction bipolar transistor fabricated on SiGe/Si substrate,” J. Vac. Sci. Technol. B, vol. 25, no. 3, pp. 902-905, 2007.
    [60] Y.-C. Lee, Y. Zhang, H.-J. Kim, S. Choi, Z. Lochner, R. D. Dupuis, J.-H. Ryou, and S.-C. Shen, “High-current-gain direct-growth GaN/InGaN double heterojunction bipolar transistors,” IEEE Trans. Electron Devices, vol. 57, no. 11, pp. 2964-2969, 2010.
    [61] C.-Y. Lin, X. Zhu, S.-H. Tsai, S.-P. Tsai, S. Lei, Y. Shi, L.-J. Li, S.-J. Huang, W.-F. Wu, and W.-K. Yeh, “Atomic-monolayer two-dimensional lateral quasi-heterojunction bipolar transistors with resonant tunneling phenomenon,” ACS Nano, vol. 11, no. 11, pp. 11015-11023, 2017.
    [62] A. Zhang, G. Dang, F. Ren, J. Han, A. Baca, R. Shul, H. Cho, C. Monier, X. Cao, and C. Abernathy, “Direct-current characteristics of p-n-p AlGaN/GaN heterojunction bipolar transistors,” Appl. Phys. Lett., vol. 76, no. 20, pp. 2943-2945, 2000.

    無法下載圖示 全文公開日期 2026/08/27 (校內網路)
    全文公開日期 2026/08/27 (校外網路)
    全文公開日期 2026/08/27 (國家圖書館:臺灣博碩士論文系統)
    QR CODE