簡易檢索 / 詳目顯示

研究生: 鍾弼格
Bi-Ke Chung
論文名稱: 鋰離子電容器及其高比表面積碳正極
Lithium ion hybrid capacitor and its high surface area carbon positive electrode
指導教授: 蔡大翔
Dah-Shyang Tsai
口試委員: 陳崇賢
Chorng-Shyan Chern
江佳穎
Chia-Ying Chiang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2020
畢業學年度: 108
語文別: 中文
論文頁數: 142
中文關鍵詞: 鋰離子混成電容器氧化石墨烯勞森試劑苯基苯酚衍生碳
外文關鍵詞: lithium ion hybrid capacitor, graphene oxide, Lawesson's reagent, phenylphenol derived carbon
相關次數: 點閱:241下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 鋰離子混合電容器,透過調節正負電極之間的不同質量比例來達到電量上的平衡,然而正電極儲存的方式為電雙層(EDL)相對於負極而言電量較為低。為了提高正極電容量,用對位-苯基苯酚高溫鍛燒製備中空多邊形結構的摻雜氮元素(KP-N-950),使活性碳表面積大於2900 m2 g -1。
    另一方面,KP-N-950因其高比表面積及小孔洞尺寸的特性,在不同電解液1.0 M LiPF6/DEC:EC:DMC=1:1:1 vol% 和1.0 M LiTFSI/DME:DOL=1:1 vol% 摻入0.2 M LiNO3中有不同的特性,在LiPF6電解質中0.5mV s-1下電容值為86.17F g-1,隨著掃流次數增加與電位窗口增大,電容值可達到105.30F g-1,在LITFSI電解質中0.5mV s-1下電容值為102.40F g-1,隨著掃流次數增加與電位窗口增大,電容值下降到75.41F g-1,顯示小尺寸的孔洞有阻塞電解液的現象產生。
      負極則使用高電容量的電池型態電極,故具有高容量的特性,透過氫氧化鉀將氧化石墨烯進行造孔,才能使硫元素接在氧化石墨烯上,並使用化學法,而KPHGO(500)-(S) (1:30) 在0.1 A g-1時的電容量接近532 mAh g-1。
    在KP-N-950與KPHGO(500)-(S) (1:30)質量比為2.4:1組成鋰離子混合式電容器其比能量和比功率之間表現出最好特性,與大多數單電極的特性完全不同。鋰離子混合式電容器為2.4:1的全電池(Full-cell)在比功率為0.12 kW kg-1時比能量為42.0 Wh kg-1。


    The storage capability of lithium ion hybrid capacitor (LIHC) can be upgraded through adjusting the rate qualities between positive and negative electrodes, since the positive electrode of electrical double layer capacitance stores and releases electricity in a lesser quantity, yet much faster than the negative battery electrode. To increase the double-layer capacitance, the nitrogen-doped high-surface-area carbon (KP-N-950) of hollow-polygon structure is prepared using para-phenylphenol, featured with a BET surface area 2900 m2g-1.
    On the other hand, KP-N-950 behaves differently in the two electrolytes 1.0 M LiPF6/DEC:EC:DMC (1:1:1 vol%) and 1.0 M LiTFSI/DME:DOL (1:1 vol%) with 0.2 M LiNO3. The capacitance of KP-N-950 measures 86.17 F g-1 at 0.5 mV s-1 in LiPF6 electrolyte with the 2.5-4.0 V potential window. And the capacitance may reach 105.30 F g-1 in the 2.5-4.4 V window. In LiTFSI electrolyte, capacitance is 102.40F g-1 in the 2.5-4.0 V window at 0.5 mV s-1. The capacitance of KP-N-950 drops to 75.41F g-1 in the 2.5-4.4 V window. The capacitance drop may be due to the loss of accessible pore surface, which arises from the micropores of KP-N-950 being filled in the ethereal electrolyte.
    A battery-type with a high capacity is adopted as negative electrode of LIHC. The active material of negative electrode is made through attaching sulfur to the exfoliated graphene oxide. The capacity of KPHGO(500)-(S) (1:30) at 0.1 A g-1 is close to 532 mAh g-1. Consequently, a full cell, with a 2.4:1 mass ratio of KP-N-950 to KPHGO(500)-(S) (1:30), is assembled with the LiTFSI electrolyte. The hybrid capacitor stores 42.0 Wh kg-1 at a power level 0.12 kW kg-1

    目錄 摘要 I ABSTRACT III 目錄 IV 圖目錄 IX 表目錄 XV 第一章 緒論 1 1.1前言 1 1.2研究動機 2 第二章 文獻回顧 3 2.1電化學電容器(ELECTROCHEMICAL CAPACITORS, EC) 3 2.2電雙層電容器(ELECTROCHEMICAL DOUBLE-LAYER CAPACITORS, EDLC) 6 2.3擬電容器 (PSEUDOCAPACITOR) 7 2.4鋰離子電池 9 2.5鋰離子混合式電容器 (LITHIUM-ION HYBRID CAPACITORS, LIHC) 10 2.6鋰離子混合式電容器正極材料 11 2.7鋰離子混合式電容器負極材料 12 2.8電容器電解液 15 第三章 實驗方法與步驟 18 3.1實驗藥品耗材與儀器設備 18 3.1.1正、負極材料製備 18 3.1.3電化學測試儀器及設備 21 3.1.4材料鑑定及分析之儀器 22 3.2實驗流程圖 23 3.2.1負極材料合成 23 3.2.2正極材料合成 25 3.3實驗方法 28 3.3.1鋰離子混合式電容器負極材料合成 28 3.3.2鋰離子混合式電容器正極材料合成 31 3.3.3鋰離子混合式電容器負極漿料製備 32 3.3.4鋰離子混合式電容器正極漿料製備 32 3.3.5電極製備 33 3.4電極材料鑑定與分析 33 3.4.1場發射掃瞄式電子顯微鏡 33 3.4.2場發射槍穿透式電子顯微鏡(300kV) 34 3.4.3表面積及孔徑分析 34 3.4.4拉曼光譜分析 37 3.4.5元素分析 38 3.5電化學特性分析 38 3.5.1循環伏安法(Cyclic Voltammetry) 38 3.5.2恆電流充放電量測(Galvanostatic Charge-Discharge) 39 第四章 結果與討論 41 4.1正極材料KP-N-950 41 4.1.1正極材料之形貌 41 4.1.2正極材料之比表面積分析 43 4.1.3正極材料之元素分析 46 4.1.4正極材料之拉曼光譜分析 47 4.1.5正極材料之循環伏安法分析 49 4.1.6正極材料之恆電流充放電與穩定性測試 77 4.2負極材料KPHGO(500)-(S) 83 4.2.1負極材料之形貌 83 4.2.2負極材料之比表面積分析 86 4.2.3預鋰化負極 89 4.2.4負極循環伏安法分析 93 4.2.5負極不同電流密度下的電容量 103 4.3鋰離子混合式電容器 108 4.3.1理論比電容量計算 108 4.3.2放電特性分析 112 4.3.3恆電流充放電及比電容量分析 114 第五章 結論 117 參考文獻 120

    1. M. Winter and R. J. Brodd, "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, no. 10, pp. 4245-4270, 2004/10/01 2004.
    2. A. K. Shukla, A. Banerjee, M. K. Ravikumar, and A. Jalajakshi, "Electrochemical capacitors: Technical challenges and prognosis for future markets," Electrochimica Acta, vol. 84, pp. 165-173, 2012.
    3. G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chem Soc Rev, vol. 41, no. 2, pp. 797-828, Jan 21 2012.
    4. P. Sharma and T. S. Bhatti, "A review on electrochemical double-layer capacitors," Energy Conversion and Management, vol. 51, no. 12, pp. 2901-2912, 2010.
    5. E. Frackowiak and F. Béguin, "Carbon materials for the electrochemical storage of energy in capacitors," Carbon, vol. 39, no. 6, pp. 937-950, 2001/05/01/ 2001.
    6. S. L. Candelaria et al., "Nanostructured carbon for energy storage and conversion," Nano Energy, vol. 1, no. 2, pp. 195-220, 2012.
    7. K. S. Ryu, K. M. Kim, N.-G. Park, Y. J. Park, and S. H. Chang, "Symmetric redox supercapacitor with conducting polyaniline electrodes," Journal of Power Sources, vol. 103, no. 2, pp. 305-309, 2002/01/01/ 2002.
    8. A. Clemente, S. Panero, E. Spila, and B. Scrosati, "Solid-state, polymer-based, redox capacitors," Solid State Ionics, vol. 85, no. 1, pp. 273-277, 1996/05/01/ 1996.
    9. G. Yu, X. Xie, L. Pan, Z. Bao, and Y. Cui, "Hybrid nanostructured materials for high-performance electrochemical capacitors," Nano Energy, vol. 2, no. 2, pp. 213-234, 2013.
    10. L. Wei and G. Yushin, "Nanostructured activated carbons from natural precursors for electrical double layer capacitors," Nano Energy, vol. 1, no. 4, pp. 552-565, 2012.
    11. M. V. Reddy, G. V. Subba Rao, and B. V. Chowdari, "Metal oxides and oxysalts as anode materials for Li ion batteries," Chem Rev, vol. 113, no. 7, pp. 5364-457, Jul 10 2013.
    12. R. Mo et al., "Tin-graphene tubes as anodes for lithium-ion batteries with high volumetric and gravimetric energy densities," Nature Communications, vol. 11, no. 1, p. 1374, 2020/03/13 2020.
    13. M. N. Obrovac and L. Christensen, "Structural Changes in Silicon Anodes during Lithium Insertion/Extraction," Electrochemical and Solid-State Letters, vol. 7, no. 5, p. A93, 2004.
    14. M. J. Lindsay, G. X. Wang, and H. K. Liu, "Al-based anode materials for Li-ion batteries," Journal of Power Sources, vol. 119-121, pp. 84-87, 2003.
    15. C. K. Chan, X. F. Zhang, and Y. Cui, "High Capacity Li Ion Battery Anodes Using Ge Nanowires," Nano Letters, vol. 8, no. 1, pp. 307-309, 2008/01/01 2008.
    16. R. A. Huggins, "Lithium alloy negative electrodes," Journal of Power Sources, vol. 81-82, pp. 13-19, 1999/09/01/ 1999.
    17. B. Duan et al., "Carbyne polysulfide as a novel cathode material for lithium/sulfur batteries," Journal of Materials Chemistry A, vol. 1, no. 42, p. 13261, 2013.
    18. V. Aravindan, J. Gnanaraj, Y. S. Lee, and S. Madhavi, "Insertion-type electrodes for nonaqueous Li-ion capacitors," Chem Rev, vol. 114, no. 23, pp. 11619-35, Dec 10 2014.
    19. M. Galiński, A. Lewandowski, and I. Stępniak, "Ionic liquids as electrolytes," Electrochimica Acta, vol. 51, no. 26, pp. 5567-5580, 2006.
    20. D. Jiménez-Cordero, F. Heras, M. A. Gilarranz, and E. Raymundo-Piñero, "Grape seed carbons for studying the influence of texture on supercapacitor behaviour in aqueous electrolytes," Carbon, vol. 71, pp. 127-138, 2014.
    21. K. Torchała, K. Kierzek, and J. Machnikowski, "Capacitance behavior of KOH activated mesocarbon microbeads in different aqueous electrolytes," Electrochimica Acta, vol. 86, pp. 260-267, 2012.
    22. L. Demarconnay, E. Raymundo-Piñero, and F. Béguin, "A symmetric carbon/carbon supercapacitor operating at 1.6V by using a neutral aqueous solution," Electrochemistry Communications, vol. 12, no. 10, pp. 1275-1278, 2010.
    23. M. Dahbi, F. Ghamouss, F. Tran-Van, D. Lemordant, and M. Anouti, "Comparative study of EC/DMC LiTFSI and LiPF6 electrolytes for electrochemical storage," Journal of Power Sources, vol. 196, no. 22, pp. 9743-9750, 2011.
    24. Z. Chen, W. Q. Lu, J. Liu, and K. Amine, "LiPF6/LiBOB blend salt electrolyte for high-power lithium-ion batteries," Electrochimica Acta, vol. 51, no. 16, pp. 3322-3326, 2006.
    25. J. Guo, X. Du, X. Zhang, F. Zhang, and J. Liu, "Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode," Adv Mater, vol. 29, no. 26, Jul 2017.
    26. S. S. Zhang, "Liquid electrolyte lithium/sulfur battery: Fundamental chemistry, problems, and solutions," Journal of Power Sources, vol. 231, pp. 153-162, 2013.
    27. J. Wang and S. Kaskel, "KOH activation of carbon-based materials for energy storage," Journal of Materials Chemistry, vol. 22, no. 45, p. 23710, 2012.
    28. A. Kagkoura, M. Pelaez-Fernandez, R. Arenal, and N. Tagmatarchis, "Sulfur-doped graphene/transition metal dichalcogenide heterostructured hybrids with electrocatalytic activity toward the hydrogen evolution reaction," Nanoscale Advances, vol. 1, no. 4, pp. 1489-1496, 2019.
    29. H. Li et al., "Constructing surface-driven lithium ion storage structure for high performance hybrid capacitor," Electrochimica Acta, vol. 299, pp. 163-172, 2019.
    30. J. Ludwinowicz and M. Jaroniec, "Potassium salt-assisted synthesis of highly microporous carbon spheres for CO2 adsorption," Carbon, vol. 82, pp. 297-303, 2015.
    31. S.-E. Chun and J. F. Whitacre, "Formation of micro/mesopores during chemical activation in tailor-made nongraphitic carbons," Microporous and Mesoporous Materials, vol. 251, pp. 34-41, 2017.
    32. Z. S. Wu, W. Ren, L. Xu, F. Li, and H. M. Cheng, "Doped graphene sheets as anode materials with superhigh rate and large capacity for lithium ion batteries," (in eng), ACS Nano, vol. 5, no. 7, pp. 5463-71, Jul 26 2011.
    33. J.-B. Wu, M.-L. Lin, X. Cong, H.-N. Liu, and P.-H. Tan, "Raman spectroscopy of graphene-based materials and its applications in related devices," Chemical Society Reviews, 10.1039/C6CS00915H vol. 47, no. 5, pp. 1822-1873, 2018.
    34. J. Salminen, T. Kallio, N. Omar, P. Van den Bossche, J. Van Mierlo, and H. Gualous, "Transport Energy – Lithium Ion Batteries," pp. 291-309, 2014.
    35. W. Yan, J. Y. Kim, W. Xing, K. C. Donavan, T. Ayvazian, and R. M. Penner, "Lithographically Patterned Gold/Manganese Dioxide Core/Shell Nanowires for High Capacity, High Rate, and High Cyclability Hybrid Electrical Energy Storage," Chemistry of Materials, vol. 24, no. 12, pp. 2382-2390, 2012.

    QR CODE