簡易檢索 / 詳目顯示

研究生: 楊芝寧
Chih-Ning Yang
論文名稱: 矽烷偶合劑接枝之氧化石墨烯及熱脫層氧化石墨烯之合成及探討其對環氧樹脂之聚合固化反應動力、玻璃轉移溫度、X光散射特性、聚合固化樣品微觀型態結構、體積收縮、機械性質、熱傳導及導電性質的影響
Synthesis of silane-grafted graphene oxide (sg-GO) and silane-grafted thermally reduced graphene oxide (sg-TRGO), and their effects on the cure kinetics, glass transition temperatures, X-ray scattering characteristics, cured sample morphologies, volume shrinkage, mechanical properties, and thermal and electrical conductivities for epoxy resins
指導教授: 黃延吉
Yan-Jyi Huang
口試委員: 邱文英
Wen-Yen Chiu
陳崇賢
Chorng-Shyan Chern
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2021
畢業學年度: 109
語文別: 中文
論文頁數: 304
中文關鍵詞: 氧化石墨烯熱脫層氧化石墨烯矽烷接枝之氧化石墨烯矽烷接枝之熱脫層氧化石墨烯抗收縮劑環氧樹脂聚合固化聚合固化反應動力微分掃描熱分析儀玻璃轉移溫度動態機械分析儀X光散射特性微觀型態結構掃描式電子顯微鏡體積收縮機械性質熱傳導性質導電性質
外文關鍵詞: silane-grafted graphene oxide, curing; curing kinetics, X-ray scattering characteristics
相關次數: 點閱:464下載:6
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本文探討添加氧化石墨烯(GO)、矽烷接枝氧化石墨烯(sg-GO)、熱脫層氧化石墨烯(TRGO)以及矽烷接枝熱脫層氧化石墨烯(sg-TRGO)等數種特用添加劑的合成及其對環氧樹脂(EPR)/ 4,4-二氨基二苯甲烷(DDM)/特用添加劑三成份系統於100℃/180℃階段性恆溫固化之聚合固化反應動力、玻璃轉移溫度、及X光散射特性、聚合固化樣品微觀型態結構、体積收縮、機械性質、熱傳導及導電性質的影響。
    熱脫層氧化石墨烯(TRGO)是將氧化石墨烯(GO)置於1050℃的高溫爐中30秒合成熱脫層而得;GO則是將平均粒徑為75μm的天然石墨粉以改良Hummers 法製得。
    矽烷接枝氧化石墨烯(sg-GO)及矽烷接枝熱脫層氧化石墨烯(sg-TRGO)係帶有環氧基團的矽烷偶合劑,即(3-縮水甘油氧基丙基)三甲氧基矽烷(GPS),做為表面改質劑。
    另外,吾人使用差式掃描卡計(DSC)、動態機械分析儀(DMA)、小角度X-ray散射儀(SAXS)測定環氧樹脂(EPR)/ 4,4-二氨基二苯甲烷(DDM)/特用添加劑三成份系統之聚合固化反應動力、玻璃轉移溫度及X光散射特性之影響。
    最後吾人亦使用掃描式電子顯微鏡(SEM)、萬用材料試驗機、耐衝擊測試機、熱傳導係數測定儀及表面電阻計研究EPR/DDM/添加劑三成分系統聚合固化後之體積收縮、微觀型態結構、機械性質、熱傳導及導電性之影響。


    The effects of graphene oxide (GO), silane-grafted graphene oxide (sg-GO) , thermally reduced graphene oxide (TRGO), silane-grafted thermally reduced graphene oxide (sg-TRGO) as special additives on the cured sample on the cure kinetics, glass transition temperature, X-ray scattering characteristics,morphologies, volume shrinkage characteristics , mechanical properties, thermal conductivities and electrical properties of the Epoxy/DDM/Additive ternary system cured after a stepwise isthermal process of 100℃/180℃ were investigated.
    The thermally reduced graphene oxide (TRGO) was produced by placing graphene oxide (GO) in a high-temperature furnace kept at 1050℃, which was synthesized from natural graphites with average particle size of 75μm by a modified Hummers method.
    The silane-grafted GO (sg-GO) or silane-grafted TRGO (sg-TRGO) was synthesized by using the silane coupling agent bearing epoxy functional group, namely, γ-glycidyloxy propyl trimethoxy silane (GPS), as a surface modifier for the surface treatment of GO.
    Moreover, the reaction kinetics for the Epoxy/DDM/Additive ternary system during the cure was measured by differential scanning calorimetry (DSC). Finally, based on the Takayanagi mechanical models, the glass transition temperature in each region of the cured samples for Epoxy/DDM/special additive ternary system has been measured by dynamic mechanical analysis (DMA).
    Finally, the effects of additives synthesized, such as, GO, sg-GO, TRGO, and sg-TRGO, on the volume shrinkage, mechanical properties, thermal and electrical conductivities for the Epoxy/DDM/Additive ternary systems after the cure have also been investigated.

    第一章 緒論 1 1-1 前言 1 1-2 研究範疇 2 第二章 文獻回顧 3 2-1 二氧化矽 3 2-1-1 二氧化矽的製備 4 2-2 不飽和聚酯樹脂 (UP Resin) 5 2-2-1 不飽和聚酯(UP)樹脂和苯乙烯(St)之交聯共聚合反應 6 2-3 環氧樹脂 (Epoxy Resin ) 9 2-3-1 環氧樹脂之硬化劑 12 2-3-2 環氧樹脂硬化之流變行為 14 2-4 增韌劑 (Toughener) 15 2-5 抗體積收縮劑(Low-Profile Additives, LPA) 17 2-6 矽烷偶合劑(Silane Coupling Agents) 18 2-6-1 (3-縮水甘油氧基丙基)三甲氧基矽烷(GPS) 22 2-7 石墨烯/高分子奈米複合材料 23 2-8 氧化石墨烯(GO)及熱還原氧化石墨(TRGO)的製備 30 第三章 實驗方法與設備 31 3-1 實驗原料 31 3-1-1 二氧化矽顆粒 (Silica, SiO2) 31 3-1-2 不飽和聚酯樹脂(Unsaturated polyester, UP) 31 3-1-3 環氧樹脂 32 3-1-4 氧化石墨(Graphite Oxide, GO)與熱脫層氧化石墨(Thermally Reduced Graphite Oxide, TRGO) 34 3-1-5 實驗藥品 35 3-2 實驗儀器 40 3-3 實驗步驟 45 3-3-1 元素矽水解法合成二氧化矽 (Silica) 45 3-3-2 氧化石墨烯(GO)之製備 47 3-3-3 熱還原氧化石墨烯(TRGO)之製備 47 3-3-4 製備矽烷偶合劑改質之氧化石墨烯 (sg-GO) 48 3-3-5 製備矽烷偶合劑改質之熱脫層氧化石墨烯 (sg-TRGO) 48 3-3-6 St/UP不飽和聚酯樹脂雙成份系統溶液製備 49 3-3-7 St/UP(MA-PA-PG,AN=30)三成份系統溶液製備 49 3-3-8 Epoxy(n=0.13)/DDM雙成份溶液製備 50 3-3-9 Epoxy(n=0.13)/DDM/特用添加劑三成份溶液製備 50 3-3-10 Epoxy(n=0.13)/DDM雙成份溶液與固化試片製備 51 3-3-11 Epoxy (n=0.13)/DDM/Additive三成份溶液與固化試片製備 52 3-3-12 動態光散射儀樣品製備與操作 53 3-3-13 微分掃描卡計(DSC)反應動力測定 54 3-3-14 傅立葉紅外線光譜儀(FTIR)校正曲線測定 55 3-3-15 傅立葉紅外線光譜儀(FTIR)反應動力測定 56 3-3-16 拉曼光譜儀(RS)測定樣品製備 56 3-3-18 體積變化量測-密度法 57 3-3-19 掃描式電子顯微鏡(SEM) 58 3-3-20 穿透式電子顯微鏡(TEM) 59 3-3-21 動態機械分析儀(DMA) 61 3-3-17 原子力顯微鏡(Atomic Force Microscope, AFM) 62 3-3-22 拉伸測試(Tensile Tester) 62 3-3-23 耐衝擊測試 63 3-3-24 熱傳導係數測定 64 3-3-25 表面電阻量測 64 3-4 性質測定與分析方法 65 3-4-1 拉曼光譜儀(RS)分析 65 3-4-2 元素分析 66 3-4-3 微分掃描卡計(DSC)熱分析 67 3-4-4 動態機械分析儀(DMA)理論 68 3-4-5 傅立葉紅外線光譜儀(FTIR)測定反應動力之理論與分析 70 3-4-6 St/UP (MA-PA-PG)system 反應動力分析 71 3-4-7 環氧樹脂聚合固化動力模式 74 3-4-8 X-ray散射儀之相關理論 75 3-4-9 利用SAXS測環動半徑 (Radius of gyration,Rg) 78 第四章 結果與討論 79 4-1 二氧化矽的合成及鑑定 79 4-1-1 元素矽水解法合成膠體二氧化矽奈米顆粒 79 4-2 DSC反應動力 84 4-2-1 不同酸價之MA-PA-PG型UP所形成的St/UP雙成份系統 84 4-2-2 對不同酸價之MA-PG型UP所形成的St/UP雙成份系統 87 4-2-3 St/UP(MA-PA-PG, AN=30)/TRGO三成分系統 90 4-2-4 環氧樹脂的理論環氧基團與DDM活性氫的不同當量比(ER)之Epoxy(n=0.13)/DDM雙成分系統 93 4-2-5 Epoxy (n=0.13)/DDM/氧化石墨烯(GO)三成分系統 98 4-2-6 Epoxy (n=0.13)/DDM/熱脫層氧化石墨烯(TRGO)三成分系統 101 4-2-7 Epoxy (n=0.13)/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO)三成分系統 104 4-3 FTIR校正曲線測定 107 4-3-1 苯乙烯 108 4-3-2 MA-PA-PG(AN=30)型不飽和聚酯(UP)樹脂 112 4-3-3 MA-PA-PG(AN=20)型不飽和聚酯(UP)樹脂 116 4-3-4 MA-PG(AN=30)型不飽和聚酯(UP)樹脂 120 4-3-5 MA-PG(AN=20)型不飽和聚酯(UP)樹脂 124 4-4 FTIR測定反應動力 128 4-4-1 St/UP(MA-PA-PG, AN=30)雙成份系統 128 4-4-2 St/UP(MA-PA-PG,AN=20)雙成份系統 132 4-4-3 St/UP(MA-PA-PG, AN=30)/熱脫層氧化石墨烯(TRGO)之三成份系統 136 4-5 廣角度X光散射法(WAXS)測定層間距 140 4-5-1 Silicon Powder 140 4-5-2 石墨(Graphite)、氧化石墨烯(GO)及熱脫層氧化石墨烯(TRGO)粉體 141 4-6 拉曼光譜儀(Raman Spectroscope, RS)測定 143 4-7 原子力顯微鏡分析(AFM) 145 4-7-1 GO於丙酮中懸浮七天 146 4-8 元素分析 149 4-9 體積收縮特性 153 4-9-1 Epoxy/DDM/氧化石墨烯(GO)三成分系統 154 4-9-2 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) 三成分系統 157 4-9-3 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO) 三成分系統 160 4-9-4 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO) 三成分系統 163 4-10 SEM微觀型態結構分析 166 4-10-1 Epoxy/DDM , ER=1/1雙成分系統 166 4-10-2 Epoxy/DDM/氧化石墨烯(GO), ER=1/1三成分系統 167 4-10-3 Epoxy/DDM/熱脫層氧化石墨烯(TRGO), ER=1/1三成分系統 173 4-10-4 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO), ER=1/1三成分系統 177 4-10-5 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO), ER=1/1三成分系統 180 4-11 TEM微觀型態結構 183 4-11-1 Epoxy/DDM雙成分系統 183 4-11-2 Epoxy/DDM/氧化石墨烯(GO)三成分系統 184 4-11-3 Epoxy/DDM/熱脫層氧化石墨烯(TRGO)三成分系統 187 4-12 以DMA測定玻璃轉移溫度 191 4-12-1 Takayanagi 機械模式與以DMA所測各相區之玻璃轉移溫度 191 4-12-2 St/UP(MA-PA-PG, AN=30)/ 熱脫層氧化石墨烯(TRGO)三成分系統 193 4-12-3 Epoxy/DDM , ER=1/1雙成分系統 200 4-12-4 Epoxy/DDM/氧化石墨烯(GO) , ER=1/1三成分系統 201 4-12-5 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) , ER=1/1三成分系統 208 4-12-6 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO) , ER=1/1三成分系統 214 4-12-7 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO) , ER=1/1三成分系統 219 4-13 機械性質_拉伸測試分析 224 4-13-1 Neat Epoxy/DDM雙成分系統 224 4-13-2 Epoxy/DDM/氧化石墨烯(GO) 三成分系統 225 4-13-3 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) 三成分系統 228 4-13-4 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO) 三成分系統 231 4-13-5 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO) 三成分系統 234 4-14 機械性質_耐衝擊強度分析 238 4-14-1 Neat Epoxy/DDM雙成分系統 238 4-14-2 Epoxy/DDM/氧化石墨烯(GO) 三成分系統 239 4-14-3 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) 三成分系統 241 4-14-4 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO)三成分系統 243 4-14-5 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO)三成分系統 245 4-15 導熱性質分析 247 4-15-1 Epoxy/DDM/氧化石墨烯(GO)三成分系統 248 4-15-2 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) 三成分系統 250 4-15-3 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO)三成分系統 252 4-15-4 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO)三成分系統 254 4-16 導電性質分析 256 4-16-1 Epoxy/DDM/氧化石墨烯(GO) 三成分系統 257 4-16-2 Epoxy/DDM/熱脫層氧化石墨烯(TRGO) 三成分系統 258 4-16-3 Epoxy/DDM/矽烷偶合劑接枝之氧化石墨烯(sg-GO)三成分系統 259 4-16-4 Epoxy/DDM/矽烷偶合劑接枝之熱脫層氧化石墨烯(sg-TRGO)三成分系統 260 第五章 結論 261 第六章 建議與未來工作 269 第七章 參考文獻 270

    [1] 陳東課, 環氧樹脂在積層板之應用,化工技術第四卷第五期, 1999.
    [2] C. W. Jang, S. Nouranian, S. R. G. T.E. Lacy, H. Toghiani, and C. U. Pittman, Carbon 50, 748-760, 2012.
    [3] W. Posthumus, P. Magusin, J. C. M. Brokken-Zijp, A. H. A. Tinnemans, and R. v. d. Linde, J. Colloid Interface Sci. 269, 109-116, 2004.
    [4] R. Burns, Polyester Molding Compounds, Taylor & Francis, 1982.
    [5] 邱冠智, 碩士論文,台灣科技大學, 2018.
    [6] R. K. Iler, The chemistry of silica: solubility, polymerization, colloid and surface properties, and biochemistry, Wiley, New York, 1979.
    [7] R. P. W. Scott, Scott, Silica Gel and Bonded Phases, Wiley, New York, 1993.
    [8] K. Ohno, T. Morinaga, K. Koh, Y. Tsujii, and T. Fukuda, Macromolecules, 38, 2137, 1998.
    [9] J. Guo, Y. C. X. Liu, G. X. Y. Li, and P. Cui, Journal of Colloid and Interface Science, 326, 138, 2008.
    [10] W. Stober, A. Fink, and E. Bohn, Journal of Colloid and Interface Science, 26, 62, 1968.
    [11] "合成二氧化矽的特性與用途," 高分子工業, 78, p. 72-76, 1998.
    [12] Y. Yang and L. J. Lee, Polymer 29 1793-1800, 1988.
    [13] 盧天智, 碩士論文,台灣科技大學, 1989.
    [14] K. Horie, I. Mita, and H. Kambe, J.Polym.Sci,Part A-1:Polym.chem, 7.2561, 1969.
    [15] 江文慶, 碩士論文,台灣科技大學, 1996.
    [16] 賴耿陽, "環氧樹脂應用實務,復漢出版社," 1999.
    [17] b.Ellis, "Chemistry and technology og epoxy resins,Springer," 1993.
    [18] S.V.Levchik, G.Camino, M.P.Luda, L.Costa, G.Muller, and B. Costes, Polym Degradation Stab, 60,169-183, 1998.
    [19] E. Martuscelli, G. R. P. Musto, G. Scarinzi, and E. Bertotti, Journal of Polymer Science Part B: Polymer Physics, 31, 619, 1993.
    [20] S. B. Pandit and V. M. Nadkarni, Industrial & Engineering Chemistry Research, 33, 2778, 1994.
    [21] "The B.F.Goodriche Co," WO93/21274, Oct. 28, 1993.
    [22] "W.Crc for Polymers Pty. Ltd.," WO97/43339 Nov. 20, 1997.
    [23] 吳嘉鴻, 碩士論文,台灣科技大學, 2003.
    [24] 黃俊翰, 碩士論文,台灣科技大學, 2009.
    [25] 戴孟祥, 碩士論文,台灣科技大學, 2010.
    [26] 陳曉蘭, 碩士論文,台灣科技大學, 2010.
    [27] 許毓倫, 碩士論文,台灣科技大學, 2011.
    [28] 葉冠良, 碩士論文,台灣科技大學, 2015.
    [29] E. J. Bartkus and C. H. Kroekel, Appl.Polym.Symp, 15, 113, 1970.
    [30] K.E.Atkins, "Sheet Molding Compound :Science and Technology," Ed., H.G. Kia, Hanser Publishers, Ch4, 1993.
    [31] V. A. Pattison, R. R. Hindersinn, and W. T. Schwartz, J.Appl.Polym.Sci., 19, 3045, 1975.
    [32] L. Suspene, D. Fourquier, and Y. S. Yang, Polymer, 32, 1593, 1991.
    [33] Y. J. Huang and C. M. Liang, Polymer, 37, 401, 1996.
    [34] W. L. L. J. Lee and K. H. Hsu, Polymer, 41, 711, 2000.
    [35] C. B. Bucknall, I. K. Partridge, and M. J. Phillips, Polymer, 32, 636, 1991.
    [36] Y. J. Huang, T. S. Chen, J. G. Huang, and F. H. Lee, J. Appl. Polym. Sci., 89, 3336, 2003.
    [37] J. P. Dong, J. H. Lee, D. H. Lai, and Y. J. Huang, Appl. Polym.Sci., 98, 264, 2005.
    [38] C. P. Hsu, M. Kinkelaar, P. Hu, and L. J. Lee, Polym.Eng.Sci., 31, 1450, 1991.
    [39] Y. J. Huang, C. J. Chu, and J. P. Dong, J. Appl. Polym. Sci., 78, 543, 2000.
    [40] Y. J. Huang and C. C. Su, J.Appl. Polym. Sci., 55, 323, 1995.
    [41] J. P. Dong, J. G. Huang, J. W. R. F.H. Lee, and Y. J. Huang, J.Appl.Polym.Sci., 91, 3388, 2004.
    [42] Y. J. Huang and W. C. Jiang, Polymer, 39, 6631, 1998.
    [43] E. P. Plueddemann, Silane Coupling Agents, Springer US, 2013.
    [44] E. P. Plueddemann and H. A. Clark, Mod. Plast 40(6), 133, 1963.
    [45] F. Osterholtz and E. Pohl, Surfaces and Interfaces.vol 1, 481-500, 1986.
    [46] A. D. Gianni, E. Amerio, O. Monticelli, and R. Bongiovanni, Applied Clay Science 42, 116-124, 2008.
    [47] B. Ahmadi-Moghadam, M. Sharafimasooleh, S. Shadlou, and F. Taheri, Materials & Design 66, 142-149, 2015.
    [48] H. Kim, A. A. Abdada, and C. W. Macosko, "Macromolecule," 43, 6500, 2010.
    [49] K. Hu, D. D. Kulkarni, I. Choi, and V. V. Tsukruk, Prog. Polym. Sci., 39,1934, 2014.
    [50] H. Kim and C. W. Macosko, Macromolecules, 41, 3317, 2008.
    [51] W. Huang, X. Ouyang, and L. J. Lee, ACS Nano, 6, 10178, 2012.
    [52] J. Z. Xu, C. Chen, Y. Wang, H. Tang, Z. M. Li, and B. S. Hsiao, Macromolecules, 44, 2808, 2011.
    [53] J.R.Potts, O.Shankar, L. Du, and R. S. Ruoff, Macromolecules, 45, 6045, 2012.
    [54] S. Wang, M. Tambraparni, J. Qiu, J. Tipton, and D. Dean, Macromolecules, 42, 5251, 2009.
    [55] S. Ganguli, A. K. Roy, and D. P. Anderson, Carbon, 46, 806-817, 2008.
    [56] M. Martin-Gallego, R. Verdejo, M. A. Lopez-Manchado, and M. Sangermano, Polymer, 52, 4664, 2011.
    [57] S. Stankovich et al., Carbon, 45, 1558, 2007.
    [58] W. S. Hummers and R. E. Offeman, J. Am. Chem. Soc., 80, 1339, 1958.
    [59] H. C. Schniepp et al., The Journal of Physical Chemistry B, 110, 8535, 2006.
    [60] Y. Yang, J. Wang, J. Zhang, J. Liu, X. Yang, and H. Zhao, Langmuir, 25, 11808, 2009.
    [61] F. Beckert, C. Friedrich, R. Thomann, and R. Mulhaupt, Macromolecules, 45, 7083, 2012.
    [62] F.Beckert, C.Friedrich, R.Thomann, and R.Mulhaupt, Macromolecules, 45, 1346, 2012.
    [63] M.J.McAllister et al., Chemistry of Materials, 19,4396-4404, 2007.
    [64] I.A.Aksay, D.L.Milius, S.Korkut, and R.K.Prudhomme, W.O.Patent, 134492,A2, 2009.
    [65] 王詠正, 碩士論文,台灣科技大學, 2021.
    [66] 黃妍綾, 碩士論文,台灣科技大學, 2020.
    [67] 王妤榛, 碩士論文,台灣科技大學, 2016.
    [68] 周雅欣, 碩士論文,台灣科技大學, 2020.
    [69] S. Colonna, O. Monticelli, J. Gomez, C. Novara, G. Saracco, and A. Fina, Polymer 102, 292-300, 2016.
    [70] Y. S. Yang and L. J. Lee, Polymer, 29, 1793, 1988.
    [71] K. Horie, I. Mita, and H. Kambe, J. Polym. Sci.:Part A1:Polymer Physics Edition, 8, 2839, 1970.
    [72] 吳晨瑜, 碩士論文,台灣科技大學, 2016.
    [73] 江昆達, 碩士論文,台灣科技大學, 2008.
    [74] S. L. Rosen, Fundamental Principles of Polymeric Materials, 2ed, Wiley, New York, p. 321-337, 1993.
    [75] Y. J. Huang and J. S. Leu, Polymer, 34, 295, 1993.
    [76] 廖婉儒, 碩士論文,台灣科技大學, 2018.
    [77] 許廷宇, 碩士論文,台灣科技大學, 2009.
    [78] J. Choi, J. Harcup, Q. Z. A.F. Yee, and R. M. Laine, J. Am. Chem. Soc., 123,11420, 2001.
    [79] R. J. Roe, Methods of X-ray and Neutron Scattering in Polymer Science, Oxford University Press, New York,, Ch5, 2000.
    [80] J. Als-Nielsen and D. McMorrow, "Elements of Modern X-ray Physics," 2nd Ed., Wiley, New York, p. 137, 2011.
    [81] H. Kim, Y. Miura, and C. W. Macosko, Chemistry of Materials, 22, 3441, 2010.
    [82] A. Al-khanabashi, M. El-Gamal, and A. Moet, J. Appl. Polym. Sci., 98, 767, 2005.
    [83] Y. J. Huang and J. C. Horng, Polymer, 39, 3683, 1998.
    [84] 張容瑋, 碩士論文,台灣科技大學, 2021.
    [85] O. Eksik, S. F. Bartolucci, T. Gupta, H. Fard, T. Borca-Tasciuc, and N. Koratkar, Carbon 101, 239-244, 2016.
    [86] R. Aradhana, S. Mohanty, and S. K. Nayak, Polymer 141, 109-123, 2018.

    QR CODE