簡易檢索 / 詳目顯示

研究生: 賴姿璇
Tzu-Hsuan Lai
論文名稱: 還原氧化石墨烯/超奈米鑽石複合結構之氫氣感測特性
Reduced Graphene Oxide/ Ultra-nanocrystalline Diamond Hybrid Structure for Hydrogen Sensor
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 周賢鎧
Shyan-kay Jou
章詠湟
Yung-Huang Jang
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 111
中文關鍵詞: 超奈米結晶鑽石還原氧化石墨烯氫氣感測器
外文關鍵詞: nitrogen based ultra-nanocrystalline diamond, diamond gas sensor
相關次數: 點閱:322下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個部分,第一部分探討以不同時間成長還原氧化石墨烯以及超奈米結晶鑽石的品質,並將其分別製作成氫氣感測元件做分析,且探討還原氧化石墨烯與不同成長時間超奈米鑽石結晶複合結構之氫氣感測特性;第二部分探討不同成長時間之還原氧化石墨烯與超奈米鑽石結晶複合結構之氫氣感測特性,並以FE-SEM、FEG-TEM、AFM、Raman、PL、Gas Sensor等分析判定還原氧化石墨烯與鑽石的特性與品質。

    研究發現,不同成長時間的還原氧化石墨烯經拉曼光譜儀與原子力顯微鏡分析擁有不同的缺陷程度與粗糙度,而得知成長七小時之還原氧化石墨烯擁有最差的品質及粗糙度,但其氫氣感測分析中獲得最佳靈敏度22.11%。在不同成長時間的超奈米鑽石結晶中,依成長時間的不同,擁有不同的晶粒尺寸與成膜性質,而成長五分鐘的超奈米鑽石有較大的比表面積,故其有最佳的靈敏度7.51%。
    將成長七小時的還原氧化石墨烯與成長五分鐘的超奈米結晶鑽石做複合結構,因其有最佳披覆效果與PN接面的產生,故可達到本研究中最大的氣體靈敏度55.90%。


    Gas sensor devices are playing important role among the most essential technologies in our daily life. Generally, gas sensors utilize in the detection of explosive gases and toxic analytes for the purpose of human safety, industrial processes, and observing air quality level. The selective sensing of hazardous and explosive gases with excellent sensitivity is serious problem up to date. Since hydrogen (H2) is future fuel, however, it is unsafe when about 4 vol % in the atmosphere, so it is important to detect with nano material based sensors.

    In this context, we focus on the fabrication of hybrid gas sensors using nanosized diamond material with glucose derived reduced graphene oxide. This study is divided into two parts. The first part, we study the quality of reduced graphene oxide (rGO) and nitrogen based ultra-nanocrystalline diamond (N-UNCD) with different growth time and studied their H2 sensing properties. It is revealed that the rGO prepared with growth time of 7hr, exhibits many defects and better sensing properties (22.11%) compare with other growth time. On the other hand, N-UNCD with growth time of 5 min reveal good sensing (7.51%) than other growth time.

    Finally, we fabricate the hybrid materials using rGO-7hr/N-UNCD-5min for high performance H2 hydrogen sensor. The systematic investigations were revealed that rGO-7hr/N-UNCD-5min based sensor exhibits an ultrahigh sensor response of 55.90%. The rGO-7hr/N-UNCD-5min based sensor was also found to be well-retained with repeatability and long-term stability due to the formation of PN junction. The significant features of this rGO-7hr/N-UNCD-5min based hybrid nanostructure are promising candidate for new generation H2 sensors

    目錄 中文摘要..........Ⅰ 英文摘要.........Ⅱ 致謝.............Ⅲ 目錄.............Ⅳ 圖目錄...........Ⅶ 表目錄...........Ⅺ 第一章 緒論...............1 1.1 前言...............1 1.2 研究動機...............3 第二章 文獻回顧...............4 2.1還原氧化石墨烯的特性簡介...............4 2.1.1 還原氧化石墨烯的結構與性質...............4 2.1.2 還原氧化石墨烯的特性...............5 2.1.3 氧化石墨烯的還原方法...............6 2.2 鑽石薄膜之特性簡介...............7 2.2.1 鑽石薄膜簡介...............7 2.2.2 結晶鑽石成長機制...............9 2.3 氣體感測器機制與種類...............13 2.3.1電化學型氣體感測器...............13 2.3.2紅外線感測型氣體感測器...............15 2.3.3觸媒燃燒型氣體感測器...............15 2.3.4金屬氧化物半導體型氣體感測器...............16 2.4 還原氧化石墨烯氣體感測器...............18 第三章 實驗方法...............22 3.1 實驗設計與流程...............22 3.2 製備之材料介紹...............25 3.3 基板清洗...............26 3.4 水熱法(Hydrothermal method)成長還原氧化石墨烯...............27 3.5 微波電漿化學氣相沉積法成長奈米結晶鑽石...............28 3.6 氣體感測元件製作...............30 3.7 儀器設備與材料分析方法...............31 3.7.1 場發射掃描式電子顯微鏡(FE-SEM)...............31 3.7.2 場發射槍穿透式電子顯微鏡(FEG-TEM)...............32 3.7.3 原子力顯微鏡(Atomic Force Microscope,AFM)...............33 3.7.4 拉曼光譜儀(Raman spectrum)...............33 3.7.5 光激發螢光光譜儀(Photoluminescence,PL)...............34 3.7.6 氣體感測器(Gas sensor)...............35 第四章 還原氧化石墨烯(rGO-7)/超奈米鑽石複合結構之氫氣感測特性...............36 4.1還原氧化石墨烯特性分析...............36 4.1.1 表面型態分析...............36 4.1.2 拉曼光譜儀分析...............40 4.1.3 還原氧化石墨烯之氫氣感測分析...............42 4.2 超奈米鑽石特性分析...............44 4.2.1 表面型態分析...............44 4.2.2 拉曼光譜儀分析...............47 4.2.3 光激發螢光頻譜儀分析...............48 4.2.4 超奈米鑽石之氫氣感測分析...............51 4.3 還原氧化石墨烯(rGO-7)/超奈米鑽石複合結構之特性分析...............53 4.3.1 表面型態分析...............53 4.3.2 拉曼光譜儀分析...............59 4.3.3 光激發螢光頻譜儀分析...............60 4.3.4 還原氧化石墨烯(rGO-7)/超奈米鑽石複合結構之氫氣感測分析...............62 第五章 還原氧化石墨烯/超奈米鑽石(ND-5)複合結構之氫氣感測特性...............69 5.1 還原氧化石墨烯/超奈米鑽石(ND-5)複合結構之特性分析...............69 5.1.1 表面型態分析...............69 5.1.2 拉曼光譜儀分析...............76 5.1.3 光激發螢光頻譜儀分析...............78 5.1.4 還原氧化石墨烯/超奈米鑽石(ND-5)複合結構之氫氣感測分析...............80 第六章 結論與未來展望...............89 6.1 結論...............89 6.2 未來展望...............91 參考文獻...............93

    [1].H. He et al., Chem. Phys. Lett., 287, 53 (1998)
    [2].C. Hontoria-Lucas et al., Carbon, 33, 1585 (1995)
    [3].M. Chhowalla et al., Nature Chem. (2010)
    [4].J. Ito et al., J. Appl. Phys., 103, 113712 (2008)
    [5].B. C. Brodie et al., Philos. Trans. R. Soc. London, 149, 249 (1959)
    [6].J. William et al., J. Am. Chem. Soc., 80, 1339 (1958)
    [7].Y. Xu et al., J. Am. Chem. Soc., 130, 5856 (2008)
    [8].G. Eda et al., Adv. Mater.,22,2392 (2010)
    [9].S. Maruyama, R. Kojima, Y. Miyauchi, S. Chiashi, M. Kohno, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chemical Physics Letters 360, 229–234 (2002)
    [10].C. Y. Su, Y. Xu, W. Zhang, J. Zhao, A. Liu, X. Tang, C. H. Tsai, Y. Huang, L. J. Li, Highly Efficient Restoration of Graphitic Structure in Graphene Oxide Using Alcohol Vapors, ACS Nano 4, 9, 5285–5292 (2010)
    [11].D. R. Dreyer, S. Murali, Y. Zhu, R. S. Ruoffb, C. W. Bielawski, Reduction of graphite oxide using alcohols, J. Mater. Chem. 21, 3443–3447 (2011)
    [12].S. Liua, Ke Chena, Y. Fua, S. Yua, Z. Baoa, Reduced graphene oxide paper by supercritical ethanol treatment and its electrochemical properties, Applied Surface Science 258, 5299–5303 (2012)
    [13].Z, G, Wang, P. J. Li, Y. F. Chen, J. R. He, B. J. Zheng, J. B. Liu, F. Qi, The green synthesis of reduced graphene oxide by the ethanol-thermal reaction and its electrical properties, Materials Letters 116, 416–419 (2014)
    [14].S.Matusumoto, Y.Sato, M.Kamo, and N.Setaka, Vapor Depositiion of Diamond Particles from Methane Japanese J.Appl. Phys. (1992) 1562.
    [15].曾永華、陳柏穎、鄭宇明、游銘永,”人造鑽石的合成及應用”,科學發展497期,一百零三年五月。
    [16]. http://www.sanlien.com/ad/san_tech.nsf/foundationview/836522106181709A482577A5002C8968/$FILE/77-25-31.pdf
    [17].http://highscope.ch.ntu.edu.tw/wordpress/?p=40839
    [18].N. Yamazoe, J. Fuchigami, M. Kishikawa, and T. Seiyama, Surf. Sci. 86, 335 (1979).
    [19].林鴻明、曾世杰,”奈米半導體材料之特殊氣體感測性質”,工業材料157 期,八十九年1月,163-169頁。
    [20].林鴻明,「超微粒半導體氣體感測材料之性質研究」,工程科技通訊,第五十九期,九十年十二月,52-56頁。
    [21].林鴻明,「奈米化學感測材料」,化工科技與商情,No.38,2002年11月,18-28頁。
    [22].http://web.it.nctu.edu.tw/~FMPANLAB/sensor.htm
    [23].G. Eda, G. Fanchini and M. Chhowalla, Nat. Nanotechnol., 2008, 3, 270–274
    [24].I. Jung, D. A. Dikin, R. D. Piner and R. S. Ruoff, Nano Lett., 2008, 8, 4283–4287
    [25].A. Sinitskii, A. Dimiev, D. V. Kosynkin and J. M. Tour, ACS Nano, 2010, 4, 5405–5413
    [26].J. T. Robinson, F. K. Perkins, E. S. Snow, Z. Wei and P. E. Sheehan, Nano Lett., 2008, 8, 3137–3140
    [27].R. Arsat, M. Breedon, M. Shafiei, P. G. Spizziri, S. Gilje, R. B. Kaner, K. Kalantar-zadeh and W. Wlodarski, Chem. Phys. Lett., 2009, 467, 344–347
    [28].J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano, 2009, 3, 301–306
    [29].G. Lu, L. E. Ocola and J. Chen, Appl. Phys. Lett., 2009, 94, 083111
    [30].G. Lu, L. E. Ocola and J. Chen, Nanotechnology, 2009, 20, 445502
    [31].M. Zhou, Y. Zhai and S. Dong, Anal. Chem., 2009, 81, 5603–5613
    [32].V. Dua, S. P. Surwade, S. Ammu, S. R. Agnihotra, S. Jain, K. E. Roberts, S. Park, R. S. Ruoff and S. K. Manohar, Angew. Chem., Int. Ed., 2010, 49, 2154–2157
    [33].W. Li, X. Geng, Y. Guo, J. Rong, Y. Gong, L. Wu, X. Zhang, P. Li, J. Xu, G. Cheng, M. Sun and L. Liu, ACS Nano, 2011, 5, 6955–6961
    [34].G. Lu, S. Park, K. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann and J. Chen, ACS Nano, 2011, 5, 1154–1164
    [35].J. Wang, Y. Kwak, I.-y. Lee, S. Maeng and G.-H. Kim, Carbon, 2012, 50, 4061–4067
    [36].M. Segal, Nat. Nanotechnol., 2009, 4, 612–614
    [37].M. Krueger, S. Berg, D. Stone, E. Strelcov, D. A. Dikin, J. Kim, L. J. Cote, J. X. Huang and A. Kolmakov, ACS Nano, 2011, 5, 10047–10054
    [38].N. I. Kovtyukhova, P. J. Ollivier, B. R. Martin, T. E. Mallouk, S. A. Chizhik, E. V. Buzaneva and A. D. Gorchinskiy, Chem. Mater., 1999, 11, 771–778
    [39].D. A. Dikin, S. Stankovich, E. J. Zimney, R. D. Piner, G. H. B. Dommett, G. Evmenenko, S. T. Nguyen and R. S. Ruoff, Nature, 2007, 448, 457–460
    [40].I. Jung, D. A. Field, N. J. Clark, Y. W. Zhu, D. X. Yang, R. D. Piner, S. Stankovich, D. A. Dikin, H. Geisler, C. A. Ventrice and R. S. Ruoff, J. Phys. Chem. C, 2009, 113, 18480–18486
    [41].A. Mathkar, D. Tozier, P. Cox, P. J. Ong, C. Galande, K. Balakrishnan, A. L. M. Reddy and P. M. Ajayan, J. Phys. Chem. Lett., 2012, 3, 986–991
    [42].D. R. Dreyer, S. Park, C. W. Bielawski and R. S. Ruoff, Chem. Soc. Rev., 2010, 39, 228–240
    [43].A. Sinitskii and J. M. Tour, in Graphene Nanoelectronics: From Materials to Circuits, ed. R. Murali, Springer, New York, NY, 2012, ch. 8, pp. 205–234
    [44].S. Liu, G. Wang, H.Y. Hou, X.X. Liu, J.X. Duan, Q.S. Liao,Binder-free combination of large area reduced graphene oxide nanosheets with Cu foil for lithium ion battery anode ,Diam. Relat. Mater., 68 (2016), pp. 102-108
    [45].J. Fang, Z.G. Xie, G. Wallace, X.G. Wang,Co-deposition of carbon dots and reduced graphene oxide nanosheets on carbon-fiber microelectrode surface for selective detection of dopamine,Appl. Surf. Sci., 412 (2017), pp. 131-137
    [46].M. Fathy, A. Gomaa, F.A. Taher, M.M. El-Fass, A.E.H.B. Kashyout,Optimizing the preparation parameters of GO and rGO for large-scale production,J. Mater. Sci., 51 (2016), pp. 5664-5675
    [47].J.R. Huang, W. Wang, X.R. Lin, C.P. Gu, J.Y. Liu,Three-dimensional sandwich-structured NiMn2O4@reduced graphene oxide nanocomposites for highly reversible Li-ion battery anodes,J. Power Sources, 378 (2018), pp. 677-684
    [48].W. Wang, X.J. Song, C.P. Gu, D.X. Liu, J.Y. Liu, J.R. Huang,A high-capacity NiCo2O4@reduced graphene oxide nanocomposite Li ion battery anode,J. Alloys Compd., 741 (2018), pp. 223-230
    [49].J. Wei, Z.G. Zang, Y.B. Zhang, M. Wang, J.H. Du, X.S. Tang,Enhanced performance of light-controlled conductive switching in hybrid cuprous oxide/reduced graphene oxide (Cu2O/rGO) nanocomposites,Opt. Lett., 42 (2017), pp. 911-914
    [50].Z.G. Zang, X.F. Zeng, M. Wang, W. Hu, C.R. Liu, X.S. Tang,Tunable photoluminescence of water-soluble AgInZnS-graphene oxide (GO) nanocomposites and their application in-vivo bioimaging,Sens. Actuators B: Chem., 252 (2017), pp. 1179-1186
    [51].E. Singh, M. Meyyappan, H.S. Nalwa,Flexible graphene-based wearable gas and chemical sensors,ACS Appl. Mater. Interfaces, 9 (2017), pp. 34544-34586
    [52].S. Nasresfahani, M.H. Sheikhi, M. Tohidi, A. Zarifkar,Methane gas sensing properties of Pd-doped SnO2/reduced graphene oxide synthesized by a facile hydrothermal route,Mater. Res. Bull., 89 (2017), pp. 161-169
    [53].Q.X. Feng, X.G. Li, J. Wang,Percolation effect of reduced graphene oxide (rGO) on ammonia sensing of rGO-SnO2 composite based sensor,Sens. Actuators B: Chem., 243 (2017), pp. 1115-1126
    [54].R. Furue, E.P. Koveke, S. Sugimoto, Y. Shudo, S. Hayami, S.I. Ohira, K. Toda,Arsine gas sensor based on gold-modified reduced graphene oxide,Sens. Actuators B: Chem., 240 (2017), pp. 657-663
    [55].Y.J. Yang, X.J. Yang, W.Y. Yang, S.B. Li, J.H. Xu, Y.D. Jiang,Porous conducting polymer and reduced graphene oxide nanocomposites for room temperature gas detection,RSC Adv., 4 (2014), pp. 42546-42553
    [56].A.A. Khaleed, A. Bello, J.K. Dangbegnon, M.J. Madito, F.U. Ugbo, A.A. Akande, B.P. Dhonge, F. Barzegar, D.Y. Momodu, B.W. Mwakikunga, N. Manyala,Gas sensing study of hydrothermal reflux synthesized NiO/graphene foam electrode for CO sensing,J. Mater. Sci., 52 (2017), pp. 2035-2044
    [57].M. Yang, X.F. Zhang, X.L. Cheng, Y.M. Xu, S. Gao, H. Zhao, L.H. Huo,Hierarchical NiO cube/nitrogen-doped reduced graphene oxide composite with enhanced H2S sensing properties at low temperature,ACS Appl. Mater. Interfaces, 9 (2017), pp. 26293-26303
    [58].D.Z. Zhang, H.Y. Chang, P. Li, R.H. Liu,Characterization of nickel oxide decorated-reduced graphene oxide nanocomposite and its sensing properties toward methane gas detection,J. Mater. Sci.: Mater. Electron., 27 (2016), pp. 3723-3730
    [59].F. Schedin, A. K. Geim, S. V. Morozov, E. W. Hill, P. Blake, M. I. Katsnelson and K. S. Novoselov, Nat. Mater., 2007, 6, 652–655
    [60].J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano, 2009, 3, 301–306
    [61].G. Lu, S. Park, K. Yu, R. S. Ruoff, L. E. Ocola, D. Rosenmann and J. Chen, ACS Nano, 2011, 5, 1154–1164
    [62].J. L. Johnson, A. Behnam, S. J. Pearton and A. Ural, Adv. Mater., 2010, 22, 4877–4880
    [63].Y. Dan, Y. Lu, N. J. Kybert, Z. Luo and A. T. C. Johnson, Nano Lett., 2009, 9, 1472.
    [64].J. D. Fowler, M. J. Allen, V. C. Tung, Y. Yang, R. B. Kaner and B. H. Weiller, ACS Nano, 2009, 3, 301.
    [65].G. Lu, L. E. Ocola and J. Chen, Appl. Phys. Lett., 2009, 94, 083111
    [66].G. Lu, L. E. Ocola and J. Chen, Nanotechnology, 2009, 20, 445502
    [67].G. Lu, K. Yu, L. E. Ocola and J. Chen, Chem. Commun., 2011, 47, 7761.
    [68].F. Yavari, E. Castillo, H. Gullapalli, P. M. Ajayan and N. Koratkar, Appl. Phys. Lett., 2012, 100, 203120
    [69].F. Yavari, Z. Chen, A. V. Thomas, W. Ren, H.-M. Cheng and N. Koratkar, Sci. Rep., 2011, 1, 166
    [70].K. Yu, Z. Bo, G. Lu, S. Mao, S. Cui, Y. Zhu, X. Chen, R. S. Ruoff and J. Chen, Nanoscale Res. Lett., 2011, 6, 202
    [71].K. Yu, P. Wang, G. Lu, K.-H. Chen, Z. Bo and J. Chen, J. Phys. Chem. Lett., 2011, 2, 53
    [72].S. Mao, S. Cui, G. Lu, K. Yu, Z. Wen and J. Chen, J. Mater. Chem., 2012, 22, 11009
    [73].Shun Mao,Ganhua Lu and Junhong Chen, Nanocarbon-based gas sensors: progress and challenges,J. Mater. Chem. A, 2014, 2, 5573-5579
    [74].S. Deng, V. Tjoa, H. M. Fan, H. R. Tan, D. C. Sayle, M. Olivo, S. Mhaisalkar, J. Wei and C. H. Sow, J. Am. Chem. Soc., 2012, 134, 4905
    [75].A. Gutes, B. Hsia, A. Sussman, W. Mickelson, A. Zettl, C. Carraro and R. Maboudian, Nanoscale, 2012, 4, 438
    [76].M. Shafiei, P. G. Spizzirri, R. Arsat, J. Yu, J. du Plessis, S. Dubin, R. B. Kaner, K. Kalantar-Zadeh and W. Wlodarski, J. Phys. Chem. C, 2010, 114, 13796
    [77].J. Yi, J. M. Lee and W. Il Park, Sens. Actuators, B, 2011, 155, 264
    [78].Z. Zhang, R. Zou, G. Song, L. Yu, Z. Chen and J. Hu, J. Mater. Chem., 2011, 21, 17360
    [79].L. Zhou, F. Shen, X. Tian, D. Wang, T. Zhang and W. Chen, Nanoscale, 2013, 5, 1564
    [80].P. A. Russo, N. Donato, S. G. Leonardi, S. Baek, D. E. Conte, G. Neri and N. Pinna, Angew. Chem., Int. Ed., 2012, 51, 11053
    [81].S. Cui, Z. Wen, E. C. Mattson, S. Mao, J. Chang, M. Weinert, C. J. Hirschmugl, M. Gajdardziska-Josifovska and J. Chen, J. Mater. Chem. A, 2013, 1, 4462
    [82].A. C. Ferrari, J. C. Meyer, V. Scardaci, C. Casiraghi, M. Lazzeri, F. Mauri, S. Piscanec, D. Jiang, K. S. Novoselov, S. Roth, and A. K. Geim, Raman Spectrum of Graphene and Graphene Layers, Phys. Rev. Lett. 97, 187401(2006)
    [83].W. Wu et al., Wafer-scale synthesis of graphene by chemical vapor deposition and its application in hydrogen sensing, Sensors and Actuators B:Chemical,150 (2010) 296-300
    [84].吳仁彰、賴曉芳、鄭創元,二氧化鈦奈米材料應用於甲醛氣體感測,科儀新知198期,103年3月。

    QR CODE