簡易檢索 / 詳目顯示

研究生: 黎玉瓊花
Le - Ngoc Quynh Hoa
論文名稱: 還原氧化石墨烯擔載之雙金屬鈀金奈米觸媒於雙氧水綠色生產之應用
Reduced Graphene Oxide supported bimetallic Pd-Au nanocatalysts for green production of Hydrogen Peroxide
指導教授: 黃炳照
Bing-Joe Hwang
口試委員: 周澤川
Tse-Chuan Chou
林智汶
Chi-Wen Lin
周宏隆
Hung-Lung Chou
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 97
中文關鍵詞: 還原氧化石墨烯雙金屬鈀金奈米雙氧水
外文關鍵詞: Reduced Graphene Oxide, bimetallic Pd-Au, Hydrogen Peroxide
相關次數: 點閱:299下載:3
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 雙氧水在工業上非常廣用,為具有價值之化學品,其需求量近來日益增加。本研究以修飾還原氧化石墨烯擔載之鈀金(PdAu)奈米觸媒, 並利用直接合成法於室溫室壓條件下合成雙氧水。

    首先製備各種不同PdAu組成之奈米觸媒,承載於還原氧化石墨 烯上,並以XRD, SEM, TEM, Raman, FTIR與電化學分析做鑑定。研 究結果發現以組成為Pd07Au03之奈米觸媒展現出對雙氧水產生有最 佳之活性,此可歸因於其具有較佳之雙金屬合金程度。接著將氧化石 墨烯做磺化(sulfonation)處理,並承載Pd07Au03之奈米觸媒於其上;結 果發現雙氧水產生的活性更進一步的提昇。

    本研究成功地在室溫室壓條件下以修飾還原氧化石墨烯擔載之 PdAu奈米觸媒製備高產量之雙氧水。發展之PdAu奈米觸媒系統為 新穎且具有吸引力之提昇雙氧水產量之策略。


    Hydrogen Peroxide is a valuable chemical with wide spread uses in industry; its demand is recently increasing due to its utilization. The modified reduced graphene oxide supported PdAu nanocatalysts were prepared for direct synthesis of hydrogen peroxide at ambient conditions in this work.

    The various atomic ratios of PdAu nanocatalysts on reduced graphene oxides were synthesized and characterized by XRD, SEM, TEM, Raman, FTIR and electrochemical analysis. It is found that the Pd07Au03 nanocatalyst shows the highest productivity of hydrogen peroxide due to its higher alloying extent. The graphene oxides were further modified by sulfonation. The results indicate the productivity can be further improved when Pd07Au03 nanocatalysts were prepared on the modified reduced graphene oxide. The high productivity of hydrogen peroxide was successfully achieved on the developed PdAu/mrGO nanocatalysts at ambient conditions. The method developed for preparation of PdAu nanocatalysts on modified reduced graphene oxide opens a new and interesting direction for increasing productivity hydrogen peroxide.

    ABSTRACT I CHAPTER I 1 INTRODUCTION 1 1.1. General aspects and application of H2O2 1 1.2. The production of H2O2 5 1.3. Direct synthesis of H2O2 9 1.4. Drawback in the catalytic direct synthesis of H2O2 11 CHAPTER II 14 LITERATURE REVIEW & OBJECTIVE 14 2.1. Catalysts used in the direct synthesis of H2O2 from H2 and O2 14 2.1.1 Direct synthesis of H2O2 by bimetallic alloy Pd-Au/C 16 2.1.2 Reduced graphene oxide support of Pd-Au nanoparticles for direct synthesis H2O2 17 2.1.3 Synthesis of graphite oxide support 19 2.2. Synthesis of alloy & core-shell bimetallic Pd-Au/rGO 20 2.3. X-ray absorption spectroscopy (XAS) [23] 24 2.4. Electrochemical measurement 27 2.4.1 Electrochemical measurement of H2O2 detection with RDE 27 2.4.2 Linear sweep voltammetry (LSV) 28 2.4.3 Cyclic Voltammogram 31 2.4.4 Chronoamperometry 32 2.5. Research challenge 34 2.6. Research Objective 34 CHAPTER III 35 EXPERIMENTAL AND INSTRUMENTAL SETUP 35 3.1. Materials 35 3.2. Preparation of bimetallic catalyst Pd-Au/reduced graphene oxide and modified functional group of reduced graphene oxide. 35 3.3. Synthesis of graphite oxide 36 3.4. Synthesis of bimetallic PdAu/rGO in oil bath 38 3.5. Synthesis of modified reduced graphene oxide (mrGO) 39 3.6. Synthesis of PdAu catalyst supported on modified reduced graphene oxide (mrGO) 41 3.7. Instrumentation 43 3.7.1 X-Ray diffraction (XRD) 43 3.7.2. Transmission electron microscopy (TEM) 45 3.7.3. Field emission scanning electron microscope (FESEM) 46 3.7.4. Fourier transforms infrared spectroscopy (FTIR) 48 3.7.5. RAMAN spectroscopy 48 3.7.6. Electrochemical measurement test 50 CHAPTER IV 52 RESULTS AND DISCUSSION 52 4.1. Synthesis of graphite oxide 52 4.1.1 X-ray diffraction of graphite oxide 52 4.1.2 SEM of reduced graphene oxide 53 4.2. Synthesis of Pd-Au/reduced graphene oxide 54 4.2.1 XRD of PdAu/rGO 55 4.2.2 X-ray adsorption of PdAu/rGO 57 4.2.3 TEM images of PdAu/rGO 59 4.2.4 Electrochemical measurement 62 4.3. Synthesis of Pd-Au/modified reduced graphene oxide 68 4.3.1 XRD of modified reduced graphene oxide 68 4.3.2 Electrochemical measurement of Pd-Au/modified rGO 70 4.4. Comparison between PdAu/rGO and PdAu/mrGO 72 4.4.1 Raman Spectroscopy 72 4.4.2 Performance of PdAu/rGO and PdAu/mrGO 74 4.5. Comparison of our result with literature 75 CHAPTER V 78 CONCLUSION 78

    1. Lee C., Wie X., Kysar J.W., Hone J., Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene, Science, 2008: p. 385-388.
    2. Campos-Martin JM, Blanco-Brieva G, Fierro JL, Hydrogen Peroxide Synthesis: An Outlook beyond the Anthraquinone Process, Angewandte Chemie International, 2006, 45(42): p. 6962-6984.
    3. Deed, Terry, H2O2 Manufacturing Process, 2008.
    4. Global Industry Analysts, Inc. , HYDROGEN PEROXIDE - A GLOBAL STRATEGIC BUSINESS REPORT 2012: San Jose, CA.
    5. Thomas Kälin, Michael P. Malveda, Hiroaki Mori, AROMATIC KETONE POLYMERS, in Chemical Economics Handbook. 2012.
    6. Marco Piccinini, Jennifer K. Edwards, Jacob A. Moulijn, Graham J. Hutchings, Influence of reaction conditions on the direct synthesis of hydrogen peroxide over AuPd/carbon catalysts, Catal. Sci. Technol., 2012, 2: p. 1908–1913.
    7. Jennifer K. Edwards, Graham J. Hutchings, Palladium and Gold–Palladium Catalysts for the Direct Synthesis of Hydrogen Peroxide, Angewandte Chemie International, 2008, 47(48): p. 9192-9198.
    8. Juan García-Serna, Teresa Moreno, Pierdomenico Biasi, María J. Cocero, Jyri-Pekka Mikkola, Tapio O. Salmi, Engineering in direct synthesis of hydrogen peroxide: targets, reactors and guidelines for operational conditions, Green Chem., 2014, 16: p. 2320–2343.
    9. Federica Menegazzoa, Maela Manzolib, Michela Signorettoa,Francesco Pinnaa, Giorgio Strukul, H2O2 direct synthesis under mild conditions on Pd–Au samples: Effectof the morphology and of the composition of the metallic phase, Catalysis Today, 2014.
    10. Samanta, Chanchal, Direct synthesis of hydrogen peroxide from hydrogen and oxygen: An overview of recent developments in the process, Applied Catalysis A, 2008, 350(2): p. 133-149.
    11. Pierdomenico Biasi, Juan Garcia Serna, Tapio O. Salmi, Jyri-Pekka Mikkola, Hydrogen Peroxide Direct Synthesis: Enhancement of Selectivity and Production with non-Conventional Methods, CHEMICAL ENGINEERING TRANSACTIONS, 2013, 32.
    12. Jennifer K. Edwards, Adrian Thomas, Albert F. Carley, Andrew A. Herzing, Christopher J. Kiely, Graham J. Hutchings, Au–Pd supported nanocrystals as catalysts for the direct synthesis of hydrogen peroxide from H2 and O2, Green Chemistry, 2008, 10: p. 388–394.
    13. Jennifer K. Edwards, Stewart F. Parker, James Pritchard, Marco Piccinini, Simon J. Freakley, Qian He, Albert F. Carley, Christopher J. Kiely, Graham J. Hutchings, Effect of acid pre-treatment on AuPd/SiO2 catalysts for the direct synthesis of hydrogen peroxide, Catal. Sci. Technol., 2013, 3: p. 812--818.
    14. Philip Landon, Paul J. Collier, Albert F. Carley, David Chadwick, Adam J. Papworth, Andrew Burrows, Christopher J. Kielyd, Graham J. Hutchings, Direct synthesis of hydrogen peroxide from H2 and O2 using Pd and Au catalysts, Phys. Chem. Chem. Phys, 2003, 5: p. 1917–1923.
    15. C. Andrew Jones, Roger A. Grey, Process for producing hydrogen peroxide, L.P. Arco Chemical Technology, Editor. 2002.
    16. Joseph L. Thomas, Gerald F. Brem, Process for recovery of precious metals, M.R.T. Inc., Editor. 2012.
    17. Jennifer K. Edwards, Benjamin Solsona, Edwin Ntainjua N, Albert F. Carley, Andrew A. Herzing, Christopher J. Kiely, Graham J. Hutchings, Switching Off Hydrogen Peroxide Hydrogenation in the Direct Synthesis Process, Science, 2009, 323(5917): p. 1037-1041.
    18. Alberto Villa, Carine E. Chan-Thaw, Laura Prati, Au NPs on anionic-exchange resin as catalyst for polyols oxidation in batch and fixed bed reactor, Applied Catalysis B: Environmental, 2010, 96(3-4): p. 541–547.
    19. Simon J. Freakley, Richard J. Lewis, David J. Morgan,Jennifer K. Edwards, Graham J. Hutchings, Direct synthesis of hydrogen peroxide using Au–Pd supported andion-exchanged heteropolyacids precipitated with various metal ions, Catalysis Today, 2014.
    20. Novoselov K.S., Geim A.K., Morozov S.V., Jiang D., Zhang Y., Dubonos S.V., Grigorieva I.V., Firsov A.A., Electric Field Effect in Atomically Thin Carbon Films, Science, 2004, 306: p. 666-669.
    21. Balandin A.A., Ghosh S., Bao W., Calizo I., Teweldebrhan D., Miao F., Lau C.N, Superior Thermal Conductivity of Single-Layer Graphene, Nano Lett, 2008, 8(3): p. 902-907.
    22. Andrzej Mianowski, Mateusz Ciszewski, Survey of graphite oxidation methods using oxidizing mixtures in inorganic acids, in Chemik International. 2013, Department of Chemistry, Inorganic Technology and Fuels, Faculty of Chemistry, Silesian University of Technology: Gliwice, Poland.
    23. Bing-Joe Hwang, Loka Subramanyam Sarma, Jiun-Ming Chen, Ching-Hsiang Chen, Shou-Chu Shih, Guo-Rung Wang, Din-Goa Liu, Jyh-Fu Lee, Mau-Tsu Tang, Structural Models and Atomic Distribution of Bimetallic Nanoparticles as Investigated by X-ray Absorption Spectroscopy, American Chemical Society, 2005, 127: p. 11140-11145.
    24. Biotechnology, Department of Chemical Engineering and, Linear Sweep and Cyclic Voltametry: The Principles
    25. Yongchao Si, Edward T. Samulski, Synthesis of Water Soluble Graphene, Nano Lett, 2008, 8(6): p. 1679–1682.
    26. Hummers, William S. and Richard E. Offeman, Preparation of Graphitic Oxide, Journal of the American Chemical Society, 1958, 80(6): p. 1339-1339.
    27. Marcano, Daniela C., et al., Improved Synthesis of Graphene Oxide, ACS Nano, 2010, 4(8): p. 4806-4814.
    28. Gaskell, Dr. Karen, Surface Analysis Center.
    29. Qi Lai, Shifu Zhu, Xueping Luo, Min Zou, Shuanghua Huang, Ultraviolet-visible spectroscopy of graphene oxides AIP Advances, 2012, 2(032146).
    30. Gyoung Hwa Jeong, Donghyeuk Choi, Meejae Kang, Jinseon Shin, Ji-goo Kang, Sang-Wook Kim, One-pot synthesis of Au@Pd/graphene nanostructures: electrocatalytic ethanol oxidation for direct alcohol fuel cells (DAFCs) RSC Adv., 2013, 3(23): p. 8864-8870.
    31. Liyuan Zhang, Tiejun Shi, Shengli Wu, Haiou Zhou, Graphene/polystyrene nanocomposites synthesized via Pickering emulsion polymerization, High Performance Polymers, 2014, 26(2): p. 156–165.
    32. Jennifer K. Edwards, Edwin Ntainjua N, Albert F. Carley, Andrew A. Herzing,Christopher J. Kiely, Graham J. Hutchings, Direct Synthesis of H2O2 from H2 and O2 over Gold, Palladium, and Gold–Palladium Catalysts Supported on Acid-Pretreated TiO2, Angew. Chem. Int, 2009, 48: p. 8512 –8515.

    QR CODE