簡易檢索 / 詳目顯示

研究生: 翟祐暄
You-syuan Jhai
論文名稱: 以二十四面奈米金屬觸媒修飾製備電流式雙氧水感測器與其應用
Fabrication of Amperometric Hydrogen Peroxide Biosensor Based on Trisoctahedral Nano-Metallic Catalyst and its Applications
指導教授: 王孟菊
Meng-jiy Wang
口試委員: 王文
Wen Wang
黃炳照
Bing-joe Hwang
林俊成
Jing-cheng Lin
郭俞麟
Yu-lin Kuo
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 131
中文關鍵詞: 核殼式奈米金屬觸媒雙氧水氧化反應葡萄糖生物感測器
外文關鍵詞: Nano-metallic catalyst, Oxidation of hydrogen peroxide
相關次數: 點閱:259下載:1
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究論文中將研究分為兩部分:(I) 二十四面體奈米金結晶(trisoctahedral gold nanocrystal, AuNCs)與核殻(core-shell)奈米金鉑(AuNCs@Pt)之合成與其電化學觸媒應用於催化雙氧水氧化還原反應感測分析。(II) 以交聯架橋法結合吸附方法固定酵素分子製備之葡萄糖生物感測器應用。
      首先,研究中第一部份將探討合成出的奈米金結晶與奈米鉑-金結晶之表面形態特性與晶相組成,及利用電化學法進行雙氧水感測與分析,因奈米金結晶具有多邊角結構而擁有眾多活性位置,為了再進一步提高奈米金屬觸媒的活性,在其表面上合成奈米鉑粒子,形成以少量鉑合成出之多面體奈米鉑結晶。由掃描式電子顯微鏡觀測鉑還原於奈米金表面,再利用紫外光-可見光光譜 (UV-vis) 及電化學酸處理結果確認鉑還原於奈米金表面,達成核殼式的奈米金鉑結構,之外,亦與玻璃碳、塊材金及市售鉑奈米觸媒比較催化雙氧水情形,並使用不同之驅動電壓與不同Nafion濃度找出最佳之感測狀態為0.5 V、0.5% Nafion,在此最佳雙氧水感測狀態表現出低偵測極限10 μM,合適線性範圍0.01 - 5.1 mM (R2 = 0.997),優秀的靈敏度397.37 μA/mM cm2,且擁有良好抗干擾能力之雙氧水感測電極。
      本論文研究中第二部份,為將雙氧水感測器應用於氧化酶感測器,建立最適化電極感測層之結構,利用奈米金結晶與蛋白質酵素混合吸附固定後,再添加微量交聯劑幫助酵素間進行交聯反應,找尋酵素溶液配方活性單位最佳量,此酵素固定化所製備之酵素感測器不僅提供溫和環境固定酵素於電極表面,修飾之離子薄膜幫助酵素與待測物質間進行選擇性生物反應,使酵素具有良好之親合性與穩定性。本研究所製備之葡萄糖感測器於0.5 V v.s Ag/AgCl施加電位下,具有感測葡萄糖線性範圍為1.0 - 7.01 mM (R2=0.996),且其偵測靈敏度86.93 μA/mMcm2,結果顯示,藉由合成之雙元奈米金屬觸媒搭配交聯結合吸附法應用於生物感測器之製程系統,成功製備具優良再現性與量測準確度、高靈敏度葡萄糖感測電極。


    This study was comprised of two parts: (I) the synthesis of trisoctahedral gold nanocrystal (AuNC) and core-shell AuNCs@Pt catalysts for the applications of electrochemical sensing of hydrogen peroxide; (II) the immobilization of enzymatic species by adding cross-linking agent to fabricate electrochemical glucose sensor.
    For the first part, the surface morphology and crystal lattice of the synthesized nano-metallic catalysts were investigated using SEM, XRD. The synthesized AuNCs showed many active sites due to their polyhedral structure. In order to enhance the catalytic ability, the AuNCs with outer layer of platinum (to form polyhedral nano platinum crystals) was synthesized which provides a particular advantage of only a small amout of platinum was needed. The results of UV-vis spectropy and electrochemical acid treatment showed that the bimetallic catalyst is core-shell structure which was almost completely covered by reduced platinum. The detection of hydrogen peroxide was measured by electrochemical methods. Moreoer, the optimized parameters for electrochemical analyses including the applied voltage and the surface protection layer were applied for the detection of hydrogen peroxide. The results showed that the detection limit of 10 μM, with a linear range of detection from 0.01 to 5.1 mM (R2=0.997), high sensitivity of 397.37 μA/(mMcm2), and excellent anti-interfering ability were obtained for the prepared sensing system.
    For the second part, the prepared sensing layer on the electrodes was further applied for the detection of glucose. In this study, the synthesized AuNCs were used to adsorb enzyme molecules which were followed by the addition of cross-linking agent to ensure the combination. The enzyme loading and operating parameters were optimized. It showed that the assembled sensor prepared under the optimized condition provided mild environment for enzyme immobilization and facilitated the bio-reaction between enzyme and bio-species, which allowed enzyme exhibiting good affinity and stability. The obtained glucose sensing at 0.5 V v.s Ag/AgCl applied potential showed linear range of 1.0 to 7.0 mM (R2=0.996), with sensitivity of 86.93 μA/mMcm2. We have shown that a highly sensitive glucose biosensor with good reproducibility and precision, high sensitivity, and great stability was successfully prepared.

    摘要 I Abstract II 誌謝 IV 目錄 V 圖索引 VIII 表索引 XIII 第一章、緒論 1 1-1、前言 1 1-2、生物感測器之發展史 2 1-3、糖尿病概要 9 1-3.1、糖尿病分類及病因 10 1-3.2、糖尿病診斷標準 10 1-4、研究動機 11 第二章、理論基礎與文獻回顧 13 2-1、何謂感測器 13 2-2、生物感測器簡介 14 2-2.1、生物感測器定義 14 2-2.2、生物感測器之基本結構與原理 14 2-2.3、生物感測器種類 16 2-2.4、訊號換能器分類 18 2-3、電化學式生物感測器 19 2-3-1、電位式 (Potentiometric) 生物感測器 19 2-3.2、電流式 (Amperometric) 生物感測器 20 2-3.3、電導式 (Conductometric) 生物感測器 21 2-4、奈米金屬粒子 22 2-4.1、奈米粒子之簡介 22 2-4.2、奈米金屬之製備方法 23 2-4.3、奈米金屬作為觸媒 25 2-4.4、奈米雙元金屬 26 2-4.5、雙元金屬之製備法 27 2-4.6、奈米金屬於生物感測器應用之文獻回顧 28 2-5、酵素簡介 30 2-5.1、酵素特性 30 2-5.2、酵素的分類 30 2-5.3、酵素專一性反應 31 2-6、生物分子固定化技術 32 2-6.1、吸附法 (Adsorption) 32 2-6.2、包埋法 (Entrapment) 33 2-6.3、共價鍵結法 (Covalent attachment) 33 2-6.4、交聯架橋法 (Cross-linking) 33 第三章、實驗方法 35 3-1、實驗設備 35 3-2、實驗藥品與樣品配製 36 3-2.1、實驗藥品 36 3-2.2、樣品配製 37 3-3、實驗方法 39 3-3.1、二十四面體奈米金結晶觸媒之合成方法 39 3-3.2、核殼式二十四面體奈米金-鉑結晶之合成方法 40 3-3.3、奈米觸媒於玻璃碳電極之修飾 40 3-3.4、氧化酶酵素於觸媒電極之修飾 41 3-3.5、實驗架構 41 3-4、分析儀器與方法 42 3-4.1、感應偶合電漿放射光譜儀分析 42 3-4.2、掃描式電子顯微鏡分析 42 3-4.3、穿透式電子顯微鏡分析 42 3-4.4、X光繞射分析 42 3-4.5、化學分析電子能譜 43 3-4.6、紫外線/可見光分光光譜儀 44 3-5、電化學分析原理 45 3-5.1、旋轉盤電極 45 3-5.2、電化學分析裝置 47 3-5.3、循環伏安法 (Cyclic Voltammetric method) 48 3-5.4、計時安培法 (Amperometric Method) 50 3-5.5、電化學阻抗分析法 51 第四章、結果與討論 55 4-1、奈米金屬觸媒之材料結構分析 55 4-1.1、ICP-AES 感應耦合電漿放射光譜分析 55 4-1.2、X-ray繞射晶格分析 56 4-1.3、化學分析電子能譜 57 4-1.4、奈米觸媒表面形態分析 (SEM、TEM) 59 4-1.5、UV-vis光譜分析 62 4-1-6、電化學硫酸處理 63 4-1-6.1、觸媒之電化學特性分析 65 4-1-6.2、活性表面積探討 68 4-1-6.3、穩定性測試 69 4-2、奈米金屬觸媒於雙氧水感測器上之製程參數 74 4-2.1、循環伏安法測定雙氧水 74 4-2-2、計時安培法測定 78 4-2-2.1、不同觸媒之定電位測定比較 78 4-2-2.2、施加電位探討 80 4-2-2.3、抗干擾策略評估 82 4-2-2.4、施加電位對干擾測試影響 86 4-2-2.5、離子選擇膜參數最適化 88 4-2-2.6、雙氧水感測器再現性測試 90 4-2-3、電化學交流阻抗分析 91 4-2-4、修飾層之掃瞄式電子顯微鏡分析 94 4-2-5、金鉑觸媒催化雙氧水反應機制探討 96 4-3、雙氧水感測器應用於氧化酶酵素感測器 97 4-3-1、葡萄糖感測器應用與製程參數 97 4-3-1.1、計時安培法評估固定酵素策略 97 4-3-1.2、修飾層之掃瞄式電子顯微鏡分析 100 4-3-1.3、循環伏安法測定葡萄糖 102 4-3-1.4、酵素活性單位承載最適化 103 4-3-1.5、葡萄糖感測器干擾測試 105 4-3-1.6、電化學交流阻抗分析 106 4-3-1.7、葡萄糖感測器再現性測試 108 4-3-1.8、酵素反應動力學 109 4-3-1.9、人體血液模擬測試 112 4-3-2、尿酸感測器應用 113 4-4、觸媒感測器之文獻比較 115 第五章、結論與未來展望 119 第六章、參考文獻 121

    [1] 台灣行政院衛生署. 民國100年主要死因分析. 2012.
    [2] Dzyadevych SV, Arkhypova VN, Soldatkin AP, El'skaya AV, Martelet C, Jaffrezic-Renault N. Amperometric enzyme biosensors: Past, present and future. ITBM-RBM. 2008;29:171-80.
    [3] Clark Jr LC, Lyons C. Electrode systems for continuous monitoring in cardiovascular surgery. Annals of the New York Academy of Sciences. 1962;102:29-45.
    [4] Guilbault GG, Lubrano GJ. An enzyme electrode for the amperometric determination of glucose. Analytica Chimica Acta. 1973;64:439-55.
    [5] Chaubey A, Malhotra BD. Mediated biosensors. Biosensors and Bioelectronics. 2002;17:441-56.
    [6] Sarma AK, Vatsyayan P, Goswami P, Minteer SD. Recent advances in material science for developing enzyme electrodes. Biosensors and Bioelectronics. 2009;24:2313-22.
    [7] Chen Z, Fang C, Wang H, He J, Deng Z. A novel disposable amperometric UA strip. Sensors and Actuators, B: Chemical. 2008;129:710-5.
    [8] Chen Z, Fang C, Qiu G, He J, Deng Z. Non-enzymatic disposable test strip for detecting uric acid in whole blood. Journal of Electroanalytical Chemistry. 2009;633:314-8.
    [9] Leech D, Kavanagh P, Schuhmann W. Enzymatic fuel cells: Recent progress. Electrochimica Acta. 2012.
    [10] Tsujimura S, Kojima S, Kano K, Ikeda T, Sato M, Sanada H, Omura H. Novel FAD-dependent glucose dehydrogenase for a dioxygen-insensitive glucose biosensor. Bioscience, Biotechnology and Biochemistry. 2006;70:654-9.
    [11] Zayats M, Katz E, Baron R, Willner I. Reconstitution of apo-glucose dehydrogenase on pyrroloquinoline quinone-functionalized Au nanoparticles yields an electrically contacted biocatalyst. Journal of the American Chemical Society. 2005;127:12400-6.
    [12] Willner I, Baron R, Willner B. Integrated nanoparticle-biomolecule systems for biosensing and bioelectronics. Biosensors and Bioelectronics. 2007;22:1841-52.
    [13] Hong J, Moosavi-Movahedi AA, Ghourchian H, Rad AM, Rezaei-Zarchi S. Direct electron transfer of horseradish peroxidase on Nafion-cysteine modified gold electrode. Electrochimica Acta. 2007;52:6261-7.
    [14] Kafi AKM, Lee DY, Park SH, Kwon YS. Amperometric biosensor based on direct electrochemistry of hemoglobin in poly-allylamine (PAA) film. Thin Solid Films. 2007;515:5179-83.
    [15] Yin Y, Lü Y, Wu P, Cai C. Direct electrochemistry of redox proteins and enzymes promoted by carbon nanotubes. Sensors. 2005;5:220-34.
    [16] Yin Y, Wu P, Lü Y, Du P, Shi Y, Cai C. Immobilization and direct electrochemistry of cytochrome c at a single-walled carbon nanotube-modified electrode. Journal of Solid State Electrochemistry. 2007;11:390-7.
    [17] Xu S, Peng B, Han X. A third-generation H2O2 biosensor based on horseradish peroxidase-labeled Au nanoparticles self-assembled to hollow porous polymeric nanopheres. Biosensors and Bioelectronics. 2007;22:1807-10.
    [18] Zong S, Cao Y, Zhou Y, Ju H. Zirconia nanoparticles enhanced grafted collagen tri-helix scaffold for unmediated biosensing of hydrogen peroxide. Langmuir. 2006;22:8915-9.
    [19] Salimi A, Sharifi E, Noorbakhsh A, Soltanian S. Direct voltammetry and electrocatalytic properties of hemoglobin immobilized on a glassy carbon electrode modified with nickel oxide nanoparticles. Electrochemistry Communications. 2006;8:1499-508.
    [20] Ghindilis AL, Atanasov P, Wilkins E. Enzyme-Catalyzed Direct Electron Transfer: Fundamentals and Analytical Applications. Electroanalysis. 1997;9:661-74.
    [21] Zheng B, Xie S, Qian L, Yuan H, Xiao D, Choi MMF. Gold nanoparticles-coated eggshell membrane with immobilized glucose oxidase for fabrication of glucose biosensor. Sensors and Actuators, B: Chemical. 2011;152:49-55.
    [22] Chu X, Duan D, Shen G, Yu R. Amperometric glucose biosensor based on electrodeposition of platinum nanoparticles onto covalently immobilized carbon nanotube electrode. Talanta. 2007;71:2040-7.
    [23] Zhang WJ, Bai L, Lu LM, Chen Z. A novel and simple approach for synthesis of palladium nanoparticles on carbon nanotubes for sensitive hydrogen peroxide detection. Colloids and Surfaces B: Biointerfaces. 2012;97:145-9.
    [24] Wang J, Rivas G, Chicharro M. Iridium-Dispersed Carbon Paste Enzyme Electrodes. Electroanalysis. 1996;8:434-7.
    [25] Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK. Catalytic activity of Au nanoparticles. Nano Today. 2007;2:14-8.
    [26] Chen X, Yan X, Khor KA, Tay BK. Multilayer assembly of positively charged polyelectrolyte and negatively charged glucose oxidase on a 3D Nafion network for detecting glucose. Biosensors and Bioelectronics. 2007;22:3256-60.
    [27] Moussy F, Jakeway S, Jed Harrison D, Rajotte RV. In vitro and in vivo performance and lifetime of perfluorinated ionomer-coated glucose sensors after high-temperature curing. Analytical Chemistry. 1994;66:3882-8.
    [28] Wang J, Wu H. Permselective lipid-poly(o-phenylenediamine) coatings for amperometric biosensing of glucose. Analytica Chimica Acta. 1993;283:683-8.
    [29] Malitesta C, Palmisano F, Torsi L, Zambonin PG. Glucose fast-response amperometric sensor based on glucose oxidase immobilized in an electropolymerized poly(o-phenylenediamine) film. Analytical Chemistry. 1990;62:2735-40.
    [30] Eremenko A, Makower A, Jin W, Ruger P, Scheller F. Biosensor based on an enzyme modified electrode for highly-sensitive measurement of polyphenols. Biosensors and Bioelectronics. 1995;10:717-22.
    [31] Debiemme-Chouvy C. A very thin overoxidized polypyrrole membrane as coating for fast time response and selective H2O2 amperometric sensor. Biosensors and Bioelectronics. 2010;25:2454-7.
    [32] Sternberg R, Bindra DS, Wilson GS, Thévenot DK. Covalent enzyme coupling on cellulose acetate membranes for glucose sensor development. Analytical Chemistry. 1988;60:2781-6.
    [33] Kuzuya T, Nakagawa S, Satoh J, Kanazawa Y, Iwamoto Y, Kobayashi M, Nanjo K, Sasaki A, Seino Y, Ito C, Shima K, Nonaka K, Kadowaki T. Report of the Committee on the classification and diagnostic criteria of diabetes mellitus. Diabetes Research and Clinical Practice. 2002;55:65-85.
    [34] He F, Tang Y, Yu M, Wang S, Li Y, Zhu D. Fluorescence-amplifying detection of hydrogen peroxide with cationic conjugated polymers, and its application to glucose sensing. Advanced Functional Materials. 2006;16:91-4.
    [35] Hanaoka S, Lin JM, Yamada M. Chemiluminescent flow sensor for H2O2 based on the decomposition of H2O2 catalyzed by cobalt(II)-ethanolamine complex immobilized on resin. Analytica Chimica Acta. 2001;426:57-64.
    [36] Stradiotto NR, Yamanaka H, Zanoni MVB. Electrochemical sensors: A powerful tool in analytical chemistry. Journal of the Brazilian Chemical Society. 2003;14:159-73.
    [37] 黃炳照,莊睦賢. 電化學感測器. 化工技術. 1999:第七卷(第二期).
    [38] Hage DS. Analytical Chemistry. 1999.
    [39] Grieshaber D, MacKenzie R, Vörös J, Reimhult E. Electrochemical biosensors - Sensor principles and architectures. Sensors. 2008;8:1400-58.
    [40] Castillo J, Gáspár S, Leth S, Niculescu M, Mortari A, Bontidean I, Soukharev V, Dorneanu SA, Ryabov AD, Csöregi E. Biosensors for life quality - Design, development and applications. Sensors and Actuators, B: Chemical. 2004;102:179-94.
    [41] Mohanty SP, Koucianos E. Biosensors: A tutorial review. IEEE Potentials. 2006;25:35-40.
    [42] Shen J. Development and Characterization of thick-film printed electrochemical biosensor. 2007.
    [43] 陳冠榮. 以奈米金修飾電極製備電流式免疫型感測器. 國立台灣科技大學化學工程研究所. 2008.
    [44] 田蔚城. 生物技術發展與應用. 九州圖書文物. 1997.
    [45] 謝振傑. 光纖生物感測器. 物理雙月刊. 2006;廿八卷四期.
    [46] 陳春吉. 自主性單層薄膜電極之阻抗分析與其在內毒素檢測上之應用. 國立成功大學醫學工程研究所. 2002.
    [47] 許峰碩. 奈米碳黑在免疫層析檢測上的應用. 國立中興大學化學工程研究所. 2002.
    [48] Spichiger-Keller UE. Chemical Sensors and Biosensors for Medical and Biological Applications. Wiley-VCH. 1998.
    [49] Bakker E, Qin Y. Electrochemical sensors. Analytical Chemistry. 2006;78:3965-83.
    [50] Bard A.J. FLR. Electrochemical Methods: Fundamentals and Applications. New York: Wiley. 2001.
    [51] 汪玉銘. 定電流聚合導電性高分子法製備葡萄糖生物感測器之研究. 國立成功大學化學工程學系. 2003.
    [52] Yalcinkaya F, Powner ET. Intelligent structures. Sensor Review. 1996;16:32-7.
    [53] D'Orazio P. Biosensors in clinical chemistry. Clinica Chimica Acta. 2003;334:41-69.
    [54] Heineman PTKWR. Laboratory Techniques in Electroanalytical Chemistry. 2nd Ed. New York: Marcel Dekker. 1996.
    [55] Mehrvar M, Abdi M. Recent developments, characteristics, and potential applications of electrochemical biosensors. Analytical Sciences. 2004;20:1113-26.
    [56] Jans H, Huo Q. Gold nanoparticle-enabled biological and chemical detection and analysis. Chemical Society Reviews. 2012;41:2849-66.
    [57] Yang F, Jin C, Subedi S, Lee CL, Wang Q, Jiang Y, Li J, Di Y, Fu D. Emerging inorganic nanomaterials for pancreatic cancer diagnosis and treatment. Cancer Treatment Reviews. 2012;38:566-79.
    [58] Zhang Z, Tan S, Feng SS. Vitamin E TPGS as a molecular biomaterial for drug delivery. Biomaterials. 2012;33:4889-906.
    [59] Hwang NM, Lee DK. Charged nanoparticles in thin film and nanostructure growth by chemical vapour deposition. Journal of Physics D: Applied Physics. 2010;43.
    [60] Chen D, Liu HY. One-step synthesis of nickel ferrite nanoparticles by ultrasonic wave-assisted ball milling technology. Materials Letters. 2012;72:95-7.
    [61] Yonezawa Y, Sato T, Kuroda S, Kuge K. Photochemical formation of colloidal silver: Peptizing action of acetone ketyl radical. Journal of the Chemical Society, Faraday Transactions. 1991;87:1905-10.
    [62] Okitsu K, Bandow H, Maeda Y, Nagata Y. Sonochemical preparation of ultrafine palladium particles. Chemistry of Materials. 1996;8:315-7.
    [63] Antolini E, Cardellini F. Formation of carbon supported PtRu alloys: An XRD analysis. Journal of Alloys and Compounds. 2001;315:118-22.
    [64] Takasu Y, Fujiwara T, Murakami Y, Sasaki K, Oguri M, Asaki T, Sugimoto W. Effect of structure of carbon-supported PtRu electrocatalysts on the electrochemical oxidation of methanol. Journal of the Electrochemical Society. 2000;147:4421-7.
    [65] Watanabe M, Uchida M, Motoo S. Preparation of highly dispersed Pt + Ru alloy clusters and the activity for the electrooxidation of methanol. Journal of Electroanalytical Chemistry. 1987;229:395-406.
    [66] Hamnett A, Kennedy BJ, Wagner FE. PtRu anodes for methanol electrooxidation: A ruthenium-99 Mössbauer study. Journal of Catalysis. 1990;124:30-40.
    [67] Wang X, Hsing IM. Surfactant stabilized Pt and Pt alloy electrocatalyst for polymer electrolyte fuel cells. Electrochimica Acta. 2002;47:2981-7.
    [68] Liu Z, Lee JY, Chen W, Han M, Gan LM. Physical and Electrochemical Characterizations of Microwave-Assisted Polyol Preparation of Carbon-Supported PtRu Nanoparticles. Langmuir. 2004;20:181-7.
    [69] Zhang X, Chan KY. Water-in-oil microemulsion synthesis of platinum-ruthenium nanoparticles, their characterization and electrocatalytic properties. Chemistry of Materials. 2003;15:451-9.
    [70] Nalwa HS. Academic press. 2000.
    [71] 張義泉. 具界面活性擬樹枝狀聚乙烯亞胺之合成與製備燃料電池觸媒之應用. 國立成功大學化學工程研究所. 2005.
    [72] Skrabalak SE, Chen J, Sun Y, Lu X, Au L, Cobley CM, Xia Y. Gold nanocages: Synthesis, properties, and applications. Accounts of Chemical Research. 2008;41:1587-95.
    [73] Cuenya BR. Synthesis and catalytic properties of metal nanoparticles: Size, shape, support, composition, and oxidation state effects. Thin Solid Films. 2010;518:3127-50.
    [74] Yang F, Chen MS, Goodman DW. Sintering of Au particles supported on TiO 2(110) during CO oxidation. Journal of Physical Chemistry C. 2009;113:254-60.
    [75] Kolmakov A, Goodman DW. Scanning tunneling microscopy of gold clusters on TiO2(110): CO oxidation at elevated pressures. Surface Science. 2001;490:L597-L601.
    [76] Lai X, Goodman DW. Structure-reactivity correlations for oxide-supported metal catalysts: New perspectives from STM. Journal of Molecular Catalysis A: Chemical. 2000;162:33-50.
    [77] Haruta M. Nanoparticulate gold catalysts for low-temperature CO oxidation. Journal of New Materials for Electrochemical Systems. 2004;7:163-72.
    [78] Tian N, Zhou ZY, Sun SG, Ding Y, Zhong LW. Synthesis of tetrahexahedral platinum nanocrystals with high-index facets and high electro-oxidation activity. Science. 2007;316:732-5.
    [79] Kim Y, Hong JW, Lee YW, Kim M, Kim D, Yun WS, Han SW. Synthesis of AuPt heteronanostructures with enhanced electrocatalytic activity toward oxygen reduction. Angewandte Chemie - International Edition. 2010;49:10197-201.
    [80] Stamenkovic VR, Fowler B, Mun BS, Wang G, Ross PN, Lucas CA, Markovic NM. Improved oxygen reduction activity on Pt3Ni(111) via increased surface site availability. Science. 2007;315:493-7.
    [81] Murillo LE, Goda AM, Chen JG. Selective hydrogenation of the C=O bond in acrolein through the architecture of bimetallic surface structures. Journal of the American Chemical Society. 2007;129:7101-5.
    [82] Liu W, Repo E, Heikkilä M, Leskelä M, Sillanpää M. Hierarchical paramecium-like hollow and solid Au/Pt bimetallic nanostructures constructed using goethite as template. Nanotechnology. 2010;21.
    [83] An K, Alayoglu S, Ewers T, Somorjai GA. Colloid chemistry of nanocatalysts: A molecular view. Journal of Colloid and Interface Science. 2012;373:1-13.
    [84] Guo S, Dong S, Wang E. Raspberry-like hierarchical Au/Pt nanoparticle assembling hollow spheres with nanochannels: An advanced nanoelectrocatalyst for the oxygen reduction reaction. Journal of Physical Chemistry C. 2009;113:5485-92.
    [85] Atta NF, El-Kady MF. Novel poly(3-methylthiophene)/Pd, Pt nanoparticle sensor: Synthesis, characterization and its application to the simultaneous analysis of dopamine and ascorbic acid in biological fluids. Sensors and Actuators B: Chemical. 2010;145:299-310.
    [86] Wang Z, Ai F, Xu Q, Yang Q, Yu J-H, Huang W-H, Zhao Y-D. Electrocatalytic activity of salicylic acid on the platinum nanoparticles modified electrode by electrochemical deposition. Colloids and Surfaces B: Biointerfaces. 2010;76:370-4.
    [87] Ammam M, Easton EB. High-performance glucose sensor based on glucose oxidase encapsulated in new synthesized platinum nanoparticles supported on carbon Vulcan/Nafion composite deposited on glassy carbon. Sensors and Actuators, B: Chemical. 2011;155:340-6.
    [88] Tsai MC, Tsai YC. Adsorption of glucose oxidase at platinum-multiwalled carbon nanotube-alumina-coated silica nanocomposite for amperometric glucose biosensor. Sensors and Actuators, B: Chemical. 2009;141:592-8.
    [89] Zhao H, Ju H. Multilayer membranes for glucose biosensing via layer-by-layer assembly of multiwall carbon nanotubes and glucose oxidase. Analytical Biochemistry. 2006;350:138-44.
    [90] Liu Y, Wang D, Xu L, Hou H, You T. A novel and simple route to prepare a Pt nanoparticle-loaded carbon nanofiber electrode for hydrogen peroxide sensing. Biosensors and Bioelectronics. 2011;26:4585-90.
    [91] Xu F, Sun Y, Zhang Y, Shi Y, Wen Z, Li Z. Graphene-Pt nanocomposite for nonenzymatic detection of hydrogen peroxide with enhanced sensitivity. Electrochemistry Communications. 2011;13:1131-4.
    [92] Bo X, Ndamanisha JC, Bai J, Guo L. Nonenzymatic amperometric sensor of hydrogen peroxide and glucose based on Pt nanoparticles/ordered mesoporous carbon nanocomposite. Talanta. 2010;82:85-91.
    [93] Bian X, Lu X, Jin E, Kong L, Zhang W, Wang C. Fabrication of Pt/polypyrrole hybrid hollow microspheres and their application in electrochemical biosensing towards hydrogen peroxide. Talanta. 2010;81:813-8.
    [94] Sheng Q, Wang M, Zheng J. A novel hydrogen peroxide biosensor based on enzymatically induced deposition of polyaniline on the functionalized graphene-carbon nanotube hybrid materials. Sensors and Actuators, B: Chemical. 2011;160:1070-7.
    [95] Curulli A, Valentini F, Orlanduci S, Terranova ML, Palleschi G. Pt based enzyme electrode probes assembled with Prussian Blue and conducting polymer nanostructures. Biosensors and Bioelectronics. 2004;20:1223-32.
    [96] Chen KJ, Chandrasekara Pillai K, Rick J, Pan CJ, Wang SH, Liu CC, Hwang BJ. Bimetallic PtM (M=Pd, Ir) nanoparticle decorated multi-walled carbon nanotube enzyme-free, mediator-less amperometric sensor for H2O2. Biosensors and Bioelectronics. 2012;33:120-7.
    [97] Yuan Y, Yuan R, Chai Y, Zhuo Y, Bai L, Liao Y. A signal-on electrochemical probe-label-free aptasensor using gold-platinum alloy and stearic acid as enhancers. Biosensors and Bioelectronics. 2010;26:881-5.
    [98] Xu C, Liu Y, Su F, Liu A, Qiu H. Nanoporous PtAg and PtCu alloys with hollow ligaments for enhanced electrocatalysis and glucose biosensing. Biosensors and Bioelectronics. 2011;27:160-6.
    [99] Lee YJ, Park JY, Kim Y, Ko JW. Amperometric sensing of hydrogen peroxide via highly roughened macroporous Gold-/Platinum nanoparticles electrode. Current Applied Physics. 2011;11:211-6.
    [100] Xiao F, Zhao F, Zhang Y, Guo G, Zeng B. Ultrasonic electrodeposition of gold - platinum alloy nanoparticles on ionic liquid - chitosan composite film and their application in fabricating nonenzyme hydrogen peroxide sensors. Journal of Physical Chemistry C. 2009;113:849-55.
    [101] Chikae M, Idegami K, Kerman K, Nagatani N, Ishikawa M, Takamura Y, Tamiya E. Direct fabrication of catalytic metal nanoparticles onto the surface of a screen-printed carbon electrode. Electrochemistry Communications. 2006;8:1375-80.
    [102] Kang Q, Yang L, Cai Q. An electro-catalytic biosensor fabricated with Pt–Au nanoparticle-decorated titania nanotube array. Bioelectrochemistry. 2008;74:62-5.
    [103] Liu S, Wang L, Zhao F. Influence of gold nanoparticle modified electrode on the mediation reduction of ferricyanide by methylene blue. Journal of Electroanalytical Chemistry. 2007;602:55-60.
    [104] Bahshi L, Frasconi M, Tel-Vered R, Yehezkeli O, Willner I. Following the biocatalytic activities of glucose oxidase by electrochemically cross-linked enzyme-Pt nanoparticles composite electrodes. Analytical Chemistry. 2008;80:8253-9.
    [105] Yehezkeli O, Tel-Vered R, Raichlin S, Willner I. Nano-engineered flavin-dependent glucose dehydrogenase/gold nanoparticle-modified electrodes for glucose sensing and biofuel cell applications. ACS Nano. 2011;5:2385-91.
    [106] Grzelczak M, Pérez-Juste J, Mulvaney P, Liz-Marzán LM. Shape control in gold nanoparticle synthesis. Chemical Society Reviews. 2008;37:1783-91.
    [107] Alexandridis P. Gold Nanoparticle Synthesis, Morphology Control, and Stabilization Facilitated by Functional Polymers. Chemical Engineering and Technology. 2011;34:15-28.
    [108] Xia Y, Xiong Y, Lim B, Skrabalak SE. Shape-controlled synthesis of metal nanocrystals: Simple chemistry meets complex physics? Angewandte Chemie - International Edition. 2009;48:60-103.
    [109] Ma Y, Kuang Q, Jiang Z, Xie Z, Huang R, Zheng L. Synthesis of trisoctahedral gold nanocrystals with exposed high-index facets by a facile chemical method. Angewandte Chemie - International Edition. 2008;47:8901-4.
    [110] 劉英俊. 酵素工程. 中央圖書出版社. 1995.
    [111] 呂鋒洲,林仁混. 基礎酵素學. 聯經出版社. 1991.
    [112] 林哲瑩. 高敏度表面分析與高解析技術對診斷具疾病表現之單一核苷酸多型性效能之研究. 國立成功大學材料科學及工程學系. 2005.
    [113] 葉旻鑫. 均勻結構之複合式鉑銥奈米金屬觸媒/葡萄糖氧化酵素電極及其製備與應用. 國立臺灣科技大學化學工程系. 2008.
    [114] Gamati S, Luong JHT, Mulchandani A. A microbial biosensor for trimethylamine using Pseudomonas aminovorans cells. Biosensors and Bioelectronics. 1991;6:125-31.
    [115] Ensafi AA, Kazemzadeh A. Optical pH sensor based on chemical modification of polymer film. Microchemical Journal. 1999;63:381-8.
    [116] Zhujun Z, Seitz WR. Optical sensor for oxygen based on immobilized hemoglobin. Analytical Chemistry. 1986;58:220-2.
    [117] Ratner BD. biomaterials science an introduction to materials in medicine academic press. 1996:124-30.
    [118] Gill I BA. Encapsulation of biologicals within silicate, siloxane, and hybrid sol- gel polymers: An efficient and generic approach. Journal of the American Chemical Society. 1998;120:8587-98.
    [119] Cabral JMS K, J.F. Covalent and coordination immobilization of proteins. In: Taylor, R.F. (Ed.), Protein Immobilization; Fundamentals and Applications. Marcel Dekker New York. 1991.
    [120] Taylor R. F. MIGaCEJ. Development and applications of antibody- and receptor-based biosensors Boston,MA. Butterworths.
    [121] Shen J DL, Liu CC. An iridium nanoparticles dispersed carbon based thick film electrochemical biosensor and its application for a single use, disposable glucose biosensor. Sensors and Actuators B-Chemical. 2007;125.
    [122] Kaur K, Forrest JA. Influence of particle size on the binding activity of proteins adsorbed onto gold nanoparticles. Langmuir. 2012;28:2736-44.
    [123] Hinterwirth H, Lindner W, Lämmerhofer M. Bioconjugation of trypsin onto gold nanoparticles: Effect of surface chemistry on bioactivity. Analytica Chimica Acta. 2012;733:90-7.
    [124] Qi W, Yan X, Duan L, Cui Y, Yang Y, Li J. Glucose-sensitive microcapsules from glutaraldehyde cross-linked hemoglobin and glucose oxidase. Biomacromolecules. 2009;10:1212-6.
    [125] 胡啟章. 電化學原理與方法. 五南圖書出版公司. 2002.
    [126] 彭文權. 以沈積法製備甲醇燃料電池用之Pt-Ru雙金屬觸媒. 元智大學. 1997.
    [127] R.E B. Chemical Sensors and Biosensors. 2005.
    [128] Macdonald J. Impedance spectroscopy :emphasizing solid materials and systems. Wiley. 1987.
    [129] John F. Moulder WFS. Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Inc 6509 Flying Cloud Drive Eden Prairie, Minnesota 55344 United States of America. 1995.
    [130] Biegler T, Rand DAJ, Woods R. Limiting oxygen coverage on platinized platinum; relevance to determination of real platinum area by hydrogen adsorption. Journal of Electroanalytical Chemistry. 1971;29:269-77.
    [131] Brummer SB. The use of large anodic galvanostatic transients to evaluate the maximum adsorption on platinum from formic acid solutions. Journal of Physical Chemistry. 1965;69:562-71.
    [132] Pasta M, La Mantia F, Cui Y. Mechanism of glucose electrochemical oxidation on gold surface. Electrochimica Acta. 2010;55:5561-8.
    [133] Park S, Boo H, Chung TD. Electrochemical non-enzymatic glucose sensors. Analytica Chimica Acta. 2006;556:46-57.
    [134] Michael L. Bishop EPF, and Larry Schoeff. Baltimore, MD. Clinical Chemistry: Principles, Procedures, Correlations. Lippincott Williams & Wilkins. 2005.
    [135] Lu J, L. T. Drzal. Simple fabrication of a highly sensitive glucose biosensor using enzymes immobilized in exfoliated graphite nanoplatelets nafion membrane. Chemistry of Materials 19(25): 6240-6246. 2007.
    [136] A. KE. The electrochemical oxidation of hydrogen peroxide on platinum electrodes at phosphate buffer solutions. 1999.
    [137] Li J, Lin X. Glucose biosensor based on immobilization of glucose oxidase in poly(o-aminophenol) film on polypyrrole-Pt nanocomposite modified glassy carbon electrode. Biosensors and Bioelectronics. 2007;22:2898-905.
    [138] Zou Y, Xiang C, Sun LX, Xu F. Glucose biosensor based on electrodeposition of platinum nanoparticles onto carbon nanotubes and immobilizing enzyme with chitosan-SiO2 sol-gel. Biosensors and Bioelectronics. 2008;23:1010-6.
    [139] Wang B, Li B, Deng Q, Dong S. Amperometric Glucose Biosensor Based on Sol-Gel Organic-Inorganic Hybrid Material. Analytical Chemistry. 1998;70:3170-4.
    [140] Jena BK, Raj CR. Enzyme integrated silicate-Pt nanoparticle architecture: A versatile biosensing platform. Biosensors and Bioelectronics. 2011;26:2960-6.
    [141] Li J, Yu J, Wei X, Liu R. A sensitive and selective biosensor activated by tailor-designed platinum nanoparticles electrodeposited onto a gold microelectrode. Journal of Solid State Electrochemistry. 2011;15:1129-37.
    [142] Ping J, Wu J, Luo X, Ying Y. The use of the platinum electrode coated with ultrathin poly(allylamine hydrochloride)/Nafion films for selective detection of hydrogen peroxide. Ionics. 2011;17:443-9.
    [143] Claussen JC, Franklin AD, Haque AU, Marshall Porterfield D, Fisher TS. Electrochemical Biosensor of nanocube-augmented carbon nanotube networks. ACS Nano. 2009;3:37-44.
    [144] Wang H, Bo X, Bai J, Wang L, Guo L. Electrochemical applications of platinum-palladium alloy nanoparticles/large mesoporous carbon. Journal of Electroanalytical Chemistry. 2011;662:281-7.
    [145] Chen K-J, Lee C-F, Rick J, Wang S-H, Liu C-C, Hwang B-J. Fabrication and application of amperometric glucose biosensor based on a novel PtPd bimetallic nanoparticle decorated multi-walled carbon nanotube catalyst. Biosensors and Bioelectronics. 2012;33:75-81.
    [146] Tan Y, Deng W, Chen C, Xie Q, Lei L, Li Y, Fang Z, Ma M, Chen J, Yao S. Immobilization of enzymes at high load/activity by aqueous electrodeposition of enzyme-tethered chitosan for highly sensitive amperometric biosensing. Biosensors and Bioelectronics. 2010;25:2644-50.
    [147] Kang X, Mai Z, Zou X, Cai P, Mo J. A novel glucose biosensor based on immobilization of glucose oxidase in chitosan on a glassy carbon electrode modified with gold-platinum alloy nanoparticles/multiwall carbon nanotubes. Analytical Biochemistry. 2007;369:71-9.

    無法下載圖示 全文公開日期 2017/07/30 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE