簡易檢索 / 詳目顯示

研究生: Fernaldy Leonarta
Fernaldy Leonarta
論文名稱: 能提升抗菌活性之葡萄糖氧化酶奈米反應系統
Glucose Reactive Nanosystems for Enhanced Antimicrobial Activity
指導教授: 李振鋼
Cheng-Kang Lee
口試委員: 李振鋼
Cheng-Kang Lee
蔡伸隆
Shen-Long Tsai
王勝仕
Steven S.-S. Wang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 100
中文關鍵詞: 奈米反應器納米催化劑同步靜電紡絲沸石咪唑骨架葡萄糖氧化酶葡萄糖活性氧羥基自由基芬頓反應抗菌活性
外文關鍵詞: Nanosystems, nanocatalysts, co-electrospinning, zeolitic imidazole framework, glucose oxidase, glucose,, reactive oxygen species, hydroxyl radical,, Fenton reaction, antimicrobial activity
相關次數: 點閱:387下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 羥基自由基(•OH)被認為是强力的活性氧化物質(ROS),其抗菌活性超過其他種類的ROS。•OH可由芬頓(Fenton)反應所產生,該反應需要過氧化氫(H2O2)做為反應物,亞鐵離子(鐵(II))為催化劑。在本論文中使用含有葡萄糖氧化酶(GOx)的奈米反應器,通過GOx與葡萄糖(Glu)反應產生H2O2,再由奈米反應器中所含之二價鐵化合物(Hem)或所加入亞鐵離子來促使芬顿反應發生產生羥基自由基(•OH)。論文中採用了兩種不同的奈米反應器結構,即PVA電紡奈米纖維和沸石咪唑骨架(ZIF-8)奈米粒子。在製備過程中將含有葡萄糖的PVA溶液與含有GOx的PVA溶液同時進行電紡來製造新型的奈米纖維反應器。含有葡萄糖的奈米纖維主要是為了提供在分隔的GOx奈米纖維葡萄糖以產生H2O2。而對於ZIF-8奈米反應器而言,則需在反應過程中額外添加葡萄糖。以TMB為反應基質可證實所製備的反應系統具有類過氧化物酶的活性,在可見光光譜分析中可以觀測到在~450nm或~650nm處顯示出明顯的峰值;使用對苯二甲酸(TPA) 為基質可證明反應系統中•OH的產生,當TPA與•OH反應後•OH生成螢光羥基-對苯二甲酸(HTPA),可以在PL發射光譜觀測到波長~425nm處之峰值。最後分別以革蘭氏陽性菌(金黄色葡萄球菌)和革蘭氏陰性菌(大腸杆菌)針對各系统進行抗菌活性實驗,與H2O2的抗菌活性相比,此兩系統所產生的•OH有明顯更強的抗菌效果。所有菌體在濃度OD值為1時與奈米系統接觸12小時後均能達到100%的滅殺率。


    Developing antimicrobial materials with high effectiveness while maintaining their biocompatibility and biodegradability has been becoming more important recently, especially ever since the starting of pandemic. Hydroxyl radical (•OH) has been known as the most powerful reactive oxygen species (ROS) with antimicrobial activity surpassing any of other ROS. The generation of •OH comes from Fenton reaction, which requires hydrogen peroxide (H2O2) as a reactant and ferrous ion (iron (II)) as a catalyst. In this study, nanosystems containing glucose oxidase (GOx), which produces H2O2 through reaction with glucose (Glu), with iron ion containing hemin (Hem) or direct ferrous ion were employed to generate •OH by supplementing the Fenton reaction. Two different nanosystems were adopted, which are PVA electrospun nanofibers and zeolitic imidazole framework (ZIF-8) nanoparticles, to ensure the biocompatibility of these materials. Nanofibrous reactor was fabricated by employing co-electrospinning of two separated Glu and GOx containing PVA dope solutions. Glu nanofibers is used to supply the required substrate of GOx encapsulated in the separated nanofibers for H2O2 generation. While for ZIF-8 nanosystems, supplementary Glu was added throughout the reaction. Characterizations of each nanosystem were done using FE-SEM, FTIR, and XRD. The peroxidase-like activity of as-prepared nanosystem was confirmed through TMB reaction with peaks showing at either ~450nm or ~650nm, while generation of •OH was detected under terephthalic acid (TPA) reaction to generate fluorescent hydroxyl-terephthalic acid (HTPA) measured using PL emission spectroscopy at emission wavelength ~425nm. Antimicrobial activity of each nanosystems were tested against both Gram-positive (S. auerus) and Gram-negative bacteria (E. coli), which shown much higher antimicrobial results as compared to the antimicrobial activity of H2O2. 100% killing rate was achieved for all nanosystems at 12h contact time against OD=1 for both bacteria under 0.2%(w/v) of nanofibers and 0.05% (w/v) of ZIF-8 nanoparticles.

    摘要 i ABSTRACT ii ACKNOWLEDGEMENT iii ABBREVIATIONS iv Table of Contents v LIST OF FIGURES viii LIST OF TABLES xi CHAPTER 1 INTRODUCTION 1 1.1. Background 1 1.2 Research Objectives 4 CHAPTER 2 LITERATURE REVIEW 6 2.1. Glucose Oxidase 6 2.2 Hydroxyl Radical 7 2.3 Nanozyme 7 2.4 Peroxidase-like activity 10 2.5 Fenton Reaction 11 2.6 Hemin 13 2.7 Nanofibers and Electrospinning 14 2.8 Polyvinyl Alcohol (PVA) 17 2.9 Metal Organic Framework 17 CHAPTER 3 MATERIALS AND METHOD 19 3.1. Materials 19 3.1.1. Bacteria 19 3.1.2. Chemical 19 3.2. Bacteria culture medium 20 3.3. Reagent 20 3.4. Apparatus 21 3.5. Characterization 22 3.5.1. TMB assay 22 3.5.2. Photoluminescence Spectroscopy (PL) 23 3.5.3. pH Dependency Test 24 3.5.4. Nanofibers Stability Test 25 3.5.5. ZIF samples Oxidation Ability Test 25 3.5.6. Field Emission Scanning Electron Microscope (FE-SEM) 25 3.5.7. Fourier transform infrared (FTIR) spectra 25 3.5.8 X-Ray Diffraction (XRD) 26 3.5.9 Inductively Coupled Plasma (ICP-OES) 26 3.5.10 Water Contact Angle (WCA test) 27 3.6. Method 28 3.6.1. Preparation of nanofibrous membranes 28 3.6.2. Preparation of Zeolitic Imidazole Framework (ZIF) samples 29 3.6.3. Antimicrobial activity 31 CHAPTER 4 RESULTS AND DISCUSSION 37 4.1. Proposed mechanisms 37 4.2 Characterizations of produced Nanosystems 38 4.2.1 PVA Electrospun Samples 38 4.2.2 ZIF Nanosystem Samples 47 4.3 Nanocatalytic activity characterizations 53 4.3.1 Determination of glucose concentration and peroxidase-like activity 53 4.3.2 Fenton reaction and detection of •OH generation 60 4.3.3 pH Dependence and Stability Test 65 4.3.4 Oxidation Ability Test 67 4.4 Antimicrobial Activity 68 4.4.1 Disk Diffusion Inhibition Zone 69 4.4.2 Colony Forming Unit (CFU) 75 CHAPTER 5 CONCLUSION 84 REFERENCES 85 APPENDIX 97

    Abd El-aziz, A. M., El-Maghraby, A., & Taha, N. A. (2017). Comparison between polyvinyl alcohol (PVA) nanofiber and polyvinyl alcohol (PVA) nanofiber/hydroxyapatite (HA) for removal of Zn 2+ ions from wastewater. Arabian Journal of Chemistry, 10(8), 1052–1060. https://doi.org/10.1016/j.arabjc.2016.09.025
    Alizadeh, N., Salimi, A., Hallaj, R., Fathi, F., & Soleimani, F. (2018). Ni-hemin metal–organic framework with highly efficient peroxidase catalytic activity: toward colorimetric cancer cell detection and targeted therapeutics. Journal of Nanobiotechnology, 16(1), 93. https://doi.org/10.1186/s12951-018-0421-7
    Altay, F., & Okutan, N. (2015). Nanofibre Encapsulation of Active Ingredients and their Controlled Release. In Advances in Food Biotechnology (pp. 607–616). John Wiley & Sons Ltd. https://doi.org/10.1002/9781118864463.ch37
    Alwan, T. J., Toma, Z. A., Kudhier, M. A., & Ziadan, K. M. (2016). Preparation and Characterization of the PVA Nanofibers produced by Electrospinning. Madridge Journal of Nanotechnology & Nanoscience, 1(1), 1–3. https://doi.org/10.18689/mjnn-1000101
    Ameta, S. C., & Ameta, R. (2018). Advanced Oxidation Processes for Waste Water Treatment. Elsevier. https://doi.org/10.1016/C2016-0-00384-4
    Anastassiadis, S., & Morgunov, I. (2007). Gluconic Acid Production. Recent Patents on Biotechnology, 1(2), 167–180. https://doi.org/10.2174/187220807780809472
    Anusha, J. R., Raj, C. J., Cho, B.-B., Fleming, A. T., Yu, K.-H., & Kim, B. C. (2015). Amperometric glucose biosensor based on glucose oxidase immobilized over chitosan nanoparticles from gladius of Uroteuthis duvauceli. Sensors and Actuators B: Chemical, 215, 536–543. https://doi.org/10.1016/j.snb.2015.03.110
    Bankar, S. B., Bule, M. v., Singhal, R. S., & Ananthanarayan, L. (2009). Glucose oxidase — An overview. Biotechnology Advances, 27(4), 489–501. https://doi.org/10.1016/j.biotechadv.2009.04.003
    Bearman, G., & Stevens, M. P. (2012). Control of Drug-Resistant Pathogens in Endemic Settings: Contact Precautions, Controversies, and a Proposal for a Less Restrictive Alternative. Current Infectious Disease Reports, 14(6), 620–626. https://doi.org/10.1007/s11908-012-0299-8
    Bhardwaj, N., & Kundu, S. C. (2010). Electrospinning: A fascinating fiber fabrication technique. Biotechnology Advances, 28(3), 325–347. https://doi.org/10.1016/j.biotechadv.2010.01.004
    Boys, C. v. (1887). On the Production, Properties, and some suggested Uses of the Finest Threads. Proceedings of the Physical Society of London, 9(1), 8–19. https://doi.org/10.1088/1478-7814/9/1/303
    Brillas, E., Sirés, I., & Oturan, M. A. (2009). Electro-Fenton Process and Related Electrochemical Technologies Based on Fenton’s Reaction Chemistry. Chemical Reviews, 109(12), 6570–6631. https://doi.org/10.1021/cr900136g
    Bruice, T. C. (1991). Reactions of hydroperoxides with metallotetraphenylporphyrins in aqueous solutions. Accounts of Chemical Research, 24(8), 243–249. https://doi.org/10.1021/ar00008a004
    Buyuksonmez F, Hess TF, Crawford RL, Watts RJ. (1998). Toxic effects of modified fenton reactions on xanthobacter flavus FB71. Appl Environ Microbiol. 1998 Oct;64(10):3759-64. https://doi.org/10.1128/AEM.64.10.3759-3764.1998
    Chahal, S., Hussain, F. S. J., & Yusoff, M. B. M. (2013). Characterization of Modified Cellulose (MC)/Poly (Vinyl Alcohol) Electrospun Nanofibers for Bone Tissue Engineering. Procedia Engineering, 53, 683–688. https://doi.org/10.1016/j.proeng.2013.02.088
    Chen, B., Yang, Z., Zhu, Y., & Xia, Y. (2014). Zeolitic imidazolate framework materials: recent progress in synthesis and applications. J. Mater. Chem. A, 2(40), 16811–16831. https://doi.org/10.1039/C4TA02984D
    Chen, R., Liu, J., Sun, Z., & Chen, D. (2018). Functional Nanofibers with Multiscale Structure by Electrospinning. Nanofabrication, 4(1), 17–31. https://doi.org/10.1515/nanofab-2018-0002
    Chen, W., Wang, Y., Liu, B., Gao, Y., Wu, Z., Shi, Y., Tang, Y., Yang, K., Zhang, Y., Sun, W., Feng, X., Laquai, F., Woo, H. Y., Djurišić, A. B., Guo, X., & He, Z. (2021). Engineering of dendritic dopant-free hole transport molecules: enabling ultrahigh fill factor in perovskite solar cells with optimized dendron construction. Science China Chemistry, 64(1), 41–51. https://doi.org/10.1007/s11426-020-9857-1
    Chen, Z., Wang, Z., Ren, J., & Qu, X. (2018). Enzyme Mimicry for Combating Bacteria and Biofilms. Accounts of Chemical Research, 51(3), 789–799. https://doi.org/10.1021/acs.accounts.8b00011
    Chen, Z., Yin, J.-J., Zhou, Y.-T., Zhang, Y., Song, L., Song, M., Hu, S., & Gu, N. (2012). Dual Enzyme-like Activities of Iron Oxide Nanoparticles and Their Implication for Diminishing Cytotoxicity. ACS Nano, 6(5), 4001–4012. https://doi.org/10.1021/nn300291r
    Chiellini, E., Corti, A., D’Antone, S., & Solaro, R. (2003). Biodegradation of poly (vinyl alcohol) based materials. Progress in Polymer Science, 28(6), 963–1014. https://doi.org/10.1016/S0079-6700(02)00149-1
    Cho, Y., Choi, W., Lee, C.-H., Hyeon, T., & Lee, H.-I. (2001). Visible Light-Induced Degradation of Carbon Tetrachloride on Dye-Sensitized TiO 2. Environmental Science & Technology, 35(5), 966–970. https://doi.org/10.1021/es001245e
    Cui, H., Cui, S., Zhang, S., Tian, Q., Liu, Y., Zhang, P., Wang, M., Zhang, J., & Li, X. (2021). Cu–MOF/hemin: a bionic enzyme with excellent dispersity for the determination of hydrogen peroxide released from living cells. The Analyst, 146(19), 5951–5961. https://doi.org/10.1039/D1AN01323H
    da Silva, E. S., Moura, N. M. M., Neves, M. G. P. M. S., Coutinho, A., Prieto, M., Silva, C. G., & Faria, J. L. (2018). Novel hybrids of graphitic carbon nitride sensitized with free-base meso-tetrakis(carboxyphenyl) porphyrins for efficient visible light photocatalytic hydrogen production. Applied Catalysis B: Environmental, 221, 56–69. https://doi.org/10.1016/j.apcatb.2017.08.079
    Das, B., Franco, J. lou, Logan, N., Balasubramanian, P., Kim, M. il, & Cao, C. (2021). Nanozymes in Point-of-Care Diagnosis: An Emerging Futuristic Approach for Biosensing. Nano-Micro Letters, 13(1), 193. https://doi.org/10.1007/s40820-021-00717-0
    de Luca, P., Lepore, M., Portaccio, M., Esposito, R., Rossi, S., Bencivenga, U., & Mita, D. (2007). Glucose Determination by Means of Steady-state and Time-course UV Fluorescence in Free or Immobilized Glucose Oxidase. Sensors, 7(11), 2612–2625. https://doi.org/10.3390/s7112612
    de Vrieze, S., van Camp, T., Nelvig, A., Hagström, B., Westbroek, P., & de Clerck, K. (2009). The effect of temperature and humidity on electrospinning. Journal of Materials Science, 44(5), 1357–1362. https://doi.org/10.1007/s10853-008-3010-6
    Deguillaume, L., Desboeufs, K. v., Leriche, M., Long, Y., & Chaumerliac, N. (2010). Effect of iron dissolution on cloud chemistry: from laboratory measurements to model results. Atmospheric Pollution Research, 1(4), 220–228. https://doi.org/10.5094/APR.2010.029
    Deguillaume, L., Leriche, M., Desboeufs, K., Mailhot, G., George, C., & Chaumerliac, N. (2005). Transition Metals in Atmospheric Liquid Phases: Sources, Reactivity, and Sensitive Parameters. Chemical Reviews, 105(9), 3388–3431. https://doi.org/10.1021/cr040649c
    DeMerlis, C. C., & Schoneker, D. R. (2003). Review of the oral toxicity of polyvinyl alcohol (PVA). Food and Chemical Toxicology, 41(3), 319–326. https://doi.org/10.1016/S0278-6915(02)00258-2
    Dorozhkin, S. v. (2011). Biocomposites and hybrid biomaterials based on calcium orthophosphates. Biomatter, 1(1), 3–56. https://doi.org/10.4161/biom.1.1.16782
    Du, T., Zhao, C., ur Rehman, F., Lai, L., Li, X., Sun, Y., Luo, S., Jiang, H., Gu, N., Selke, M., & Wang, X. (2017). In Situ Multimodality Imaging of Cancerous Cells Based on a Selective Performance of Fe 2+ -Adsorbed Zeolitic Imidazolate Framework-8. Advanced Functional Materials, 27(5), 1603926. https://doi.org/10.1002/adfm.201603926
    Dzenis, Y. (2004). Spinning Continuous Fibers for Nanotechnology. Science, 304(5679), 1917–1919. https://doi.org/10.1126/science.1099074
    Fan, K., Cao, C., Pan, Y., Lu, D., Yang, D., Feng, J., Song, L., Liang, M., & Yan, X. (2012). Magnetoferritin nanoparticles for targeting and visualizing tumour tissues. Nature Nanotechnology, 7(7), 459–464. https://doi.org/10.1038/nnano.2012.90
    Fridovich, I. (2006). Superoxide Dismutases (pp. 35–97). https://doi.org/10.1002/9780470122860.ch2
    Fuglsang, C. C., Johansen, C., Christgau, S., & Adler-Nissen, J. (1995). Antimicrobial enzymes: Applications and future potential in the food industry. Trends in Food Science & Technology, 6(12), 390–396. https://doi.org/10.1016/S0924-2244(00)89217-1
    Gallard, H., de Laat, J., & Legube, B. (1998). Influence du pH sur la vitesse d’oxydation de compose´s organiques par FeII/H2O2. Me´canismes re´actionnels et mode´lisation. New Journal of Chemistry, 22(3), 263–268. https://doi.org/10.1039/a708335a
    Gallard, H., de Laat, J., & Legube, B. (1999). Spectrophotometric study of the formation of iron(III)-hydroperoxy complexes in homogeneous aqueous solutions. Water Research, 33(13), 2929–2936. https://doi.org/10.1016/S0043-1354(99)00007-X
    Gao, C., Zhu, H., Chen, J., & Qiu, H. (2017). Facile synthesis of enzyme functional metal-organic framework for colorimetric detecting H 2 O 2 and ascorbic acid. Chinese Chemical Letters, 28(5), 1006–1012. https://doi.org/10.1016/j.cclet.2017.02.011
    Gao, L., Fan, K., & Yan, X. (2017). Iron Oxide Nanozyme: A Multifunctional Enzyme Mimetic for Biomedical Applications. Theranostics, 7(13), 3207–3227. https://doi.org/10.7150/thno.19738
    Gao, L., Zhuang, J., Nie, L., Zhang, J., Zhang, Y., Gu, N., Wang, T., Feng, J., Yang, D., Perrett, S., & Yan, X. (2007). Intrinsic peroxidase-like activity of ferromagnetic nanoparticles. Nature Nanotechnology, 2(9), 577–583. https://doi.org/10.1038/nnano.2007.260
    Gonzalez, D. H., Kuang, X. M., Scott, J. A., Rocha, G. O., & Paulson, S. E. (2018). Terephthalate Probe for Hydroxyl Radicals: Yield of 2-Hydroxyterephthalic Acid and Transition Metal Interference. Analytical Letters, 51(15), 2488–2497. https://doi.org/10.1080/00032719.2018.1431246
    Gou, B., Wang, L., Ye, B., Meng, C., Li, X., Chen, Q., Yang, T., & Xu, W. (2021). Low-temperature synthesis of pure-phase Ti3(Al, Fe)C2 solid solution with magnetic monoatomic layers by replacement reaction. Journal of Materials Science: Materials in Electronics, 32(10), 13081–13088. https://doi.org/10.1007/s10854-021-05761-5
    Guo, Y., Deng, L., Li, J., Guo, S., Wang, E., & Dong, S. (2011). Hemin−Graphene Hybrid Nanosheets with Intrinsic Peroxidase-like Activity for Label-free Colorimetric Detection of Single-Nucleotide Polymorphism. ACS Nano, 5(2), 1282–1290. https://doi.org/10.1021/nn1029586
    Hall, T. J., Villapún, V. M., Addison, O., Webber, M. A., Lowther, M., Louth, S. E. T., Mountcastle, S. E., Brunet, M. Y., & Cox, S. C. (2020). A call for action to the biomaterial community to tackle antimicrobial resistance. Biomaterials Science, 8(18), 4951–4974. https://doi.org/10.1039/D0BM01160F
    Halliwell, B., & Gutteridge, J. M. C. (2015). Free Radicals in Biology and Medicine. Oxford University Press. https://doi.org/10.1093/acprof:oso/9780198717478.001.0001
    Harpaz, D., Eltzov, E., Ng, T. S. E., Marks, R. S., & Tok, A. I. Y. (2020). Enhanced Colorimetric Signal for Accurate Signal Detection in Paper-Based Biosensors. Diagnostics, 10(1), 28. https://doi.org/10.3390/diagnostics10010028
    Hecht, H. J., Schomburg, D., Kalisz, H., & Schmid, R. D. (1993). The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosensors and Bioelectronics, 8(3–4), 197–203. https://doi.org/10.1016/0956-5663(93)85033-K
    Hu, L., Chen, L., Peng, X., Zhang, J., Mo, X., Liu, Y., & Yan, Z. (2020). Bifunctional metal-doped ZIF-8: A highly efficient catalyst for the synthesis of cyclic carbonates from CO2 cycloaddition. Microporous and Mesoporous Materials, 299, 110123. https://doi.org/10.1016/j.micromeso.2020.110123
    Isa, Z. M., & Hobkirk., J. A. (2000). Dental Implants: Biomaterial, Biomechanical And Biological Considerations. Annals of Dentistry, 7(1), 27–35. https://doi.org/10.22452/adum.vol7no1.6
    Islam, M. S., Ang, B. C., Andriyana, A., & Afifi, A. M. (2019). A review on fabrication of nanofibers via electrospinning and their applications. SN Applied Sciences, 1(10), 1248. https://doi.org/10.1007/s42452-019-1288-4
    Javaid, R., & Qazi, U. Y. (2019). Catalytic Oxidation Process for the Degradation of Synthetic Dyes: An Overview. International Journal of Environmental Research and Public Health, 16(11), 2066. https://doi.org/10.3390/ijerph16112066
    Kimura, N., Kim, B.-S., & Kim, I.-S. (2014). Effects of Fe 2+ ions on morphologies, microstructures and mechanical properties of electrospun nylon-6 nanofibers. Polymer International, 63(2), 266–272. https://doi.org/10.1002/pi.4500
    Kohanski, M. A., Dwyer, D. J., Hayete, B., Lawrence, C. A., & Collins, J. J. (2007). A Common Mechanism of Cellular Death Induced by Bactericidal Antibiotics. Cell, 130(5), 797–810. https://doi.org/10.1016/j.cell.2007.06.049
    Kotov, N. A. (2010). Inorganic Nanoparticles as Protein Mimics. Science, 330(6001), 188–189. https://doi.org/10.1126/science.1190094
    Kumar, P., Deep, A., & Kim, K.-H. (2015). Metal organic frameworks for sensing applications. TrAC Trends in Analytical Chemistry, 73, 39–53. https://doi.org/10.1016/j.trac.2015.04.009
    Lai, Y., Ma, Y., Sun, L., Jia, J., Weng, J., Hu, N., Yang, W., & Zhang, Q. (2011). A highly selective electrochemical biosensor for Hg2+ using hemin as a redox indicator. Electrochimica Acta, 56(9), 3153–3158. https://doi.org/10.1016/j.electacta.2011.01.061
    Law, K.-Y. (2014). Definitions for Hydrophilicity, Hydrophobicity, and Superhydrophobicity: Getting the Basics Right. The Journal of Physical Chemistry Letters, 5(4), 686–688. https://doi.org/10.1021/jz402762h
    Lee, H. W., Karim, M. R., Ji, H. M., Choi, J. H., Ghim, H. do, Park, S. M., Oh, W., & Yeum, J. H. (2009). Electrospinning fabrication and characterization of poly(vinyl alcohol)/montmorillonite nanofiber mats. Journal of Applied Polymer Science, 113(3), 1860–1867. https://doi.org/10.1002/app.30165
    Lee, Y.-R., Jang, M.-S., Cho, H.-Y., Kwon, H.-J., Kim, S., & Ahn, W.-S. (2015). ZIF-8: A comparison of synthesis methods. Chemical Engineering Journal, 271, 276–280. https://doi.org/10.1016/j.cej.2015.02.094
    Leonarta, F., & Lee, C.-K. (2021). Nanofibrous Membrane with Encapsulated Glucose Oxidase for Self-Sustained Antimicrobial Applications. Membranes, 11(12), 997. https://doi.org/10.3390/membranes11120997
    Li, D., Wu, S., Wang, F., Jia, S., Liu, Y., Han, X., Zhang, L., Zhang, S., & Wu, Y. (2016). A facile one-pot synthesis of hemin/ZIF-8 composite as mimetic peroxidase. Materials Letters, 178, 48–51. https://doi.org/10.1016/j.matlet.2016.04.200
    Li, D., & Xia, Y. (2004). Electrospinning of Nanofibers: Reinventing the Wheel? Advanced Materials, 16(14), 1151–1170. https://doi.org/10.1002/adma.200400719
    Liang, M., & Yan, X. (2019). Nanozymes: From New Concepts, Mechanisms, and Standards to Applications. Accounts of Chemical Research, 52(8), 2190–2200. https://doi.org/10.1021/acs.accounts.9b00140
    Lin, T., Qin, Y., Huang, Y., Yang, R., Hou, L., Ye, F., & Zhao, S. (2018). A label-free fluorescence assay for hydrogen peroxide and glucose based on the bifunctional MIL-53(Fe) nanozyme. Chemical Communications, 54(14), 1762–1765. https://doi.org/10.1039/C7CC09819G
    Lin, Y., Wu, B., Ning, P., Qu, G., Li, J., Wang, X., & Xie, R. (2017). Stabilization of arsenic in waste slag using FeCl 2 or FeCl 3 stabilizer. RSC Advances, 7(87), 54956–54963. https://doi.org/10.1039/C7RA10169D
    Liu, Q., Zhang, A., Wang, R., Zhang, Q., & Cui, D. (2021). A Review on Metal- and Metal Oxide-Based Nanozymes: Properties, Mechanisms, and Applications. Nano-Micro Letters, 13(1), 154. https://doi.org/10.1007/s40820-021-00674-8
    Liu, X., Cai, Z., Gao, N., Ye, S., Tao, T., He, H., Chang, G., & He, Y. (2021). Controllable preparation of (200) facets preferential oriented silver nanowires for non-invasive detection of glucose in human sweat. Smart Materials in Medicine, 2, 150–157. https://doi.org/10.1016/j.smaim.2021.05.002
    Liu, Y., Nan, X., Shi, W., Liu, X., He, Z., Sun, Y., & Ge, D. (2019). A glucose biosensor based on the immobilization of glucose oxidase and Au nanocomposites with polynorepinephrine. RSC Advances, 9(29), 16439–16446. https://doi.org/10.1039/C9RA02054C
    Luo, Z., Yue, S., Chen, T., She, P., Wu, Y., & Wu, Y. (2020). Reduced Growth of Staphylococcus aureus Under High Glucose Conditions Is Associated With Decreased Pentaglycine Expression. Frontiers in Microbiology, 11. https://doi.org/10.3389/fmicb.2020.537290
    Manea, F., Houillon, F. B., Pasquato, L., & Scrimin, P. (2004). Nanozymes: Gold-Nanoparticle-Based Transphosphorylation Catalysts. Angewandte Chemie International Edition, 43(45), 6165–6169. https://doi.org/10.1002/anie.200460649
    Massima Mouele, E. S., Fatoba, O. Ojo., Babajide, O., Badmus, K. O., & Petrik, L. F. (2018). Review of the methods for determination of reactive oxygen species and suggestion for their application in advanced oxidation induced by dielectric barrier discharges. Environmental Science and Pollution Research, 25(10), 9265–9282. https://doi.org/10.1007/s11356-018-1392-9
    McCord, J. M., & Day, E. D. (1978). Superoxide-dependent production of hydroxyl radical catalyzed by iron-EDTA complex. FEBS Letters, 86(1), 139–142. https://doi.org/10.1016/0014-5793(78)80116-1
    McDonnell, G. (2014). The Use of Hydrogen Peroxide for Disinfection and Sterilization Applications. In PATAI’S Chemistry of Functional Groups (pp. 1–34). John Wiley & Sons, Ltd. https://doi.org/10.1002/9780470682531.pat0885
    McKee, M. G., Wilkes, G. L., Colby, Ralph. H., & Long, T. E. (2004a). Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 37(5), 1760–1767. https://doi.org/10.1021/ma035689h
    McKee, M. G., Wilkes, G. L., Colby, Ralph. H., & Long, T. E. (2004b). Correlations of Solution Rheology with Electrospun Fiber Formation of Linear and Branched Polyesters. Macromolecules, 37(5), 1760–1767. https://doi.org/10.1021/ma035689h
    Md Nordin, N. A. H., Ismail, A. F., & Yahya, N. (2017). ZEOLITIC IMIDAZOLE FRAMEWORK 8 DECORATED GRAPHENE OXIDE (ZIF-8/GO) MIXED MATRIX MEMBRANE (MMM) FOR CO2/CH4 SEPARATION. Jurnal Teknologi, 79(1–2). https://doi.org/10.11113/jt.v79.10438
    Montesinos, V. N., Sleiman, M., Cohn, S., Litter, M. I., & Destaillats, H. (2015). Detection and quantification of reactive oxygen species (ROS) in indoor air. Talanta, 138, 20–27. https://doi.org/10.1016/j.talanta.2015.02.015
    Munteanu, B. S., & Vasile, C. (2021). Encapsulation of Natural Bioactive Compounds by Electrospinning—Applications in Food Storage and Safety. Polymers, 13(21), 3771. https://doi.org/10.3390/polym13213771
    Natalio, F., André, R., Hartog, A. F., Stoll, B., Jochum, K. P., Wever, R., & Tremel, W. (2012). Vanadium pentoxide nanoparticles mimic vanadium haloperoxidases and thwart biofilm formation. Nature Nanotechnology, 7(8), 530–535. https://doi.org/10.1038/nnano.2012.91
    Nicol, M. J., & Duke, F. R. (1966). Substrate Inhibition with Glucose Oxidase. Journal of Biological Chemistry, 241(18), 4292–4293. https://doi.org/10.1016/S0021-9258(18)99783-8
    Niinomi, M. (2002). Recent metallic materials for biomedical applications. Metallurgical and Materials Transactions A, 33(3), 477–486. https://doi.org/10.1007/s11661-002-0109-2
    Niu, X., Liu, Y., Li, X., Wang, W., & Yuan, Z. (2020). NIR Light‐Driven Bi 2 Se 3 ‐Based Nanoreactor with “Three in One” Hemin‐Assisted Cascade Catalysis for Synergetic Cancer Therapy. Advanced Functional Materials, 30(52), 2006883. https://doi.org/10.1002/adfm.202006883
    Nordin, N. A. H. M., Ismail, A. F., Misdan, N., & Nazri, N. A. M. (2017). Modified ZIF-8 mixed matrix membrane for CO2/CH4 separation. 020091. https://doi.org/10.1063/1.5005424
    Ol’khov, A. A., Tyubaeva, P. M., Zernova, Yu. N., Kurnosov, A. S., Karpova, S. G., & Iordanskii, A. L. (2021). Structure and Properties of Biopolymeric Fibrous Materials Based on Polyhydroxybutyrate–Metalloporphyrin Complexes. Russian Journal of General Chemistry, 91(3), 546–553. https://doi.org/10.1134/S1070363221030245
    Pandey, A., & Larroche, C. (2014). Gluconic Acid: Properties, Applications and Microbial Production Chemicals and fuels from Lactic acid bacteria View project Carbon dioxide sequestration and production of bio-materials by bacteria. View project Pierre FONTANILLE Université Clermont Auvergne. https://www.researchgate.net/publication/228342155
    Pantopoulos, Kostas., & Schipper, H. M. (2012). Principles of free radical biomedicine. Vol. 1. Nova Biomedical Books.
    Park, J.-C., Ito, T., Kim, K.-O., Kim, K.-W., Kim, B.-S., Khil, M.-S., Kim, H.-Y., & Kim, I.-S. (2010). Electrospun poly(vinyl alcohol) nanofibers: effects of degree of hydrolysis and enhanced water stability. Polymer Journal, 42(3), 273–276. https://doi.org/10.1038/pj.2009.340
    Paul, A., Vyas, G., Paul, P., & Srivastava, D. N. (2018a). Gold-Nanoparticle-Encapsulated ZIF-8 for a Mediator-Free Enzymatic Glucose Sensor by Amperometry. ACS Applied Nano Materials, 1(7), 3600–3607. https://doi.org/10.1021/acsanm.8b00748
    Paul, A., Vyas, G., Paul, P., & Srivastava, D. N. (2018b). Gold-Nanoparticle-Encapsulated ZIF-8 for a Mediator-Free Enzymatic Glucose Sensor by Amperometry. ACS Applied Nano Materials, 1(7), 3600–3607. https://doi.org/10.1021/acsanm.8b00748
    Peng, H., Newbigging, A. M., Reid, M. S., Uppal, J. S., Xu, J., Zhang, H., & Le, X. C. (2020). Signal Amplification in Living Cells: A Review of microRNA Detection and Imaging. Analytical Chemistry, 92(1), 292–308. https://doi.org/10.1021/acs.analchem.9b04752
    Pignatello, J. J., Oliveros, E., & MacKay, A. (2006). Advanced Oxidation Processes for Organic Contaminant Destruction Based on the Fenton Reaction and Related Chemistry. Critical Reviews in Environmental Science and Technology, 36(1), 1–84. https://doi.org/10.1080/10643380500326564
    Pillay, V., Dott, C., Choonara, Y. E., Tyagi, C., Tomar, L., Kumar, P., du Toit, L. C., & Ndesendo, V. M. K. (2013). A Review of the Effect of Processing Variables on the Fabrication of Electrospun Nanofibers for Drug Delivery Applications. Journal of Nanomaterials, 2013, 1–22. https://doi.org/10.1155/2013/789289
    Pryor, W. A. (1986). Oxy-Radicals and Related Species: Their Formation, Lifetimes, and Reactions. Annual Review of Physiology, 48(1), 657–667. https://doi.org/10.1146/annurev.ph.48.030186.003301
    Qiu, H., Pu, F., Ran, X., Liu, C., Ren, J., & Qu, X. (2018). Nanozyme as Artificial Receptor with Multiple Readouts for Pattern Recognition. Analytical Chemistry, 90(20), 11775–11779. https://doi.org/10.1021/acs.analchem.8b03807
    Raghavendra, G. M., Varaprasad, K., & Jayaramudu, T. (2015). Biomaterials. In Nanotechnology Applications for Tissue Engineering (pp. 21–44). Elsevier. https://doi.org/10.1016/B978-0-323-32889-0.00002-9
    Ramakrishna, S., Fujihara, K., Teo, W.-E., Lim, T.-C., & Ma, Z. (2005). An Introduction to Electrospinning and Nanofibers. WORLD SCIENTIFIC. https://doi.org/10.1142/5894
    Rasouli, R., Barhoum, A., Bechelany, M., & Dufresne, A. (2019). Nanofibers for Biomedical and Healthcare Applications. Macromolecular Bioscience, 19(2), 1800256. https://doi.org/10.1002/mabi.201800256
    Ren, G., Xu, X., Liu, Q., Cheng, J., Yuan, X., Wu, L., & Wan, Y. (2006). Electrospun poly(vinyl alcohol)/glucose oxidase biocomposite membranes for biosensor applications. Reactive and Functional Polymers, 66(12), 1559–1564. https://doi.org/10.1016/j.reactfunctpolym.2006.05.005
    Rhee, S. G., Chang, T.-S., Jeong, W., & Kang, D. (2010). Methods for detection and measurement of hydrogen peroxide inside and outside of cells. Molecules and Cells, 29(6), 539–549. https://doi.org/10.1007/s10059-010-0082-3
    Rianjanu, A., Kusumaatmaja, A., Suyono, E. A., & Triyana, K. (2018). Solvent vapor treatment improves mechanical strength of electrospun polyvinyl alcohol nanofibers. Heliyon, 4(4), e00592. https://doi.org/10.1016/j.heliyon.2018.e00592
    Ríos-Castillo, A. G., González-Rivas, F., & Rodríguez-Jerez, J. J. (2017a). Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces. Journal of Food Science, 82(10), 2351–2356. https://doi.org/10.1111/1750-3841.13790
    Ríos-Castillo, A. G., González-Rivas, F., & Rodríguez-Jerez, J. J. (2017b). Bactericidal Efficacy of Hydrogen Peroxide-Based Disinfectants Against Gram-Positive and Gram-Negative Bacteria on Stainless Steel Surfaces. Journal of Food Science, 82(10), 2351–2356. https://doi.org/10.1111/1750-3841.13790
    Romero, R., Contreras, D., Sepúlveda, M., Moreno, N., Segura, C., & Melin, V. (2020a). Assessment of a Fenton reaction driven by insoluble tannins from pine bark in treating an emergent contaminant. Journal of Hazardous Materials, 382, 120982. https://doi.org/10.1016/j.jhazmat.2019.120982
    Romero, R., Contreras, D., Sepúlveda, M., Moreno, N., Segura, C., & Melin, V. (2020b). Assessment of a Fenton reaction driven by insoluble tannins from pine bark in treating an emergent contaminant. Journal of Hazardous Materials, 382, 120982. https://doi.org/10.1016/j.jhazmat.2019.120982
    Romero, R., Contreras, D., Sepúlveda, M., Moreno, N., Segura, C., & Melin, V. (2020c). Assessment of a Fenton reaction driven by insoluble tannins from pine bark in treating an emergent contaminant. Journal of Hazardous Materials, 382, 120982. https://doi.org/10.1016/j.jhazmat.2019.120982
    Sadik Kara. (2012). A Roadmap of Biomedical Engineers and Milestones (S. Kara, Ed.). InTech. https://doi.org/10.5772/2494
    Sen, A., Imlay J.A. (2021) How Microbes Defend Themselves from Incoming Hydrogen Peroxide. Front. Immunol. https://doi.org/10.3389/fimmu.2021.667343
    Sharma, T. K., Ramanathan, R., Weerathunge, P., Mohammadtaheri, M., Daima, H. K., Shukla, R., & Bansal, V. (2014). Aptamer-mediated ‘turn-off/turn-on’ nanozyme activity of gold nanoparticles for kanamycin detection. Chem. Commun., 50(100), 15856–15859. https://doi.org/10.1039/C4CC07275H
    Sheng, H., Nakamura, K., Kanno, T., Sasaki, K., & Niwano, Y. (2015). Microbicidal Activity of Artificially Generated Hydroxyl Radicals. In Interface Oral Health Science 2014 (pp. 203–215). Springer Japan. https://doi.org/10.1007/978-4-431-55192-8_17
    Shin, H. U., Lolla, D., Nikolov, Z., & Chase, G. G. (2016). Pd–Au nanoparticles supported by TiO2 fibers for catalytic NO decomposition by CO. Journal of Industrial and Engineering Chemistry, 33, 91–98. https://doi.org/10.1016/j.jiec.2015.09.020
    Son, W. K., Youk, J. H., Lee, T. S., & Park, W. H. (2004). The effects of solution properties and polyelectrolyte on electrospinning of ultrafine poly(ethylene oxide) fibers. Polymer, 45(9), 2959–2966. https://doi.org/10.1016/j.polymer.2004.03.006
    Teo, W. E., & Ramakrishna, S. (2006). A review on electrospinning design and nanofibre assemblies. Nanotechnology, 17(14), R89–R106. https://doi.org/10.1088/0957-4484/17/14/R01
    Thangudu, S., & Su, C.-H. (2021). Peroxidase Mimetic Nanozymes in Cancer Phototherapy: Progress and Perspectives. Biomolecules, 11(7), 1015. https://doi.org/10.3390/biom11071015
    Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018a). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. Journal of Porous Materials, 25(3), 857–869. https://doi.org/10.1007/s10934-017-0498-7
    Thanh, M. T., Thien, T. V., Du, P. D., Hung, N. P., & Khieu, D. Q. (2018b). Iron doped zeolitic imidazolate framework (Fe-ZIF-8): synthesis and photocatalytic degradation of RDB dye in Fe-ZIF-8. Journal of Porous Materials, 25(3), 857–869. https://doi.org/10.1007/s10934-017-0498-7
    Tiina, M. (1989). Antibacterial effect of the glucose oxidase-glucose system on food-poisoning organisms. International Journal of Food Microbiology, 8(2), 165–174. https://doi.org/10.1016/0168-1605(89)90071-8
    Travascio, P., Witting, P. K., Mauk, A. G., & Sen, D. (2001). The Peroxidase Activity of a Hemin−DNA Oligonucleotide Complex: Free Radical Damage to Specific Guanine Bases of the DNA. Journal of the American Chemical Society, 123(7), 1337–1348. https://doi.org/10.1021/ja0023534
    Vallet-Regí, M. (2001). Ceramics for medical applications. Journal of the Chemical Society, Dalton Transactions, 2, 97–108. https://doi.org/10.1039/b007852m
    Vitko, N. P., Spahich, N. A., & Richardson, A. R. (2015). Glycolytic Dependency of High-Level Nitric Oxide Resistance and Virulence in Staphylococcus aureus. MBio, 6(2). https://doi.org/10.1128/mBio.00045-15
    Wales, D. J., Grand, J., Ting, V. P., Burke, R. D., Edler, K. J., Bowen, C. R., Mintova, S., & Burrows, A. D. (2015). Gas sensing using porous materials for automotive applications. Chemical Society Reviews, 44(13), 4290–4321. https://doi.org/10.1039/C5CS00040H
    Wang, D., Wu, H., Phua, S. Z. F., Yang, G., Qi Lim, W., Gu, L., Qian, C., Wang, H., Guo, Z., Chen, H., & Zhao, Y. (2020). Self-assembled single-atom nanozyme for enhanced photodynamic therapy treatment of tumor. Nature Communications, 11(1), 357. https://doi.org/10.1038/s41467-019-14199-7
    Wang, N., Zhu, L., Wang, D., Wang, M., Lin, Z., & Tang, H. (2010). Sono-assisted preparation of highly-efficient peroxidase-like Fe3O4 magnetic nanoparticles for catalytic removal of organic pollutants with H2O2. Ultrasonics Sonochemistry, 17(3), 526–533. https://doi.org/10.1016/j.ultsonch.2009.11.001
    Wang, X., Gao, X. J., Qin, L., Wang, C., Song, L., Zhou, Y.-N., Zhu, G., Cao, W., Lin, S., Zhou, L., Wang, K., Zhang, H., Jin, Z., Wang, P., Gao, X., & Wei, H. (2019). eg occupancy as an effective descriptor for the catalytic activity of perovskite oxide-based peroxidase mimics. Nature Communications, 10(1), 704. https://doi.org/10.1038/s41467-019-08657-5
    Wannatong, L., Sirivat, A., & Supaphol, P. (2004). Effects of solvents on electrospun polymeric fibers: preliminary study on polystyrene. Polymer International, 53(11), 1851–1859. https://doi.org/10.1002/pi.1599
    Waqas Munir, M., & Ali, U. (2020). Classification of Electrospinning Methods. In Nanorods and Nanocomposites. IntechOpen. https://doi.org/10.5772/intechopen.88654
    Watts, R. J., Washington, D., Howsawkeng, J., Loge, F. J., & Teel, A. L. (2003). Comparative toxicity of hydrogen peroxide, hydroxyl radicals, and superoxide anion to Escherichia coli. Advances in Environmental Research, 7(4), 961–968. https://doi.org/10.1016/S1093-0191(02)00100-4
    Wei, H., & Wang, E. (2008). Fe 3 O 4 Magnetic Nanoparticles as Peroxidase Mimetics and Their Applications in H 2 O 2 and Glucose Detection. Analytical Chemistry, 80(6), 2250–2254. https://doi.org/10.1021/ac702203f
    Wei, H., & Wang, E. (2013). Nanomaterials with enzyme-like characteristics (nanozymes): next-generation artificial enzymes. Chemical Society Reviews, 42(14), 6060. https://doi.org/10.1039/c3cs35486e
    Wright, G. D. (2007). On the Road to Bacterial Cell Death. Cell, 130(5), 781–783. https://doi.org/10.1016/j.cell.2007.08.023
    Xue, J., Wu, T., Dai, Y., & Xia, Y. (2019). Electrospinning and Electrospun Nanofibers: Methods, Materials, and Applications. Chemical Reviews, 119(8), 5298–5415. https://doi.org/10.1021/acs.chemrev.8b00593
    Yang, J., Xiong, L., Li, M., Xiao, J., Geng, X., Wang, B., & Sun, Q. (2019). Preparation and Characterization of Tadpole- and Sphere-Shaped Hemin Nanoparticles for Enhanced Solubility. Nanoscale Research Letters, 14(1), 47. https://doi.org/10.1186/s11671-019-2880-7
    Yi, H., Jiang, M., Huang, D., Zeng, G., Lai, C., Qin, L., Zhou, C., Li, B., Liu, X., Cheng, M., Xue, W., Xu, P., & Zhang, C. (2018). Advanced photocatalytic Fenton-like process over biomimetic hemin-Bi2WO6 with enhanced pH. Journal of the Taiwan Institute of Chemical Engineers, 93, 184–192. https://doi.org/10.1016/j.jtice.2018.06.037
    Zavascki, A. P., Goldani, L. Z., Li, J., & Nation, R. L. (2007). Polymyxin B for the treatment of multidrug-resistant pathogens: a critical review. Journal of Antimicrobial Chemotherapy, 60(6), 1206–1215. https://doi.org/10.1093/jac/dkm357
    Zhang, Genfa., & Dasgupta, P. K. (1992). Hematin as a peroxidase substitute in hydrogen peroxide determinations. Analytical Chemistry, 64(5), 517–522. https://doi.org/10.1021/ac00029a013
    Zhou, C., Wang, Q., Jiang, J., & Gao, L. (2022). Nanozybiotics: Nanozyme-Based Antibacterials against Bacterial Resistance. Antibiotics, 11(3), 390. https://doi.org/10.3390/antibiotics11030390
    Zhou, S., Liu, F., Zhang, Q., Chen, B.-Y., Lin, C.-J., & Chang, C.-T. (2015). Preparation of Polyacrylonitrile/Ferrous Chloride Composite Nanofibers by Electrospinning for Efficient Reduction of Cr(VI). Journal of Nanoscience and Nanotechnology, 15(8), 5823–5832. https://doi.org/10.1166/jnn.2015.10271
    Zia, M. A., Riaz, A., Rasul, S., & Abbas, R. Z. (2013). Evaluation of Antimicrobial Activity of Glucose Oxidase from Aspergillus niger EBL-A and Penicillium notatum. Brazilian Archives of Biology and Technology, 56(6), 956–961. https://doi.org/10.1590/S1516-89132013005000010
    Zou, H. L., Li, B. L., Luo, H. Q., & Li, N. B. (2015). A novel electrochemical biosensor based on hemin functionalized graphene oxide sheets for simultaneous determination of ascorbic acid, dopamine and uric acid. Sensors and Actuators B: Chemical, 207, 535–541. https://doi.org/10.1016/j.snb.2014.10.121

    無法下載圖示 全文公開日期 2025/07/14 (校內網路)
    全文公開日期 2025/07/14 (校外網路)
    全文公開日期 2025/07/14 (國家圖書館:臺灣博碩士論文系統)
    QR CODE