簡易檢索 / 詳目顯示

研究生: 黃郁盛
Yu-Sheng Huang
論文名稱: 奈米級氧化鈰粉末抑菌作用之研究
Study of bacterial inhibition effects on nanometer sized ceria powder
指導教授: 蔡大翔
Dah-shyang Tsai
口試委員: 蔡伸隆
Shen-long Tsai
楊自森
Tzu-sen Yang
彭珮雯
Pei-wen Peng
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2015
畢業學年度: 103
語文別: 中文
論文頁數: 101
中文關鍵詞: 氧化鈰奈米粒子抗菌活性載體細胞毒性氧空位活性氧化物種
外文關鍵詞: ceria nanoparticle, antibacterial activity, support, cytotoxicity, oxygen vacancy, reactive oxygen species
相關次數: 點閱:258下載:2
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氧化鈰奈米尺寸微粒本質是觸媒,由於高比表面積氧化鈰具有大量氧缺陷,表面鈰離子能捕獲或釋出氧,易進行Ce3+/4+的轉換,因此催化許多鄰近環境中的有機分子氧化還原反應,而具有細胞毒性。利用簡易、低廉的共沉澱法合成氧化鈰,及摻雜(doping) 10 mol % 銀來增加抑菌效果,尺寸約9-10 nm。由XRD、SEM、EDX、Raman進行二氧化鈰奈米粒子的材料特性分析,分析結果顯示共沉澱合成法確實讓金屬離子摻雜進到二氧化鈰晶格裡。
    本研究所採用的菌種最常見的革蘭氏陰性菌(Gram-negative)-大腸桿菌(Escherichia coli)及革蘭氏陽性菌(Gram-positive)-金黃葡萄球菌亞種(Staphylococcus aureus subsp. aureus),以比濁法(turbidimetry)在液態培養液量測菌液的吸光度(optical density, OD)得知細菌生長情形
    ,並利用平板計數法(plate count method)定量細菌在固態培養基存活的菌落數(CFU/mL),了解奈米粒子對細菌的抑制能力表現。另外透過倒立式螢光顯微鏡,以PI試劑和DCFH-DA試劑染色細菌,觀察細菌與奈米粒子作用的情形。實驗結果顯現二氧化鈰對於金黃葡萄球菌亞種的抑制能力優於大腸桿菌,不同的是,摻雜銀的二氧化鈰對於大腸桿菌比金黃葡萄球菌亞種有優異的抑制效果,甚至有殺菌的效果,其分別對大腸桿菌和金黃葡萄球菌亞種的最低殺菌濃度(minimal bactericidal concentration, MBC)為0.375 mg/mL和1.5 mg/mL,因此二氧化鈰可以說是有效的銀載體。由此可推測,摻雜銀離子有效提升二氧化鈰的抑菌能力,摻雜銀氧化鈰奈米粒子優異殺菌能力來自二氧化鈰與銀兩者的相乘效果(synergetic effect)。


    Ceria particles of nanometer size are catalysts owing to their high surface area loaded with a high fraction of oxygen defects. The surface cerium ion is capable of capturing or releasing oxygen, which facilitates the conversion between Ce3+ and Ce4+ and catalyzes many redox reactions of organic molecules in its neighborhood. Such a catalytic property makes ceria nanoparticles cytotoxic toward microorganism. We apply the facile precipitation method to synthesize ceria nanoparticle of 9-10 nm in size, further characterize these inexpensive ceria nanoparticles, and confirm the disinfection functions of undoped and silver-doped particles. The two compositions have shown market potential.
    We analyze the cytotoxicity of ceria nanoparticles using the turbidimetric method and the plate count method of microbiology. Among the undoped ceria, and 10 mol% silver, copper, chromium, aluminum doped ceria samples, the silver doped sample stands out as the most disinfecting agent, with the sterilization effect far exceeding other four samples. The sterilization effects of samples doped with copper and chromium are similar to that of the undoped ceria, while the aluminum doped sample shows an inferior sterilization capability. Further analysis on the disinfection mechanism indicates that the sterilization effect of ceria originates from its contact with the cell wall of bacteria and the reactive oxygen species generated on ceria surface damage the cell wall, resulting in the cell killing. Thus, dispersion of the ceria nanoparticle has tremendous influences on its sterilization effect. On the other hand, the silver doped sample releases disinfecting silver ions, in addition to the above sterilization effect. Since the silver doped ceria powder is an excellent silver carrier, we attribute its disinfecting ability to the synergetic effect of the two mechanisms.

    摘要 I ABSTRACT III 目錄 V 圖目錄 IX 表目錄 XIII 第一章 緒論 1 1.1 前言 1 1.2 研究動機 3 第二章 文獻回顧與理論基礎 4 2.1 奈米粒子 4 2.2 二氧化鈰 4 2.2.1 二氧化鈰基本物理性質 5 2.2.2 二氧化鈰基本化學性質 6 2.2.3 二氧化鈰基本光學性質 7 2.3 奈米二氧化鈰粉體製備方法 7 2.4 抗菌材料比較 10 2.5 無機抗菌材料抑菌行為 11 2.6 革蘭氏陽性菌與陰性菌特性差異 14 2.6.1 原核生物-細菌 14 2.6.2 革蘭氏陰性菌-大腸桿菌 15 2.6.3 革蘭氏陽性菌-金黃色葡萄球菌 16 2.7 抗菌材料應用 18 第三章 實驗方法與步驟 19 3.1 實驗藥品與儀器設備 19 3.1.1 實驗藥品 19 3.1.2 分析儀器 23 3.2 實驗流程 24 3.3 實驗方法 27 3.3.1 奈米粉體合成 27 3.3.2 配製培養基 28 3.3.3 抑菌活性試驗 29 3.3.3.1 比濁法(turbidimetry) 30 3.3.3.2 紙片擴散法(disk diffusion susceptibility test) [32, 33] 30 3.3.3.3 平板計數法(plate count method) 31 3.3.4 細菌抑制形態 33 3.3.4.1 Propidium Iodide 34 3.3.4.2 DCFH-DA 35 3.4 鑑定與分析 40 第四章 結果與討論 44 4.1 奈米材料特性分析 44 4.1.1 X光繞射分析(x-ray diffraction analysis) 44 4.1.2拉曼散射分析(raman scattering analysis) 47 4.1.3 SEM分析(scanning electron microscope) 49 4.1.4 EDX分析(energy dispersive x-ray analysis) 50 4.2 抑菌活性分析 53 4.2.1 CeO2與(Ce0.9M0.1)O2對細菌生長情形的影響 53 4.2.2 CeO2與(Ce0.9Ag0.1)O2對細菌的感染(susceptibility)程度 56 4.2.3 不同劑量的CeO2與(Ce0.9Ag0.1)O2對細菌生長情況的影響 58 4.2.4 劑量與細菌菌落數的定量關係 60 4.2.4.1 奈米粒子CeO2對不同菌種的抑制情況 60 4.2.4.2 奈米粒子(Ce0.9Ag0.1)O2對不同菌種的抑制情況 62 4.3 細菌抑制形態 64 4.3.1 奈米粒子CeO2與(Ce0.9Ag0.1)O2對細菌損傷的影響 64 4.3.2 奈米粒子(Ce0.9Ag0.1)O2對細菌內活性氧化物質生成的影響 67 4.4 (Ce0.9Ag0.1)O2劑量與Ag+釋出濃度之關係 75 4.5 (Ce0.9Ag0.1)O2的相乘效果對殺菌能力之影響 77 第五章 結論 80 參考文獻 82

    1. Heckert, E.G., et al., The role of cerium redox state in the SOD mimetic activity of nanoceria. Biomaterials, 2008. 29(18): p. 2705-2709.
    2. López-Moreno, M.L., et al., Evidence of the differential biotransformation and genotoxicity of ZnO and CeO2 nanoparticles on soybean (Glycine max) plants. Environmental science & technology, 2010. 44(19): p. 7315-7320.
    3. Park, E.-J., et al., Oxidative stress induced by cerium oxide nanoparticles in cultured BEAS-2B cells. Toxicology, 2008. 245(1): p. 90-100.
    4. Thill, A., et al., Cytotoxicity of CeO2 nanoparticles for Escherichia coli. Physico-chemical insight of the cytotoxicity mechanism. Environmental science & technology, 2006. 40(19): p. 6151-6156.
    5. Fu, Q., H. Saltsburg, and M. Flytzani-Stephanopoulos, Active nonmetallic Au and Pt species on ceria-based water-gas shift catalysts. Science, 2003. 301(5635): p. 935-938.
    6. Hosokawa, S., et al., State of Ru on CeO 2 and its catalytic activity in the wet oxidation of acetic acid. Applied Catalysis B: Environmental, 2003. 45(3): p. 181-187.
    7. Wang, Q., J.M. Perez, and T.J. Webster, Inhibited growth of Pseudomonas aeruginosa by dextran-and polyacrylic acid-coated ceria nanoparticles. International journal of nanomedicine, 2013. 8: p. 3395.
    8. Ferrando, R., J. Jellinek, and R.L. Johnston, Nanoalloys: from theory to applications of alloy clusters and nanoparticles. Chemical reviews, 2008. 108(3): p. 845-910.
    9. Tsunekawa, S., J.-T. Wang, and Y. Kawazoe, Lattice constants and electron gap energies of nano-and subnano-sized cerium oxides from the experiments and first-principles calculations. Journal of alloys and compounds, 2006. 408: p. 1145-1148.
    10. Sahoo, S., S. Parveen, and J. Panda, The present and future of nanotechnology in human health care. Nanomedicine: Nanotechnology, Biology and Medicine, 2007. 3(1): p. 20-31.
    11. Murugan, B. and A. Ramaswamy, Defect-site promoted surface reorganization in nanocrystalline ceria for the low-temperature activation of ethylbenzene. Journal of the American Chemical Society, 2007. 129(11): p. 3062-3063.
    12. Zhang, D., et al., A highly reactive catalyst for CO oxidation: CeO 2 nanotubes synthesized using carbon nanotubes as removable templates. Microporous and Mesoporous Materials, 2009. 117(1): p. 193-200.
    13. Avellaneda, C.O., M.A. Berton, and L.O. Bulhoes, Optical and electrochemical properties of CeO 2 thin film prepared by an alkoxide route. Solar Energy Materials and Solar Cells, 2008. 92(2): p. 240-244.
    14. Özer, N., Optical properties and electrochromic characterization of sol–gel deposited ceria films. Solar Energy Materials and Solar Cells, 2001. 68(3): p. 391-400.
    15. Patsalas, P., S. Logothetidis, and C. Metaxa, Optical performance of nanocrystalline transparent ceria films. Applied physics letters, 2002. 81: p. 466-468.
    16. Garzon, F.H., R. Mukundan, and E.L. Brosha, Solid-state mixed potential gas sensors: theory, experiments and challenges. Solid State Ionics, 2000. 136: p. 633-638.
    17. Hoshino, T., et al., Mechanism of polishing of SiO 2 films by CeO 2 particles. Journal of Non-Crystalline Solids, 2001. 283(1): p. 129-136.
    18. Kosynkin, V., et al., The study of process production of polishing powder based on cerium dioxide. Journal of Alloys and Compounds, 2000. 303: p. 421-425.
    19. Laosiripojana, N., W. Sangtongkitcharoen, and S. Assabumrungrat, Catalytic steam reforming of ethane and propane over CeO 2-doped Ni/Al 2 O 3 at SOFC temperature: improvement of resistance toward carbon formation by the redox property of doping CeO 2. Fuel, 2006. 85(3): p. 323-332.
    20. Sun, C., et al., Investigations of mesoporous CeO 2–Ru as a reforming catalyst layer for solid oxide fuel cells. Electrochemistry communications, 2006. 8(5): p. 833-838.
    21. Hu, C., et al., Preparation and formation mechanism of mesoporous CuO–CeO 2 mixed oxides with excellent catalytic performance for removal of VOCs. Microporous and Mesoporous Materials, 2008. 113(1): p. 427-434.
    22. Mao, C., et al., Synthesis, characterization and computational study of nitrogen-doped CeO 2 nanoparticles with visible-light activity. Physical Chemistry Chemical Physics, 2008. 10(36): p. 5633-5638.
    23. Malavasi, L., C.A. Fisher, and M.S. Islam, Oxide-ion and proton conducting electrolyte materials for clean energy applications: structural and mechanistic features. Chemical Society Reviews, 2010. 39(11): p. 4370-4387.
    24. 張宏毅, 二氧化鈰奈米粉體之晶形操控-製備, 特性分析及氧化催化活性. 成功大學化學工程學系博士學位論文, 2005: p. 1-208.
    25. Feng, Q., et al., A mechanistic study of the antibacterial effect of silver ions on Escherichia coli and Staphylococcus aureus. Journal of biomedical materials research, 2000. 52(4): p. 662-668.
    26. Rai, M., A. Yadav, and A. Gade, Silver nanoparticles as a new generation of antimicrobials. Biotechnology advances, 2009. 27(1): p. 76-83.
    27. Castellano, J.J., et al., Comparative evaluation of silver‐containing antimicrobial dressings and drugs. International Wound Journal, 2007. 4(2): p. 114-122.
    28. Tung, W.S. and W.A. Daoud, Self-cleaning fibers via nanotechnology: a virtual reality. Journal of Materials Chemistry, 2011. 21(22): p. 7858-7869.
    29. Zigah, D., J. Rodríguez-López, and A.J. Bard, Quantification of photoelectrogenerated hydroxyl radical on TiO 2 by surface interrogation scanning electrochemical microscopy. Physical Chemistry Chemical Physics, 2012. 14(37): p. 12764-12772.
    30. Cabeen, M.T. and C. Jacobs-Wagner, Bacterial cell shape. Nature Reviews Microbiology, 2005. 3(8): p. 601-610.
    31. Ketzial, J.J. and A.S. Nesaraj, Synthesis of CeO2 nanoparticles by chemical precipitation and the effect of a sur-factant on the distribution of particle sizes. Journal of Ceramic Processing Research, 2011. 12(1): p. 74-79.
    32. Hudzicki, J., Kirby-Bauer disk diffusion susceptibility test protocol. Am Soc Microbiol, 2009.
    33. Standards, N.C.f.C.L., Performance Standards for Antimicrobial Disk Susceptibility Tests: Approved Standards. 2006: National Committee for Clinical Laboratory Standards.
    34. Dröge, W., Free radicals in the physiological control of cell function. Physiological reviews, 2002. 82(1): p. 47-95.
    35. Sundaresan, M., et al., Requirement for generation of H2O2 for platelet-derived growth factor signal transduction. Science, 1995. 270(5234): p. 296-299.
    36. Valko, M., H. Morris, and M. Cronin, Metals, toxicity and oxidative stress. Current medicinal chemistry, 2005. 12(10): p. 1161-1208.
    37. Pinjari, D.V. and A.B. Pandit, Room temperature synthesis of crystalline CeO 2 nanopowder: advantage of sonochemical method over conventional method. Ultrasonics sonochemistry, 2011. 18(5): p. 1118-1123.
    38. Gouadec, G. and P. Colomban, Raman Spectroscopy of nanomaterials: How spectra relate to disorder, particle size and mechanical properties. Progress in Crystal Growth and Characterization of Materials, 2007. 53(1): p. 1-56.
    39. Ohhara, K., et al., Oxygen defects created in CeO 2 irradiated with 200MeV Au ions. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2009. 267(6): p. 973-975.
    40. Akhavan, O. and E. Ghaderi, Toxicity of graphene and graphene oxide nanowalls against bacteria. ACS nano, 2010. 4(10): p. 5731-5736.
    41. Krishnamoorthy, K., et al., Surface chemistry of cerium oxide nanocubes: Toxicity against pathogenic bacteria and their mechanistic study. Journal of Industrial and Engineering Chemistry, 2014. 20(5): p. 3513-3517.
    42. Eaton, P., et al., Atomic force microscopy study of the antibacterial effects of chitosans on Escherichia coli and Staphylococcus aureus. Ultramicroscopy, 2008. 108(10): p. 1128-1134.
    43. Kim, S.-H., et al., Antibacterial activity of silver-nanoparticles against Staphylococcus aureus and Escherichia coli. Korean J Microbiol Biotechnol, 2011. 39(1): p. 77-85.

    QR CODE