簡易檢索 / 詳目顯示

研究生: 張郁昕
Yu-Hsin Chang
論文名稱: 設計氮摻雜石墨烯量子點修飾聚苯胺電極與非酵素分子模板電極應用於自供電摩擦起電葡萄糖感測元件
Design of N-doped Graphene Quantum Dots Modified Polyaniline Electrode and Non-enzymatic Molecularly Imprinted Polymer Electrode for Self-powered Triboelectric Glucose Sensor
指導教授: 葉旻鑫
Min-Hsin Yeh
口試委員: 葉旻鑫
Min-Hsin Yeh
謝元榜
Yuan-Pang Hsieh
李博仁
Bor-Ran Li
楊伯康
Po-Kang Yang
學位類別: 碩士
Master
系所名稱: 工程學院 - 化學工程系
Department of Chemical Engineering
論文出版年: 2023
畢業學年度: 111
語文別: 中文
論文頁數: 125
中文關鍵詞: 生醫感測器葡萄糖分子模板高分子氮摻雜石墨烯量子點非酵素型非侵入式自供電汗液摩擦起電感測器
外文關鍵詞: Biosensor, Glucose, Molecularly imprinted polymer, Nitrogen-graphene quantum dots, Non-enzymatic, Non-invasive, Self-powered, Sweat, Triboelectric sensors
相關次數: 點閱:412下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著物聯網技術的快速發展,居家醫療診斷技術徹底改變了個人化醫療保健和無線遠端醫療。自供電感測器的發展克服了傳統感測器的許多限制,使健康生理監測系統更能掌握病患詳細之生理資訊,對糖尿病患者的病情監控產生了莫大的幫助。然而,為了設計攜帶方便且可連續監控的感測器,所面對的動力來源將會是一大問題,例如電池的壽命、複雜的電路設計以及長時間待機等;因此,以摩擦起電為基礎的摩擦起電感測器能有效地解決上述的問題。藉由靜電感應和接觸起電的共軛效應,使摩擦起電感測器透過運動過程中收集能量轉換為電力進而實現自供電感測器;且因結構簡單、材料選擇性多,使自供電摩擦起電感測器在未來的發展備受矚目。
    葡萄糖是生物體內細胞活動的主要能量來源,可作為監控人體的生理狀態之關鍵因素。在眾多生物感測器中,具有分子專一性的酵素型生物感測器是最早被提出並廣泛應用於生物檢測,因為酵素種類與數量繁多且能有效避免其他干擾物所產生的訊號,因此酵素型生物感測器在研究上與實際應用上備受重視。在本論文的第四章中,我們設計了氮摻雜石墨烯量子點修飾聚苯胺複合電極提升酵素型摩擦起電葡萄糖感測器之靈敏度,可實現以非侵入式檢測方法監控汗液中的葡萄糖濃度,提升了其應用於穿戴式生醫感測元件的實用可行性。本研究透過利用富含電子官能團的氮摻雜石墨烯量子點來增加電極表面電荷,進一步的促進了聚苯胺的電荷轉移能力進而增益表面摩擦起電之電荷量。酵素型氮摻雜石墨烯量子點修飾聚苯胺摩擦起電感測器在葡萄糖檢測方面具有良好的靈敏度(23.52 mM-1)以及抗干擾能力。此外,在穿戴式檢測方面則無需連接外部電源即可點亮LED燈,並可透過亮度來判斷其葡萄糖濃度,證明自供電可穿戴式摩擦起電感測器實現非侵入式監測人體生理狀態的可行性。
    然而,酵素型葡萄糖感測器在使用上依然有相當多的限制,最常見和嚴重的問題是來自酵素本質的穩定性不足。因此,為了解決上述問題,本研究的第五章設計出一種非酵素型葡萄糖分子模板修飾電極應用於摩擦起電葡萄糖感測器,能檢測人體血液中的葡萄糖濃度並實現自供電的監控裝置。本研究使用3-氨基苯硼酸單體與葡萄糖分子透過電聚合法製備葡萄糖分子模板修飾電極,透過電化學石英晶體微量天平可觀察到此電極吸附葡萄糖分子前後表面重量的改變。此電極會隨著表面葡萄糖吸附/脫附而產生不同的表面性質,當電極表面吸附高濃度的葡萄糖時,分子模板電極表面會形成硼陰離子並提高表面電負度,進而增加表面摩擦起電輸出。此外,此種非酵素型摩擦起電感測器具有無需外部電源供應即可點亮多個LED燈的功能,以實現自供電葡萄糖濃度警示裝置能有效監控人體血液中的血糖濃度。從本論文結果證實氮摻雜石墨烯量子點修飾聚苯胺電極及葡萄糖分子模板修飾電極能夠應用於摩擦起電葡萄糖感測器中,且兩者皆具有傑出的選擇性、良好的靈敏度以及重複利用性等優勢,並可透過自供電感測平台隨時監測人體內葡萄糖濃度。


    With the rapid development of IoT technology, point of care (POC) has revolutionized personalized healthcare and wireless telemedicine. The development of self-powered sensors has overcome many limitations of traditional sensors, enabling the health physiological monitoring system to better check the detailed physiological information of patients, which has greatly helped the condition monitoring of diabetic patients. However, in order to design a portable and continuous monitoring sensor, the power source will become an issue, such as the battery life, complex circuit design, and long-term standby; the emergence of the triboelectric sensor can effectively solve the above problems. By the coupling effect of electrostatic induction and contact electrification, the triboelectric sensor collects energy during human movement and converts the kinetic into electricity to realize a self-powered sensor which attracted much attention.
    Glucose is one of the metabolites in human sweat, which can be used as a key factor to monitor the physiological state of the human body during exercise. Among many sensors, enzymatic biosensors are the first to be used to make biosensors in the history of biosensor development, due to the various types and quantities of enzymes. In Chapter 4, we developed a cutting-edge enzymatic wearable self-powered triboelectric sensor through a non-invasive method, providing a breakthrough in physiological monitoring. To improve the reliability and sensitivity of conductive polymer sensors, N-doped graphene quantum dots-modified polyaniline nanocomposites were used as triboelectric layers for glucose detection. By using rich functional groups in N-doped graphene quantum dots, we successfully boosted the electronegativity of polyaniline, thus enhancing the triboelectric output. Consequently, our novel enzymatic N-doped graphene quantum dot-modified polyaniline triboelectric sensor exhibited remarkable advancements in glucose detection, particularly in terms of sensitivity and stability. Moreover, the enzymatic N-doped graphene quantum dot modified polyaniline triboelectric sensor was capable to light up the LED light without an external power source in wearable detection and our sensor precisely measured glucose concentration by leveraging the intensity of the resulting brightness, verifying self-powered wearable feasibility of non-invasive monitoring of human physiological states.
    However, the enzymatic glucose sensor still faces numerous limitations and challenges. Over the past few decades, extensive research efforts have been dedicated to overcoming the drawbacks associated with enzymatic sensors. One of the most prevalent and critical issues lies in the insufficient selectivity and stability of enzymatic properties. To overcome the issue of enzymatic-based sensors, Chapter 5 designed a non-enzymatic glucose responsive molecularly imprinted polymer-based triboelectric sensor (GRMIP-TES). The GRMIP was fabricated by poly(3-APBA) glucose-templated polymers that exhibit different surface properties with glucose adsorption and extraction behaviors while serving as the friction layer in the GRMIP simultaneously. As the concentration of glucose increases, the GRMIP selectively adsorbs glucose, resulting in an increase in boronic anions with an enhancement in the voltage output of corresponding TES. The experimental results confirm that the GRMIP-TES has the advantages of outstanding selectivity, high stability, and good sensitivity (3.82 ± 0.13 mM -1). Moreover, GRMIP-TES could light up multiple LEDs without an external power supply as a self-powered glucose concentration warning platform for monitoring the glucose level in human blood.

    中文摘要 I Abstract III Table of Content V List of Tables VIII List of Figures IX Nomenclature XIII Chapter 1 Introduction 1 1.1 Overview of Biosensor 1 1.1.1 Introduction of Biosensor 1 1.1.2 Enzymatic Biosensor 4 1.1.3 Non-Enzymatic Biosensor 5 1.2 Triboelectric Nanogenerator 7 1.2.1 Triboelectrification Phenomena 7 1.2.2 Triboelectric Series 8 1.2.3 Fundamental Operation Modes 9 1.2.4 Working Principle of Contact-Separation TENG 10 1.2.5 TENG applications 12 1.3 Self-Powered Triboelectric Sensors (TES) 13 Chapter 2 Literature Review and Research Scope 15 2.1 Overview of Material Aspects for TENG Sensors 15 2.2 Polyaniline (PANI) 17 2.2.1 Overview of PANI 17 2.2.2 Sensors based on PANI 18 2.3 Overview of Graphene Quantum Dots (GQDs) 20 2.4 Molecularly Imprinted Polymer (MIP) 22 2.4.1 Fundamental Principle 22 2.4.2 MIP in Sensing Applications 23 2.4.3 MIP-Based Non-Enzymatic Sensors 24 2.5 Motivation and Research Scope 25 Chapter 3 Experimental Procedure 29 3.1 Experimental Chemicals and Instrument 29 3.1.1 Electrochemical analysis 30 3.1.2 Field Emission-Scanning Electron Microscopy (FE-SEM) 34 3.1.3 Transmission Electron Microscopy (TEM) 35 3.1.4 Photoluminescence Spectroscopy (PL) 37 3.1.5 Raman Spectroscopy 38 3.1.6 X-ray Photoelectron Spectroscopy (XPS) 40 3.1.7 Fourier-Transform Infrared Spectroscopy (FTIR) 41 3.1.8 Programable electrometer 42 3.1.9 Electrochemical Quartz Crystal Microbalance 43 3.1.10 Surface Potential Analyzer for Solid Samples 45 3.2 Experimental Materials 47 3.3 Experimental Procedure 48 3.3.1 Synthesis of Nitrogen-doped Graphene Quantum Dots (NGQDs) 48 3.3.2 Preparation of PANI and NGQDs/PANI films 48 3.3.3 Preparation of Enzyme 48 3.3.4 Preparation of PBS 49 3.3.5 Synthesis of GRMIP on carbon cloth 49 3.3.6 Electrochemical analysis 49 3.3.7 Self-powered triboelectric sensor setup 50 Chapter 4 Self-powered triboelectric sensor with N-doped graphene quantum dots decorated polyaniline layer for non-invasive glucose monitoring in human sweat 52 4.1 Motivation and Conceptual Design 52 4.2 Results and Discussion 56 4.2.1 Characterization of NGQDs 56 4.2.2 Characterization of NGQDs/PANI nanocomposites 58 4.2.3 Optimization of NGQDs/PANI for the TES 63 4.2.4 NGQDs/PANI based TES for glucose detection 66 4.2.5 Interference test and repeatability of NGQDs/PANI/GOx based TES for glucose monitoring 69 4.2.6 Application of self-powered NGQDs/PANI/GOx based TES for glucose monitoring in human sweat 72 4.3 Summary 74 Chapter 5 Self-powered glucose response molecularly imprinted polymer-based triboelectric sensor for glucose levels in the blood 75 5.1 Motivation and Conceptual Design 75 5.2 Results and Discussion 78 5.2.1 Synthesis and characterization of GRMIP on carbon cloth 78 5.2.2 Triboelectrification of the carbon cloth and GRMIP on carbon cloth 80 5.2.3 Electropolymerization and Electrochemical performance of GRMIP and NIP 82 5.2.4 EQCM performance of GRMIP toward glucose 83 5.2.5 Self-powered glucose response molecular imprinted polymers-based triboelectric sensor (GRMIP-TES) for glucose detection 85 5.2.6 Application of self-power GRMIP-TES for glucose monitoring 88 5.3 Summary 90 Chapter 6 Conclusion and Future Prospects 91 6.1 General Conclusion 91 6.2 Future Prospects 93 Chapter 7 Reference 96

    Chapter 7 Reference
    [1] P. Li, G.-H. Lee, S.Y. Kim, S.Y. Kwon, H.-R. Kim, S. Park, From diagnosis to treatment: Recent advances in patient-friendly biosensors and implantable devices, ACS nano 15(2) (2021) 1960-2004.
    [2] E.-H. Yoo, S.-Y. Lee, Glucose biosensors: an overview of use in clinical practice, Sensors 10(5) (2010) 4558-4576.
    [3] M. Abdel-Latif, A. Suleiman, G. Guilbault, Enzyme-based fiber optic sensor for glucose determination, Analytical letters 21(6) (1988) 943-951.
    [4] M.D. Ward, D.A. Buttry, In situ interfacial mass detection with piezoelectric transducers, Science 249(4972) (1990) 1000-1007.
    [5] N.J. Ronkainen, H.B. Halsall, W.R. Heineman, Electrochemical biosensors, Chemical Society Reviews 39(5) (2010) 1747-1763.
    [6] W. Gao, S. Emaminejad, H.Y.Y. Nyein, S. Challa, K. Chen, A. Peck, H.M. Fahad, H. Ota, H. Shiraki, D. Kiriya, Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis, Nature 529(7587) (2016) 509-514.
    [7] I. Jeerapan, J.R. Sempionatto, A. Pavinatto, J.-M. You, J. Wang, Stretchable biofuel cells as wearable textile-based self-powered sensors, Journal of Materials Chemistry A 4(47) (2016) 18342-18353.
    [8] J. Kim, A.S. Campbell, B.E.-F. de Ávila, J. Wang, Wearable biosensors for healthcare monitoring, Nature biotechnology 37(4) (2019) 389-406.
    [9] B.G. Amin, J. Masud, M. Nath, A non-enzymatic glucose sensor based on a CoNi 2 Se 4/rGO nanocomposite with ultrahigh sensitivity at low working potential, Journal of Materials Chemistry B 7(14) (2019) 2338-2348.
    [10] X. Liu, W. Zhang, Z. Lin, Z. Meng, C. Shi, Z. Xu, L. Yang, X.Y. Liu, Coupling of Silk Fibroin Nanofibrils Enzymatic Membrane with Ultra‐Thin PtNPs/Graphene Film to Acquire Long and Stable On‐Skin Sweat Glucose and Lactate Sensing, Small Methods 5(3) (2021) 2000926.
    [11] H. Chen, P. Sun, M. Qiu, M. Jiang, J. Zhao, D. Han, L. Niu, G. Cui, Co-P decorated nanoporous copper framework for high performance flexible non-enzymatic glucose sensors, Journal of Electroanalytical Chemistry 841 (2019) 119-128.
    [12] J. Wang, Electrochemical glucose biosensors, Chemical reviews 108(2) (2008) 814-825.
    [13] H. Teymourian, A. Barfidokht, J. Wang, Electrochemical glucose sensors in diabetes management: An updated review (2010–2020), Chemical Society Reviews 49(21) (2020) 7671-7709.
    [14] H. Lee, Y.J. Hong, S. Baik, T. Hyeon, D.H. Kim, Enzyme‐based glucose sensor: from invasive to wearable device, Advanced healthcare materials 7(8) (2018) 1701150.
    [15] M.F.M. Shakhih, A.S. Rosslan, A.M. Noor, S. Ramanathan, A.M. Lazim, A.A. Wahab, Enzymatic and non-enzymatic electrochemical sensor for lactate detection in human biofluids, Journal of The Electrochemical Society 168(6) (2021) 067502.
    [16] Y. Li, M. Xie, X. Zhang, Q. Liu, D. Lin, C. Xu, F. Xie, X. Sun, Co-MOF nanosheet array: A high-performance electrochemical sensor for non-enzymatic glucose detection, Sensors and Actuators B: Chemical 278 (2019) 126-132.
    [17] D.-W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors–a review, Analytica chimica acta 1033 (2018) 1-34.
    [18] Z.L. Wang, A.C. Wang, On the origin of contact-electrification, Materials Today 30 (2019) 34-51.
    [19] X. Cui, C. Yu, Z. Wang, D. Wan, H. Zhang, Triboelectric Nanogenerators for Harvesting Diverse Water Kinetic Energy, Micromachines 13(8) (2022) 1219.
    [20] S. Liu, T. Hua, X. Luo, N. Yi Lam, X.-m. Tao, L. Li, A novel approach to improving the quality of chitosan blended yarns using static theory, Textile Research Journal 85(10) (2015) 1022-1034.
    [21] Triboelectric Series, 2022. https://byjus.com/physics/triboelectric-series/
    [22] G. Khandelwal, N.P. Maria Joseph Raj, S.J. Kim, Materials beyond conventional triboelectric series for fabrication and applications of triboelectric nanogenerators, Advanced Energy Materials 11(33) (2021) 2101170.
    [23] S. Niu, S. Wang, L. Lin, Y. Liu, Y.S. Zhou, Y. Hu, Z.L. Wang, Theoretical study of contact-mode triboelectric nanogenerators as an effective power source, Energy & Environmental Science 6(12) (2013) 3576-3583.
    [24] Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Z.L. Wang, L. Lin, J. Chen, S. Niu, Y. Zi, Triboelectric nanogenerator: Vertical contact-separation mode, Triboelectric nanogenerators (2016) 23-47.
    [25] J. Luo, Z.L. Wang, Recent progress of triboelectric nanogenerators: From fundamental theory to practical applications, EcoMat 2(4) (2020) e12059.
    [26] C.-H. Chen, P.-W. Lee, Y.-H. Tsao, Z.-H. Lin, Utilization of self-powered electrochemical systems: metallic nanoparticle synthesis and lactate detection, Nano Energy 42 (2017) 241-248.
    [27] Q. Tang, M.-H. Yeh, G. Liu, S. Li, J. Chen, Y. Bai, L. Feng, M. Lai, K.-C. Ho, H. Guo, Whirligig-inspired triboelectric nanogenerator with ultrahigh specific output as reliable portable instant power supply for personal health monitoring devices, Nano Energy 47 (2018) 74-80.
    [28] Z.H. Lin, G. Zhu, Y.S. Zhou, Y. Yang, P. Bai, J. Chen, Z.L. Wang, A self‐powered triboelectric nanosensor for mercury ion detection, Angewandte Chemie International Edition 52(19) (2013) 5065-5069.
    [29] Z. Li, J. Chen, H. Guo, X. Fan, Z. Wen, M.H. Yeh, C. Yu, X. Cao, Z.L. Wang, Triboelectrification‐enabled self‐powered detection and removal of heavy metal ions in wastewater, Advanced Materials 28(15) (2016) 2983-2991.
    [30] L. Lin, Y. Xie, S. Wang, W. Wu, S. Niu, X. Wen, Z.L. Wang, Triboelectric active sensor array for self-powered static and dynamic pressure detection and tactile imaging, ACS nano 7(9) (2013) 8266-8274.
    [31] G.-H. Lim, S.S. Kwak, N. Kwon, T. Kim, H. Kim, S.M. Kim, S.-W. Kim, B. Lim, Fully stretchable and highly durable triboelectric nanogenerators based on gold-nanosheet electrodes for self-powered human-motion detection, Nano Energy 42 (2017) 300-306.
    [32] Z. Li, J. Chen, J. Yang, Y. Su, X. Fan, Y. Wu, C. Yu, Z.L. Wang, β-cyclodextrin enhanced triboelectrification for self-powered phenol detection and electrochemical degradation, Energy & Environmental Science 8(3) (2015) 887-896.
    [33] S. Cui, Y. Zheng, T. Zhang, D. Wang, F. Zhou, W. Liu, Self-powered ammonia nanosensor based on the integration of the gas sensor and triboelectric nanogenerator, Nano Energy 49 (2018) 31-39.
    [34] D.D. Zhou, X.T. Cui, A. Hines, R.J. Greenberg, Conducting polymers in neural stimulation applications, Implantable Neural Prostheses 2: Techniques and Engineering Approaches (2010) 217-252.
    [35] V. Babel, B.L. Hiran, A review on polyaniline composites: Synthesis, characterization, and applications, Polymer Composites 42(7) (2021) 3142-3157.
    [36] G. Liao, Q. Li, Z. Xu, The chemical modification of polyaniline with enhanced properties: A review, Progress in Organic Coatings 126 (2019) 35-43.
    [37] M. Beygisangchin, S. Abdul Rashid, S. Shafie, A.R. Sadrolhosseini, H.N. Lim, Preparations, properties, and applications of polyaniline and polyaniline thin films—A review, Polymers 13(12) (2021) 2003.
    [38] Y. Qin, J. Mo, Y. Liu, S. Zhang, J. Wang, Q. Fu, S. Wang, S. Nie, Stretchable triboelectric self‐powered sweat sensor fabricated from self‐healing nanocellulose hydrogels, Advanced Functional Materials 32(27) (2022) 2201846.
    [39] T. Zhao, Y. Fu, C. Sun, X. Zhao, C. Jiao, A. Du, Q. Wang, Y. Mao, B. Liu, Wearable biosensors for real-time sweat analysis and body motion capture based on stretchable fiber-based triboelectric nanogenerators, Biosensors and Bioelectronics 205 (2022) 114115.
    [40] M.C. Biswas, M.T. Islam, P.K. Nandy, M.M. Hossain, Graphene quantum dots (GQDs) for bioimaging and drug delivery applications: a review, ACS Materials Letters 3(6) (2021) 889-911.
    [41] L. Tang, R. Ji, X. Cao, J. Lin, H. Jiang, X. Li, K.S. Teng, C.M. Luk, S. Zeng, J. Hao, Deep ultraviolet photoluminescence of water-soluble self-passivated graphene quantum dots, ACS nano 6(6) (2012) 5102-5110.
    [42] S. Kadian, S.K. Sethi, G. Manik, Recent advancements in synthesis and property control of graphene quantum dots for biomedical and optoelectronic applications, Materials Chemistry Frontiers 5(2) (2021) 627-658.
    [43] Z. Zhang, J. Zhang, N. Chen, L. Qu, Graphene quantum dots: an emerging material for energy-related applications and beyond, Energy & Environmental Science 5(10) (2012) 8869-8890.
    [44] J. Wang, G. Liu, K. Cham-Fai Leung, R. Loffroy, P.-X. Lu, X.J. Wang, Opportunities and challenges of fluorescent carbon dots in translational optical imaging, Current pharmaceutical design 21(37) (2015) 5401-5416.
    [45] M. Kaur, M. Kaur, V.K. Sharma, Nitrogen-doped graphene and graphene quantum dots: A review onsynthesis and applications in energy, sensors and environment, Advances in colloid and interface science 259 (2018) 44-64.
    [46] W. Chen, M. Wan, Q. Liu, X. Xiong, F. Yu, Y. Huang, Heteroatom‐doped carbon materials: synthesis, mechanism, and application for sodium‐ion batteries, Small Methods 3(4) (2019) 1800323.
    [47] Y. Saylan, S. Akgönüllü, H. Yavuz, S. Ünal, A. Denizli, Molecularly imprinted polymer based sensors for medical applications, Sensors 19(6) (2019) 1279.
    [48] D. Plausinaitis, L. Sinkevicius, U. Samukaite-Bubniene, V. Ratautaite, A. Ramanavicius, Evaluation of electrochemical quartz crystal microbalance based sensor modified by uric acid-imprinted polypyrrole, Talanta 220 (2020) 121414.
    [49] Z. Shu, W.-j. Wang, Y.-y. Zuo, Z. Yi, Y. Zhou, C.-j. Gao, Isoporous membrane with glucose mediated toughness and protein sieving prepared from novel block copolymers containing boronic acid moieties, Journal of Membrane Science 647 (2022) 120285.
    [50] S.J. Cho, H.-B. Noh, M.-S. Won, C.-H. Cho, K.B. Kim, Y.-B. Shim, A selective glucose sensor based on direct oxidation on a bimetal catalyst with a molecular imprinted polymer, Biosensors and Bioelectronics 99 (2018) 471-478.
    [51] D.-M. Kim, J.-M. Moon, W.-C. Lee, J.-H. Yoon, C.S. Choi, Y.-B. Shim, A potentiometric non-enzymatic glucose sensor using a molecularly imprinted layer bonded on a conducting polymer, Biosensors and Bioelectronics 91 (2017) 276-283.
    [52] E. Sehit, J. Drzazgowska, D. Buchenau, C. Yesildag, M. Lensen, Z. Altintas, Ultrasensitive nonenzymatic electrochemical glucose sensor based on gold nanoparticles and molecularly imprinted polymers, Biosensors and Bioelectronics 165 (2020) 112432.
    [53] A.J. Bard, L.R. Faulkner, Fundamentals and applications, Electrochemical methods 2(482) (2001) 580-632.
    [54] K. Wijeratne, Conducting Polymer Electrodes for Thermogalvanic Cells, Linköping University Electronic Press2019.
    [55] P. Puthongkham, B.J. Venton, Recent advances in fast-scan cyclic voltammetry, Analyst 145(4) (2020) 1087-1102.
    [56] K.-i. Ota, G. Kreysa, R.F. Savinell, Encyclopedia of applied electrochemistry, Springer New York2014.
    [57] D.o.C.E.a. Biotechnology, Linear Sweep and Cyclic Voltametry: The Principles, 2023. https://www.ceb.cam.ac.uk/research/groups/rg-eme/Edu/linear-sweep-and-cyclic-voltametry-the-principles.
    [58] O.N. de Oliveira Jr, L. Ferreira, G. Marystela, F. de Lima Leite, A.L. Da Róz, Nanoscience and its Applications, William Andrew2016.
    [59] Differential Pulse Voltammetry (DPV), 2021. https://pineresearch.com/dev/shop/kb/software/methods-and-techniques/voltammetric-methods/differential-pulse-voltammetry-dpv/.
    [60] H.S. Magar, R.Y. Hassan, A. Mulchandani, Electrochemical impedance spectroscopy (EIS): Principles, construction, and biosensing applications, Sensors 21(19) (2021) 6578.
    [61] S.C.N. Yessi Jusman, and Noor Azuan Abu Osman, Investigation of CPD and HMDS Sample Preparation Techniques for Cervical Cells in Developing Computer-Aided Screening System Based on FE-SEM/EDX, The Scientific World Journal (2014).
    [62] A.S. Ali, Application of nanomaterials in environmental improvement, Nanotechnology and the Environment (2020).
    [63] F. Dong, R.T. Koodali, H. Wang, W.-k. Ho, Nanomaterials for environmental applications, Journal of Nanomaterials 2014 (2014) 7-7.
    [64] Transmission Electron Microscope diagram, 2020. https://www.abc.net.au/news/2020-04-27/transmission-electron-microscope-diagram/12188640?utm_campaign=abc_news_web&utm_content=link&utm_medium=content_shared&utm_source=abc_news_web.
    [65] M.R. Linford, Introduction to Surface and Material Analysis and to Various Analytical Techniques, Vacuum Technology & Coating (2014) 27-32.
    [66] T. Schmid, P. Dariz, Raman microspectroscopic imaging of binder remnants in historical mortars reveals processing conditions, Heritage 2(2) (2019) 1662-1683.
    [67] X-Ray Photoelectron Spectroscopy (XPS), 2023. https://www.novami.com/nova-technology/x-ray-photoelectron-spectroscopy-xps/.
    [68] M.A. Mohamed, J. Jaafar, A. Ismail, M. Othman, M. Rahman, Fourier transform infrared (FTIR) spectroscopy, Membrane characterization, Elsevier2017, pp. 3-29.
    [69] A.A. Ismail, F.R. van de Voort, J. Sedman, Fourier transform infrared spectroscopy: principles and applications, Techniques and instrumentation in analytical chemistry, Elsevier1997, pp. 93-139.
    [70] J.G. Webster, The measurement, instrumentation and sensors handbook, CRC press1998.
    [71] Keithley, Low level measurements handbook, Keithly Instruments Incorporated2004.
    [72] Quartz Crystal Microbalance (QCM), 2023. https://www.nanoscience.com/techniques/quartz-crystal-microbalance/.
    [73] QCMT Flow cell kit, 2020. https://www.als-japan.com/1403.html#defaultTab14.
    [74] S. Ferraris, M. Cazzola, V. Peretti, B. Stella, S. Spriano, Zeta potential measurements on solid surfaces for in vitro biomaterials testing: surface charge, reactivity upon contact with fluids and protein absorption, Frontiers in bioengineering and biotechnology 6 (2018) 60.
    [75] W. Jia, A.J. Bandodkar, G. Valdés-Ramírez, J.R. Windmiller, Z. Yang, J. Ramírez, G. Chan, J. Wang, Electrochemical tattoo biosensors for real-time noninvasive lactate monitoring in human perspiration, Analytical chemistry 85(14) (2013) 6553-6560.
    [76] H.Y.Y. Nyein, W. Gao, Z. Shahpar, S. Emaminejad, S. Challa, K. Chen, H.M. Fahad, L.-C. Tai, H. Ota, R.W. Davis, A wearable electrochemical platform for noninvasive simultaneous monitoring of Ca2+ and pH, ACS nano 10(7) (2016) 7216-7224.
    [77] M. Rahman, A. Ahammad, J.-H. Jin, S.J. Ahn, J.-J. Lee, A comprehensive review of glucose biosensors based on nanostructured metal-oxides, Sensors 10(5) (2010) 4855-4886.
    [78] J. Cai, M. Du, Z. Li, Flexible temperature sensors constructed with fiber materials, Advanced Materials Technologies 7(7) (2022) 2101182.
    [79] Y. Yang, W. Gao, Wearable and flexible electronics for continuous molecular monitoring, Chemical Society Reviews 48(6) (2019) 1465-1491.
    [80] M. Zhu, J. Li, J. Yu, Z. Li, B. Ding, Superstable and Intrinsically Self‐Healing Fibrous Membrane with Bionic Confined Protective Structure for Breathable Electronic Skin, Angewandte Chemie 134(22) (2022) e202200226.
    [81] H. Zafar, A. Channa, V. Jeoti, G.M. Stojanović, Comprehensive review on wearable sweat-glucose sensors for continuous glucose monitoring, Sensors 22(2) (2022) 638.
    [82] S. Cai, C. Xu, D. Jiang, M. Yuan, Q. Zhang, Z. Li, Y. Wang, Air-permeable electrode for highly sensitive and noninvasive glucose monitoring enabled by graphene fiber fabrics, Nano Energy 93 (2022) 106904.
    [83] M. Zhu, J. Yu, Z. Li, B. Ding, Self‐Healing Fibrous Membranes, Angewandte Chemie 134(41) (2022) e202208949.
    [84] A. Li, H.-H. Ho, S.R. Barman, S. Lee, F. Gao, Z.-H. Lin, Self-powered antibacterial systems in environmental purification, wound healing, and tactile sensing applications, Nano Energy 93 (2022) 106826.
    [85] P. Kanokpaka, L.-Y. Chang, B.-C. Wang, T.-H. Huang, M.-J. Shih, W.-S. Hung, J.-Y. Lai, K.-C. Ho, M.-H. Yeh, Self-powered molecular imprinted polymers-based triboelectric sensor for noninvasive monitoring lactate levels in human sweat, Nano Energy 100 (2022) 107464.
    [86] Z. Wen, J. Chen, M.-H. Yeh, H. Guo, Z. Li, X. Fan, T. Zhang, L. Zhu, Z.L. Wang, Blow-driven triboelectric nanogenerator as an active alcohol breath analyzer, Nano Energy 16 (2015) 38-46.
    [87] Q. Zhou, J. Pan, S. Deng, F. Xia, T. Kim, Triboelectric nanogenerator‐based sensor systems for chemical or biological detection, Advanced Materials 33(35) (2021) 2008276.
    [88] Y.-T. Jao, P.-K. Yang, C.-M. Chiu, Y.-J. Lin, S.-W. Chen, D. Choi, Z.-H. Lin, A textile-based triboelectric nanogenerator with humidity-resistant output characteristic and its applications in self-powered healthcare sensors, Nano Energy 50 (2018) 513-520.
    [89] H. Guo, M.-H. Yeh, Y.-C. Lai, Y. Zi, C. Wu, Z. Wen, C. Hu, Z.L. Wang, All-in-one shape-adaptive self-charging power package for wearable electronics, ACS nano 10(11) (2016) 10580-10588.
    [90] C.-Y. Cheng, Y.-J. Chiang, H.-F. Yu, L.-Y. Hsiao, C.-L. Yeh, L.-Y. Chang, K.-C. Ho, M.-H. Yeh, Designing a hybrid type photoelectrochromic device with dual coloring modes for realizing ultrafast response/high optical contrast self-powered smart windows, Nano Energy 90 (2021) 106575.
    [91] C. Wang, P. Wang, J. Chen, L. Zhu, D. Zhang, Y. Wan, S. Ai, Self-powered biosensing system driven by triboelectric nanogenerator for specific detection of Gram-positive bacteria, Nano Energy 93 (2022) 106828.
    [92] Z. Li, J. Chen, J. Zhou, L. Zheng, K.C. Pradel, X. Fan, H. Guo, Z. Wen, M.-H. Yeh, C. Yu, High-efficiency ramie fiber degumming and self-powered degumming wastewater treatment using triboelectric nanogenerator, Nano Energy 22 (2016) 548-557.
    [93] M.H. Yeh, H. Guo, L. Lin, Z. Wen, Z. Li, C. Hu, Z.L. Wang, Rolling friction enhanced free‐standing triboelectric nanogenerators and their applications in self‐powered electrochemical recovery systems, Advanced Functional Materials 26(7) (2016) 1054-1062.
    [94] M.-H. Yeh, L. Lin, P.-K. Yang, Z.L. Wang, Motion-driven electrochromic reactions for self-powered smart window system, ACS nano 9(5) (2015) 4757-4765.
    [95] Z. Liu, H. Li, B. Shi, Y. Fan, Z.L. Wang, Z. Li, Wearable and implantable triboelectric nanogenerators, Advanced Functional Materials 29(20) (2019) 1808820.
    [96] Z.L. Wang, Triboelectric nanogenerators as new energy technology for self-powered systems and as active mechanical and chemical sensors, ACS nano 7(11) (2013) 9533-9557.
    [97] S. Roy Barman, Y.-J. Lin, K.-M. Lee, A. Pal, N. Tiwari, S. Lee, Z.-H. Lin, Triboelectric Nanosensor Integrated with Robotic Platform for Self-Powered Detection of Chemical Analytes, ACS nano 17(3) (2023) 2689-2701.
    [98] Y.-J. Fan, M.-Z. Huang, Y.-C. Hsiao, Y.-W. Huang, C.-Z. Deng, C. Yeh, R.A. Husain, Z.-H. Lin, Enhancing the sensitivity of portable biosensors based on self-powered ion concentration polarization and electrical kinetic trapping, Nano Energy 69 (2020) 104407.
    [99] Y. Luo, T. Zhao, Y. Dai, Q. Li, H. Fu, Flexible nanosensors for non-invasive creatinine detection based on triboelectric nanogenerator and enzymatic reaction, Sensors and Actuators A: Physical 320 (2021) 112585.
    [100] N.V. Blinova, J. Stejskal, M. Trchová, J. Prokeš, Control of polyaniline conductivity and contact angles by partial protonation, Polymer International 57(1) (2008) 66-69.
    [101] S. Rizarullah, L. Ambarsari, A. Maddu, Biosensor H2O2 by Using Immobilized Horseradish Peroxidase Glutaraldehyde on Carbon Polyaniline Nanofiber Composite, Enzyme Engineering 5 (2016) 140-145.
    [102] C. Cui, J.Y. Lee, Effect of polyaniline on oxygen reduction in buffered neutral solution, Journal of Electroanalytical Chemistry 367(1-2) (1994) 205-212.
    [103] G. Qiu, A. Zhu, C. Zhang, Hierarchically structured carbon nanotube–polyaniline nanobrushes for corrosion protection over a wide pH range, RSC advances 7(56) (2017) 35330-35339.
    [104] C.M. Masemola, N.P. Shumbula, S.S. Gqoba, Z.N. Tetana, N. Moloto, E.C. Linganiso, Electrospun NGQDs/PANI/PAN Composite Fibers for Room Temperature Alcohol Sensing, 2021 IEEE 3rd Eurasia Conference on IOT, Communication and Engineering (ECICE), IEEE, 2021, pp. 146-150.
    [105] Y. Dai, H. Long, X. Wang, Y. Wang, Q. Gu, W. Jiang, Y. Wang, C. Li, T.H. Zeng, Y. Sun, Versatile graphene quantum dots with tunable nitrogen doping, Particle & Particle Systems Characterization 31(5) (2014) 597-604.
    [106] G. Yang, C. Wu, X. Luo, X. Liu, Y. Gao, P. Wu, C. Cai, S.S. Saavedra, Exploring the emissive states of heteroatom-doped graphene quantum dots, The Journal of Physical Chemistry C 122(11) (2018) 6483-6492.
    [107] BOOK REVIEWS, Journal of Chemical Education 44 (1967) 2.
    [108] H. Kuzhandaivel, S. Manickam, S.K. Balasingam, M.C. Franklin, H.-J. Kim, K.S. Nallathambi, Sulfur and nitrogen-doped graphene quantum dots/PANI nanocomposites for supercapacitors, New Journal of Chemistry 45(8) (2021) 4101-4110.
    [109] B. Butoi, A. Groza, P. Dinca, A. Balan, V. Barna, Morphological and structural analysis of polyaniline and poly (o-anisidine) layers generated in a DC glow discharge plasma by using an oblique angle electrode deposition configuration, Polymers 9(12) (2017) 732.
    [110] A.G. Yavuz, A. Uygun, V.R. Bhethanabotla, Substituted polyaniline/chitosan composites: Synthesis and characterization, Carbohydrate Polymers 75(3) (2009) 448-453.
    [111] W. Li, N.D. Hoa, Y. Cho, D. Kim, J.-S. Kim, Nanofibers of conducting polyaniline for aromatic organic compound sensor, Sensors and Actuators B: Chemical 143(1) (2009) 132-138.
    [112] P.C. Rodrigues, M.c.P. Cantão, P. Janissek, P.C. Scarpa, A.L. Mathias, L.P. Ramos, M.A. Gomes, Polyaniline/lignin blends: FTIR, MEV and electrochemical characterization, European Polymer Journal 38(11) (2002) 2213-2217.
    [113] M. Pourhajibagher, S. Parker, N. Chiniforush, A. Bahador, Photoexcitation triggering via semiconductor Graphene Quantum Dots by photochemical doping with Curcumin versus perio-pathogens mixed biofilms, Photodiagnosis and photodynamic therapy 28 (2019) 125-131.
    [114] M. Jamdegni, A. Kaur, Electrochromic behavior of highly stable, flexible electrochromic electrode based on covalently bonded polyaniline-graphene quantum dot composite, Journal of the Electrochemical Society 166(12) (2019) H502.
    [115] G.G. Gebreegziabher, A.S. Asemahegne, D.W. Ayele, D. Mani, R. Narzary, P.P. Sahu, A. Kumar, Polyaniline–graphene quantum dots (PANI–GQDs) hybrid for plastic solar cell, Carbon Letters 30 (2020) 1-11.
    [116] W. Peng, S. Li, M. Li, M. Chen, Y. Yang, Enhancement of the electron transportation in the perovskite solar cells via optimizing the photoelectric properties of electron transport layer with nitrogen-doped graphene quantum dots, Journal of Materials Science: Materials in Electronics 33(18) (2022) 14443-14456.
    [117] V. Selvamani, Stability studies on nanomaterials used in drugs, Characterization and biology of nanomaterials for drug delivery, Elsevier2019, pp. 425-444.
    [118] A.J. Shnoudeh, I. Hamad, R.W. Abdo, L. Qadumii, A.Y. Jaber, H.S. Surchi, S.Z. Alkelany, Synthesis, characterization, and applications of metal nanoparticles, Biomaterials and bionanotechnology, Elsevier2019, pp. 527-612.
    [119] R. Nandan, H.R. Devi, R. Kumar, A.K. Singh, C. Srivastava, K.K. Nanda, Inner Sphere Electron Transfer Promotion on Homogeneously Dispersed Fe-N x Centers for Energy-Efficient Oxygen Reduction Reaction, ACS applied materials & interfaces 12(32) (2020) 36026-36039.
    [120] Y. Guo, J. He, T. Wang, H. Xue, Y. Hu, G. Li, J. Tang, X. Sun, Enhanced electrocatalytic activity of platinum supported on nitrogen modified ordered mesoporous carbon, Journal of Power Sources 196(22) (2011) 9299-9307.
    [121] Y.-H. Chang, C.-C. Chang, L.-Y. Chang, P.-C. Wang, P. Kanokpaka, M.-H. Yeh, Self-powered triboelectric sensor with N-doped graphene quantum dots decorated polyaniline layer for non-invasive glucose monitoring in human sweat, Nano Energy 112 (2023) 108505.
    [122] Q. Cai, X. Geng, J. He, Y. Sun, Z. Li, Highly fluorescent organic polymers for quenchometric determination of hydrogen peroxide and enzymatic determination of glucose, Microchimica Acta 186 (2019) 1-7.
    [123] H. He, H. Zeng, Y. Fu, W. Han, Y. Dai, L. Xing, Y. Zhang, X. Xue, A self-powered electronic-skin for real-time perspiration analysis and application in motion state monitoring, Journal of Materials Chemistry C 6(36) (2018) 9624-9630.
    [124] T. Zhao, C. Zheng, H. He, H. Guan, T. Zhong, L. Xing, X. Xue, A self-powered biosensing electronic-skin for real-time sweat Ca2+ detection and wireless data transmission, Smart Materials and Structures 28(8) (2019) 085015.
    [125] D. Zhang, Y. Yang, Z. Xu, D. Wang, C. Du, An eco-friendly gelatin based triboelectric nanogenerator for a self-powered PANI nanorod/NiCo 2 O 4 nanosphere ammonia gas sensor, Journal of Materials Chemistry A 10(20) (2022) 10935-10949.
    [126] X. Xuan, H.S. Yoon, J.Y. Park, A wearable electrochemical glucose sensor based on simple and low-cost fabrication supported micro-patterned reduced graphene oxide nanocomposite electrode on flexible substrate, Biosensors and Bioelectronics 109 (2018) 75-82.
    [127] P.E. Cryer, Glycemic goals in diabetes: trade-off between glycemic control and iatrogenic hypoglycemia, Diabetes 63(7) (2014) 2188-2195.
    [128] G. Yang, Y. Tang, T. Lin, T. Zhong, Y. Fan, Y. Zhang, L. Xing, X. Xue, Y. Zhan, A self-powered closed-loop brain-machine-interface system for real-time detecting and rapidly adjusting blood glucose concentration, Nano Energy 93 (2022) 106817.
    [129] A.G. Tabák, C. Herder, W. Rathmann, E.J. Brunner, M. Kivimäki, Prediabetes: a high-risk state for diabetes development, The Lancet 379(9833) (2012) 2279-2290.
    [130] S. Wild, G. Roglic, A. Green, R. Sicree, H. King, Global prevalence of diabetes: estimates for the year 2000 and projections for 2030, Diabetes care 27(5) (2004) 1047-1053.
    [131] Z. Kang, K. Jiao, C. Yu, J. Dong, R. Peng, Z. Hu, S. Jiao, Direct electrochemistry and bioelectrocatalysis of glucose oxidase in CS/CNC film and its application in glucose biosensing and biofuel cells, RSC advances 7(8) (2017) 4572-4579.
    [132] E.C. Rama, A. Costa-García, M.T. Fernández-Abedul, Pin-based electrochemical glucose sensor with multiplexing possibilities, Biosensors and Bioelectronics 88 (2017) 34-40.
    [133] C. Gong, Y. Shen, Y. Song, L. Wang, On-off ratiometric electrochemical biosensor for accurate detection of glucose, Electrochimica Acta 235 (2017) 488-494.
    [134] M. Goodarzi, W. Saeys, Selection of the most informative near infrared spectroscopy wavebands for continuous glucose monitoring in human serum, Talanta 146 (2016) 155-165.
    [135] W. Lu, X. Qin, A.M. Asiri, A.O. Al-Youbi, X. Sun, Ni foam: a novel three-dimensional porous sensing platform for sensitive and selective nonenzymatic glucose detection, Analyst 138(2) (2013) 417-420.
    [136] C. Guo, Y. Wang, Y. Zhao, C. Xu, Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity, Analytical Methods 5(7) (2013) 1644-1647.
    [137] C. Fang, C. Yi, Y. Wang, Y. Cao, X. Liu, Electrochemical sensor based on molecular imprinting by photo-sensitive polymers, Biosensors and Bioelectronics 24(10) (2009) 3164-3169.
    [138] H. Wu, Q. Tian, W. Zheng, Y. Jiang, J. Xu, X. Li, W. Zhang, F. Qiu, Non-enzymatic glucose sensor based on molecularly imprinted polymer: A theoretical, strategy fabrication and application, Journal of Solid State Electrochemistry 23 (2019) 1379-1388.
    [139] Y. Yoshimi, A. Narimatsu, K. Nakayama, S. Sekine, K. Hattori, K. Sakai, Development of an enzyme-free glucose sensor using the gate effect of a molecularly imprinted polymer, Journal of Artificial Organs 12 (2009) 264-270.
    [140] S. Alexander, P. Baraneedharan, S. Balasubrahmanyan, S. Ramaprabhu, Highly sensitive and selective non enzymatic electrochemical glucose sensors based on Graphene Oxide-Molecular Imprinted Polymer, Materials Science and Engineering: C 78 (2017) 124-129.
    [141] D. Choi, Y. Lee, Z.-H. Lin, S. Cho, M. Kim, C.K. Ao, S. Soh, C. Sohn, C.K. Jeong, J. Lee, Recent Advances in Triboelectric Nanogenerators: From Technological Progress to Commercial Applications, ACS nano (2023).
    [142] Z.-H. Lin, Y. Xie, Y. Yang, S. Wang, G. Zhu, Z.L. Wang, Enhanced triboelectric nanogenerators and triboelectric nanosensor using chemically modified TiO2 nanomaterials, ACS nano 7(5) (2013) 4554-4560.
    [143] W.-S. Zou, C.-H. Ye, Y.-Q. Wang, W.-H. Li, X.-H. Huang, A hybrid ratiometric probe for glucose detection based on synchronous responses to fluorescence quenching and resonance light scattering enhancement of boronic acid functionalized carbon dots, Sensors and Actuators B: Chemical 271 (2018) 54-63.
    [144] J. Jana, H.J. Lee, J.S. Chung, M.H. Kim, S.H. Hur, Blue emitting nitrogen-doped carbon dots as a fluorescent probe for nitrite ion sensing and cell-imaging, Analytica Chimica Acta 1079 (2019) 212-219.
    [145] S. Li, D. Li, L. Sun, Y. Yao, C. Yao, A designable aminophenylboronic acid functionalized magnetic Fe 3 O 4/ZIF-8/APBA for specific recognition of glycoproteins and glycopeptides, RSC advances 8(13) (2018) 6887-6892.
    [146] D. Das, D.M. Kim, D.S. Park, Y.B. Shim, A glucose sensor based on an aminophenyl boronic acid bonded conducting polymer, Electroanalysis 23(9) (2011) 2036-2041.
    [147] A. Diouf, B. Bouchikhi, N. El Bari, A nonenzymatic electrochemical glucose sensor based on molecularly imprinted polymer and its application in measuring saliva glucose, Materials Science and Engineering: C 98 (2019) 1196-1209.
    [148] X. Xu, C. Liu, W. Zhang, X. Zou, Active temperature regulation and teamed boronate affinity-facilitated microelectrode module for blood glucose detection in physiological environment, Sensors and Actuators B: Chemical 324 (2020) 128720.
    [149] Q. Wang, I. Kaminska, J. Niedziolka-Jonsson, M. Opallo, M. Li, R. Boukherroub, S. Szunerits, Sensitive sugar detection using 4-aminophenylboronic acid modified graphene, Biosensors and Bioelectronics 50 (2013) 331-337.
    [150] H. Sarıarslan, E. Karaca, M. Şahin, N.Ö. Pekmez, Electrochemical synthesis and corrosion protection of poly (3-aminophenylboronic acid-co-pyrrole) on mild steel, RSC advances 10(63) (2020) 38548-38560.
    [151] N. Alizadeh, A. Salimi, R. Hallaj, A strategy for visual optical determination of glucose based on a smartphone device using fluorescent boron-doped carbon nanoparticles as a light-up probe, Microchimica Acta 187 (2020) 1-10.
    [152] S. Sridevi, K. Vasu, S. Sampath, S. Asokan, A. Sood, Optical detection of glucose and glycated hemoglobin using etched fiber Bragg gratings coated with functionalized reduced graphene oxide, Journal of biophotonics 9(7) (2016) 760-769.
    [153] W. Harmon, D. Bamgboje, H. Guo, T. Hu, Z.L. Wang, Self-driven power management system for triboelectric nanogenerators, Nano Energy 71 (2020) 104642.
    [154] J. Guo, B. Zhou, Z. Du, C. Yang, L. Kong, L. Xu, Soft and plasmonic hydrogel optical probe for glucose monitoring, Nanophotonics 10(13) (2021) 3549-3558.
    [155] X. Cao, Y. Xiong, J. Sun, X. Xie, Q. Sun, Z.L. Wang, Multidiscipline Applications of Triboelectric Nanogenerators for the Intelligent Era of Internet of Things, Nano-Micro Letters 15(1) (2023) 14.
    [156] M. Chen, Y. Zhou, J. Lang, L. Li, Y. Zhang, Triboelectric nanogenerator and artificial intelligence to promote precision medicine for cancer, Nano Energy 92 (2022) 106

    無法下載圖示 全文公開日期 2028/08/16 (校內網路)
    全文公開日期 2028/08/16 (校外網路)
    全文公開日期 2028/08/16 (國家圖書館:臺灣博碩士論文系統)
    QR CODE