簡易檢索 / 詳目顯示

研究生: 吳哲維
Che-Wei Wu
論文名稱: 石墨烯對於三維網狀氫氧化鎳在非酵素型葡萄糖感測器之研究
Three-dimension nickel hydroxide mesh with graphene for non-enzymatic glucose sensors
指導教授: 黃柏仁
Bohr-Ran Huang
口試委員: 黃柏仁
Bohr-Ran Huang
周賢鎧
Shyan-Kay Jou
許正良
Cheng-Liang Hsu
施文欽
Wen-Ching Shih
學位類別: 碩士
Master
系所名稱: 電資學院 - 光電工程研究所
Graduate Institute of Electro-Optical Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 145
中文關鍵詞: 泡沫鎳氫氧化鎳石墨烯非酵素型葡萄糖感測器
外文關鍵詞: nickel foam, Ni(OH)2, graphene, non-enzymatic glucose sensor
相關次數: 點閱:296下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要以泡沫鎳來當作工作電極,再利用氫氧化鎳(電鍍法、水熱法)、石墨烯來做非酵素型葡萄糖感測器的修飾,最後再改變照光的情況來增加靈敏度,探討從材料結構及照光種類來實驗出最佳的非酵素型葡萄糖感測器條件。由XRD分析出電鍍法和水熱法所成長出來的氫氧化鎳分別為α和β-Ni(OH)2。電鍍法氫氧化鎳的靈敏度為11843.2 μAmM-1cm-2 (5~50μM)、LOD為660.4 nM,水熱法氫氧化鎳的靈敏度為16799.6 μAmM-1cm-2 (5~50μM)、LOD為624.7 nM。
    石墨烯的修飾提升試片整體導電性與表面積,複合石墨烯的電鍍法氫氧化鎳的靈敏度為13769.2 μAmM-1cm-2 (5~50μM)、LOD為609.3 nM、提升程度為16.26 %;複合石墨烯的水熱法氫氧化鎳的靈敏度為17333.2 μAmM-1cm-2 (5~50μM)、LOD為686.5 nM、提升程度為3.17 %。
    在藍光LED的照射下,氫氧化鎳釋放更多電子,提升氫氧化鎳與葡萄糖的反應,電鍍法氫氧化鎳的靈敏度為12663.2μAmM-1 cm-2 (5~50μM)、LOD為437.8 nM、提升程度為6.92 %,水熱法氫氧化鎳的靈敏度為17323.2 μAmM-1cm-2 (5~50μM)、LOD為241.9 nM、提升程度為3.11 %;複合石墨烯的電鍍法氫氧化鎳的靈敏度為14136.4 μAmM-1cm-2 (5~50μM)、LOD為582.4 nM、提升程度為2.67 %,複合石墨烯的水熱法氫氧化鎳的靈敏度為17931.2 μAmM-1cm-2 (5~50μM)、LOD為232.3 nM、提升程度為3.45 %。


    In this study, we report nickel (Ni) foam based non-enzymatic glucose sensors with graphene (G) and nickel hydroxide Ni(OH)2 as modifiers. The G/Ni foam was synthesized using chemical vapor deposition (CVD) process and two different routes were devised in the preparation of G/Ni(OH)2/Ni foam such as electroplating and hydrothermal methods. All the samples were then fabricated and used as working electrodes to measure various glucose concentrations. Thus, the results depict that best sensitivity was observed for electroplating based Ni(OH)2 foam exhibits the sensitivity of 11843.2 μAmM-1cm-2 and the LOD is 660.4 nM. While the hydrothermal based Ni(OH)2 foam which is 16799.6 μAmM-1cm-2 and the LOD is 624.7 nM.
    On the other hand, the addition of graphene into Ni(OH)2 foam enhances the conductivity and surface area of all samples. Thus, the best sensitivity of electroplating based G/Ni(OH)2 gives 16769.2 μAmM-1cm-2 , LOD is 609.3 nM, and the increasing ratio of sensitivity is 16.26 %. Whereas the hydrothermal based G/Ni(OH)2 is 17333.2 μAmM-1cm-2 , LOD is 686.5 nM, and the increasing ratio of sensitivity is 3.17 %.
    Furthermore, different kinds of LEDs (blue and green) were used to optimize the sensitivity of G/Ni(OH)2 based non-enzymatic glucose sensors. Among them, glucose sensors (both Ni(OH)2 and G/Ni(OH)2 foam) under blue LED shows striking improvement in sensitivity. It is because the electron transportation is increased in the presence of blue LED, and thereby increases the reaction of Ni(OH)2 and glucose, which also enhances the sensitivity. The best sensitivity of electroplating based Ni(OH)2 gives 12663.2 μAmM-1cm-2, LOD is 437.8 nM, and the increasing ratio of sensitivity is 6.92 %. Whereas the hydrothermal based Ni(OH)2 is 17323.2 μAmM-1cm-2 , LOD is 241.8 nM, and the increasing ratio of sensitivity is 3.11 %. The best sensitivity of electroplating based G/Ni(OH)2 gives 14136.4 μAmM-1cm-2 , LOD is 582.4 nM, and the increasing ratio of sensitivity is 2.67 %. Whereas the hydrothermal based G/Ni(OH)2 is 17931.2 μAmM-1cm-2 , LOD is 232.3 nM, and the increasing ratio of sensitivity is 3.45 %.

    中文摘要 I 英文摘要 II 致謝 IV 目錄 V 圖目錄 IX 表目錄 XVI 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 氫氧化鎳 3 2.1-1 氫氧化鎳的特性 3 2.1-2 氫氧化鎳電鍍法成長機制 5 2.1-3 氫氧化鎳水熱法成長機制 6 2.1-4 氫氧化鎳照光機制 6 2.1-5 石墨烯複合氫氧化鎳機制 7 2.2 石墨烯 8 2.2-1 石墨烯的結構與特性 8 2.2-2 石墨烯之成長機制與製備方法 10 2.3 電化學分析 12 2.3-1 電化學分析法之簡介 12 2.3-2 電化學分析法之種類 12 2.4 生物感測器 15 2.4-1 生物感測器之簡介 15 2.4-2 生物感測器之種類 16 2.5 葡萄糖感測器 19 2.5-1 葡萄糖感測之發展世代 19 2.5-2 葡萄糖感測器之檢測方式 21 2.5-3 非酵素型葡萄糖感測器之電極與修飾物種類 22 第三章 實驗方法 24 3.1 實驗流程 24 3.2 網狀氫氧化鎳的製備 26 3.2-1 泡沫鎳前處理 26 3.2-2 電鍍法網狀氫氧化鎳之成長方法 27 3.2-3 水熱法網狀氫氧化鎳之成長方法 28 3.3 石墨烯之製備方法 29 3.3-1 泡沫鎳前處理 29 3.3-2 石墨烯之成長方法 30 3.3-3 破碎石墨烯之製程 32 3.4 葡萄糖感測器試片封裝及循環伏安法表面改質 33 3.4-1 葡萄糖試片封裝 33 3.4-2 葡萄糖感測器表面改質 34 3.5 實驗分析儀器介紹 35 3.5-1 場發射掃描式電子顯微鏡 (FE-SEM) 35 3.5-2 顯微拉曼光譜儀 (Micro-Raman) 36 3.5-3 D2 PHASER X光繞射儀 38 3.5-4 光激發螢光光譜儀 (Photoluminescence) 40 3.5-5 電化學分析儀 (Electrochemical Workstation) 41 第四章 電鍍法網狀氫氧化鎳之合成及特性分析 43 4.1 電鍍法網狀氫氧化鎳之表面型態分析 43 4.2 電鍍法網狀氫氧化鎳之X光繞射儀分析 46 4.3 電鍍法網狀氫氧化鎳之拉曼光譜儀分析 47 4.4 電鍍法網狀氫氧化鎳之光激發螢光光譜儀分析 49 4.5 電鍍法網狀氫氧化鎳之葡萄糖量測電化學分析 50 4.5-1 表面改質 50 4.5-2 循環伏安法分析 51 4.5-3 定電位沉積分析法 (靈敏度分析) 52 4.5-4 定電位沉積分析法 (選擇性分析) 59 4.5-5 定電位沉積分析法 (穩定度分析) 60 4.6 電鍍法網狀氫氧化鎳之葡萄糖靈敏度分析 63 第五章 水熱法網狀氫氧化鎳之合成及特性分析 65 5.1 水熱法網狀氫氧化鎳之表面型態分析 65 5.2 水熱法網狀氫氧化鎳之X光繞射儀分析 69 5.3 水熱法網狀氫氧化鎳之拉曼光譜儀分析 70 5.4 水熱法網狀氫氧化鎳之光激發螢光光譜儀分析 71 5.5 水熱法網狀氫氧化鎳之葡萄糖量測電化學分析 72 5.5-1 表面改質 72 5.5-2 循環伏安法分析 73 5.5-3 定電位沉積分析法 (靈敏度分析) 74 5.5-4 定電位沉積分析法 (選擇性分析) 82 5.5-5 定電位沉積分析法 (穩定度分析) 83 5.6 水熱法網狀氫氧化鎳之葡萄糖靈敏度分析 86 第六章 石墨烯對於網狀氫氧化鎳之合成及特性分析 88 6.1 石墨烯對於網狀氫氧化鎳之表面型態分析 88 6.2 石墨烯對於網狀氫氧化鎳之X光繞射儀分析 92 6.3 石墨烯對於網狀氫氧化鎳之拉曼光譜儀分析 93 6.4 石墨烯對於網狀氫氧化鎳之光激發螢光光譜儀分析 95 6.5 石墨烯對於網狀氫氧化鎳之葡萄糖量測電化學分析 96 6.5-1 表面改質 96 6.5-2 循環伏安法分析 98 6.5-3 定電位沉積分析法 (靈敏度分析) 100 6.5-4 定電位沉積分析法 (選擇性分析) 109 6.5-5 定電位沉積分析法 (穩定度分析) 111 6.6 石墨烯對於網狀氫氧化鎳之葡萄糖靈敏度分析 116 第七章 結論與未來展望 118 7.1 結論 118 7.2 未來展望 120 參考文獻 121

    [1] 全民糖尿病觀測站 http://www.diabetes.org.tw/wddt_heduc01.jsp?P_TNO=EDUC990010001&P_HCTG=A
    [2] 中華民國糖尿病學會
    http://www.endo-dm.org.tw/dia/exchange/world.asp
    [3] 楊旭平,糖尿病的認識與防治 http://www.n-mart.com.tw/docs/a18.htm
    [4] 台北市政府衛生局 http://health.gov.taipei/Default.aspx?tabid=291&mid=947&itemid=23354
    [5] 台灣word http://www.twword.com/wiki/%E7%94%9F%E7%89%A9%E6%84%9F%E6%B8%AC%E5%99%A8
    [6] 環球智控網-解說生物傳感器基本知識 http://www.hqzk99.com/news/1418/4273.html
    [7] 高士軒.翁文慧,臨床醫療生物感測器發展及技術應用
    [8] Tarushee Ahujaa, Irfan Ahmad Mira, Devendra Kumara, Rajeshb, Biomolecular immobilization on conducting polymers for biosensing applications, Biomaterials, 28, 791–805(2007)
    [9] Kathryn E. Toghill and Richard G. Compton,Electrochemical Non-enzymatic Glucose Sensors: A Perspective and an Evaluation,Int. J. Electrochem. Sci., 5, 1246-1301(2010)
    [10] 張紘銓、張意杰,非侵入式血醣研究,東南科技大學專題報告,2012
    [11] 呂慧菁,電化學葡萄糖感測試片之研發,國立中興大學化學系碩士論文,2003
    [12] 蔡姓賢,偏振干涉術使用在量測旋光效應及葡萄糖濃度,國立中央大學機械工程研究所碩士論文,2007
    [13] Weina Xu, Shuge Dai, Xue Wang, Xianming He, Mingjun Wang, Yi Xi and Chenguo Hu,Nanorod-aggregated flower-like CuO grown on a carbon fiber fabric for a super high sensitive non-enzymatic glucose sensor,journal of materials chemistry B, 3, 5777-5785(2015)
    [14] Yan Yang, Yilan Wang, Xiaoyu Bao, Hanchun Li,Electrochemical deposition of Ni nanoparticles decorated ZnO hexagonal prisms as an effective platform for non-enzymatic detection of glucose,Journal of Electroanalytical Chemistry, 775, 163-170 (2016)
    [15] Christopher C. Streinz, Sathya Matupally and John W. Weidner,The Effect of Temperature and Ethanol on the Deposition of nickel hydroxide films,J. Electrochem. Soc., Vol. 142, No. 12(1995)
    [16] 劉書豪,以電鍍法製作Ni(OH)2薄膜與其電化學電容特性之研究,私立大同大學材料工程研究所碩士論文,2011
    [17] Girish S. Gund, Deepak P. Dubal, Supriya B. Jambure, Sujata S. Shinde and Chandrakant D. Lokhande,Temperature influence on morphological progress of Ni(OH)2 thin films and its subsequent effect on electrochemical supercapacitive properties,J. Mater. Chem. A, 1, 4793–4803(2013)
    [18] Xin Zheng, Xiaoqin Yan, Yihui Sun, Yong Li, Minghua Li, Guangjie Zhang and Yue Zhang,Band alignment engineering for high-energy-density solid-state asymmetric supercapacitors with TiO2 insertion at the ZnO/Ni(OH)2 interface,J. Mater. Chem. A, 4, 17981–17987(2016)
    [19] Byung Hyun Min, Dae Woo Kim, Kyoung Hwan Kim, Hyung Ouk Choi, Sung Woo Jang, Hee-Tae Jung,Bulk scale growth of CVD graphene on Ni nanowire foams for a highly dense and elastic 3D conducting electrode,CARBON, 80, 446–452(2014)
    [20] A. Bello, K. Makgopa, M. Fabiane, D. Dodoo-Ahrin, K. I. Ozoemena, N. Manyala,Chemical adsorption of NiO nanostructures on nickel foam-graphene for supercapacitor applications,J Mater Sci, 48, 6707–6712(2013)
    [21] 石墨烯-維基百科 https://zh.wikipedia.org/wiki/%E7%9F%B3%E5%A2%A8%E7%83%AF
    [22] 石墨烯與二維材料-微奈米科技研究中心-林志堅 http://cmnst.ncku.edu.tw/ezfiles/23/1023/img/2601/435955689.pdf
    [23] A. K. Geim, K. S. Novoselov.,The rise of graphene,Nature Mater, 6, 183-191(2007)
    [24] B.Partoens,F.M. Peeters.,From graphene to graphite:electronic structure around the k point,Physics Review B, 74, 075404 (2006)
    [25] 任文才、高力波、馬來鵬、成會明,石墨烯的化學氣相沉積法,2011
    [26] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov,Electric Field Effect in Atomically Thin Carbon Films,Science, 306, 666-669(2004)
    [27] Khaled Parvez, Sheng Yang, Xinliang Feng, Klaus Müllen,Exfoliation of graphene via wet chemical routes,Synthetic Metals, 210, 123–132(2015)
    [28] Claire Berger, Zhimin Song, Xuebin Li, Xiaosong Wu, Nate Brown, Ce´cile Naud, Didier Mayou, Tianbo Li, Joanna Hass, Alexei N. Marchenkov, Edward H. Conrad, Phillip N. First, Walt A. de Heer,Electronic Confinement and Coherence in Patterned Epitaxial Graphene,Science, 312, 1191-1196(2006)
    [29] Xuesong Li, Weiwei Cai, Jinho An, Seyoung Kim, Junghyo Nah, Dongxing Yang, Richard Piner, Aruna Velamakanni, Inhwa Jung, Emanuel Tutuc, Sanjay K. Banerjee, Luigi Colombo, Rodney S. Ruoff,Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,Science, 324, 1312-1314(2009)
    [30] 王茂章,形形色色長出碳和碳的同素異形體,http://wap.sciencenet.cn/blogview.aspx?id=448817
    [31] 電化學分析法-台灣Word http://www.twword.com/wiki/%E9%9B%BB%E5%8C%96%E5%AD%B8%E5%88%86%E6%9E%90%E6%B3%95
    [32] 劉茂煌,循環伏安法,http://www.teachers.fju.edu.tw/files/981/981015-1.pdf
    [33] 循環伏安法,http://m.instrument.com.cn/bbs/d-4866861-1.html
    [34] Su-Il Pyun, Jong-Won Lee,Progress in Corrosion Science and Engineering I,2009
    [35] Hamid Falahati, Edward Kim, Dominik P.J. Barz,Fabrication and Characterization of Thin Film Nickel hydroxides for micro-power applications,ACS Applied Materials & Interfaces, 1-35(2015)
    [36] David S. Hall, David J. Lockwood, Christina Bock, Barry R. MacDougall,Nickel hydroxides and related materials: a review of their structures synthesis and properties,Proc. R. Soc. A, 471, 1-65(2014)
    [37] R. S. McEwen,Crystallographic Studies on Nickel Hydroxide and the Higher Nickel Oxides,The Journal of Physical Chemistry, 75, 12, 1782-1789(1971)
    [38] K. I. Pandya, W. E. O'Grady, D. A. Corrigan, J. McBreen, and R. W. Hoffman,Extended X-ray Absorption Fine Structure Investigations of Nickel Hydroxkies,Journal of Physical Chemistry, 94,1,21-26(1990)
    [39] 國立台灣科技大學,貴重儀器中心
    [40] Richard L. McCreery,Raman Spectroscopy for Chemica1 Analysis,John Wiley and Sons. NY, 1-5(2000)
    [41] 國立台灣科技大學材料科學與工程系,顯微拉曼光譜儀標準操作流程
    [42] 林麗娟,X光繞射原理及其應用,1994
    [43] 國立台灣科技大學X光繞射實驗室
    [44] 利用環電位儀偵測氧化還原電位及電流,http://140.136.176.3/joom/data/menu/files/exp/CV
    [45] Xunhui Xiong, DongDing, DongchangChen, Gordon Waller, YunfeiBu, ZhixingWang, MeilinLiu,Three-dimensional ultrathin Ni(OH)2 nanosheets grown on nickel foam for high- performance supercapacitors,Nano Energy, 11, 154–161(2015)
    [46] C. Johnston, P. R. Graves,In Situ Raman Spectroscopy Study of the Nickel Oxyhydroxide Electrode (NOE) System,Society for Applied Spectroscopy, 44, 1,105-115(1990)
    [47] David S. Hall, David J. Lockwood, Shawn Poirier, Christina Bock, and Barry R. MacDougall,Raman and Infrared Spectroscopy of α and β Phases of Thin Nickel Hydroxide Films Electrochemically Formed on Nickel,J. Phys. Chem. A, 116, 6771−6784(2012)
    [48] Dr. Jonathan, C.Y. Chung,Fuel cell technology and rechargeable batteries,http://slideplayer.com/slide/4522366/
    [49] Dai-Bin Kuang, Bing-Xin Lei, Yu-Ping Pan, Xiao-Yun Yu and Cheng-Yong Su,Fabrication of Novel Hierarchical β-Ni(OH)2 and NiO Microspheres via an Easy Hydrothermal Process,J. Phys. Chem. C, 113, 5508–5513(2009)
    [50] Hailiang Wang, Hernan Sanchez Casalongue, Yongye Liang and Hongjie Da,Ni(OH)2 Nanoplates Grown on Graphene as Advanced Electrochemical Pseudocapacitor Materials,J. AM. CHEM. SOC., 132, 7472–7477(2010)
    [51] Kaidong Xia, Cong Yang, Yanling Chen, Liangliang Tian, Yongyao Su, Jinbiao Wang, Lu Li,In situ fabrication of Ni(OH)2 flakes on Ni foam through electrochemical corrosion as high sensitive and stable binder-free electrode for glucose sensing,Sensors and Actuators B, 240, 979–987(2017)
    [52] Yudong Zhao, Gaochen Gu, Shengquan You, Renhua Ji, Hui Suo, Chun Zhao, and Fengmin Liu,Preparation of Ni(OH)2 nanosheets on Ni foam via a direct precipitation method for a highly sensitive non-enzymatic glucose sensor,RSC Adv., 5, 53665–53670(2015)
    [53] Chung-Wei Kung, Yu-Heng Cheng, Kuo-Chuan Ho,Single layer of nickel hydroxide nanoparticles covered on a porous Ni foam and its application for highly sensitive non-enzymatic glucose sensor,Sensors and Actuators B, 204, 159–166(2014)
    [54] Chunyan Guo, Yinmei Wang, Yongqing Zhao and Cailing Xu,Non-enzymatic glucose sensor based on three dimensional nickel oxide for enhanced sensitivity,Anal. Methods, 5, 1644–1647(2013)
    [55] Soochan Kim, Sang Ha Lee, Misuk Cho, Youngkwan Lee,Solvent-assisted morphology confinement of a nickel sulfide nanostructure and it sapplication for non-enzymatic glucose sensor,Biosensors and Bioelectronics, 85, 587–595(2016)
    [56] Shangjun Meng, Meiyan Wu, Qian Wang, Ziyang Dai, Weili Si, Wei Huang, and Xiaochen Dong,Cobalt oxide nanosheets wrapped onto nickel foam for non-enzymatic detection of glucose,Nanotechnology, 27, 344001-344008(2016)
    [57] M.A. Kiani, M. Abbasnia Tehrani, H. Sayahi,Reusable and robust high sensitive non-enzymatic glucose sensor based on Ni(OH)2 nanoparticles,Analytica Chimica Acta, 839, 26–33(2014)
    [58] Arumugam Manikandan, Vediyappan Veeramani, Shen-Ming Chen, Rajesh Madhu, Ling Lee, Henry Medina, Chia-Wei Chen, Wei-Hsuan Hung, Zhiming Wang, Guozhen Shen, and Yu-Lun Chueh,Low Temperature Chemical Synthesis of Three Dimensional Hierarchical Ni(OH)2-Coated Ni Microflowers for High Performance Enzyme-Free Glucose Sensor,J. Phys. Chem. C,1-26(2016)
    [59] Man-man Guo, Xiang-le Yin, Chao-hui Zhou, Yue Xia, Wei Huang, Zelin Li,Ultrasensitive nonenzymatic sensing of glucose on Ni(OH)2-coated nanoporous gold film with two pairs of electron mediators,Electrochimica Acta, 142, 351–358(2014)
    [60] Pan Lu, Yuting Lei, Shengjun Lu, Qing Wang, Qibin Liu,Three-dimensional roselike α-Ni(OH)2 assembled from nanosheet building blocks for non-enzymatic glucose detection,Analytica Chimica Acta, 880, 42–51(2015)
    [61] Jianwei Na, Shuqian Wang, Yang Bai and Lin Guo,Amorphous Ni(OH)2 nanoboxes fast fabrication and enhanced sensing for glucose,small, 9, No. 18, 3147–3152(2013)
    [62] Yimin Jiang, Shengjiao Yu, Jiajia Li, Lingpu Jia, Chunming Wang,Improvement of sensitive Ni(OH)2 nonenzymatic glucose sensor based on carbon nanotube/polyimide membrane,CARBON, 63, 367–375(2013)
    [63] Beibei Zhan, Changbing Liu, Huaping Chen, Huaxia Shi, Lianhui Wang, Peng Chen, Wei Huang and Xiaochen Dong,Free-standing electrochemical electrode based on Ni(OH)2 3D graphene foam for nonenzymatic glucose detection,Nanoscale, 6, 7424–7429(2014)
    [64] Iman Shackery, Umarkant Patil, Min-Jung Song, Ji Soo Sohn, Sachin Kulkarni, Surajit Some, Su Chan Lee, Min Sik Nam, Wooyoung Lee and Seong Chan Jun,Sensitivity Enhancement in Nickel Hydroxide/3D Graphene as Enzymeless Glucose Detection,Electroanalysis, 27, 2363–2370(2015)
    [65] Bo Wang, Songmei Li, Jianhua Liu, Mei Yu,Preparation of nickel nanoparticle/graphene composites for non-enzymatic electrochemical glucose biosensor applications,Materials Research Bulletin, 49, 521–524(2014)
    [66] Ningqiang Qiao, Jianbin Zheng,Nonenzymatic glucose sensor based on glassy carbon electrode modified with a nanocomposite composed of nickel hydroxide and graphene,Microchim Acta, 177, 103–109(2012)
    [67] Wan-Sun Kim, Gi-Ja Lee, Je-Hwang Ryu, KyuChang Park and Hun-Kuk Park,A flexible, nonenzymatic glucose biosensor based on Ni-coordinated, vertically aligned carbon nanotube arrays,RSC Adv., 4, 48310–48316(2014)
    [68] Cheng-Liang Hsu, Jin-Hong Lin, Duo-Xi Hsu, Sin-Hui Wang, Siou-Yi Lin, Ting-Jen Hsueh,Enhanced non-enzymatic glucose biosensor of ZnO nanowires viadecorated Pt nanoparticles and illuminated with UV/green lightemitting diodes,Sensors and Actuators B, 238, 150–159(2017)
    [69] 李正雄,合成摻硼鑽石膜做為葡萄糖感測器之應用,國立台北科技大學製造科技研究所碩士論文,2014
    [70] Mohammadreza Mansournia, Elham Moradinia,β-Ni(OH)2 and NiO nanostructures: novel template-free synthesis and their photocatalytic activity,J Mater Sci: Mater Electron, 27, 82–89(2016)
    [71] Liqun Wang, Xiaocheng Li, Tieming Guo, Xingbin Yan, Beng Kang Tay,Three-dimensional Ni(OH)2 nanoflakes graphene nickel foam electrode with high rate capability for supercapacitor applications,International journal of hydrogen energy, 39, 7876-7884(2014)
    [72] Sen Liu, Bo Yu, Tong Zhang,A novel non-enzymatic glucose sensor based on NiO hollow spheres,Electrochimica Acta, 102, 104–107(2013)
    [73] Sougata Sarkar, Mukul Pradhan, Arun Kumar Sinha, Mrinmoyee Basu, Yuichi Negishi, and Tarasankar Pal,An Aminolytic Approach toward Hierarchical β-Ni(OH)2 Nanoporous Architectures A Bimodal Forum for Photocatalytic and Surface-Enhanced Raman Scattering Activity,Inorg. Chem., 49, 8813–8827(2010)
    [74] Mao-Sung Wu, Ren-Yu Ji, Yo-Ru Zheng,Nickel hydroxide electrode with a monolayer of nanocup arrays as an effective electrocatalyst for enhanced electrolysis of urea,Electrochimica Acta, 144, 194–199(2014)
    [75] Yin-Mei Wang, Dan-Dan Zhao, Yong-Qing Zhao, Cai-Ling Xu and Hu-Lin Li,Effect of electrodeposition temperature on the electrochemical performance of a Ni(OH)2 electrode,RSC Advances, 2, 1074–1082(2012)
    [76] Mao-Sung Wu, Jia-Fang Wu,Nickel hydroxide electrode with porous nanotube arrays prepared by hydrolysis and cathodic deposition for high-performance supercapacitors,Journal of Power Sources, 240, 397-403(2013)
    [77] Yu-Zhi Su, Kang Xiao, Nan Li, Zhao-Qing Liu and Shi-Zhang Qiao,Amorphous Ni(OH)2 @ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors,J. Mater. Chem. A, 2, 13845-13853(2014)
    [78] Dan-Dan Zhao, Shu-Juan Bao, Wen-Jia Zhou, Hu-Lin Li,Preparation of hexagonal nanoporous nickel hydroxide film and its application for electrochemical capacitor,Electrochemistry Communications, 9, 869–874(2007)

    無法下載圖示 全文公開日期 2022/07/14 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE