簡易檢索 / 詳目顯示

研究生: 林錦城
Chin-Cheng Lin
論文名稱: 製備酯化氧化石墨烯和聚酯的奈米複合材料之性質與鑑定
Preparation and Characterization of Nanocomposites Containing Esterified Graphene Oxide and Polyester
指導教授: 游進陽
Chin-Yang Yu
口試委員: 施劭儒
Shao-Ju Shih
邱智瑋
Chih-Wei Chiu
學位類別: 碩士
Master
系所名稱: 工程學院 - 材料科學與工程系
Department of Materials Science and Engineering
論文出版年: 2022
畢業學年度: 110
語文別: 英文
論文頁數: 96
中文關鍵詞: 氧化石墨烯聚酯奈米複合材料熱穩定性表面性質結晶度
外文關鍵詞: graphene oxide, polyester, nanocomposites, thermal stability, surface properties, degrees of crystallinity
相關次數: 點閱:163下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要探討製備酯化氧化石墨烯和聚酯的奈米複合材料之性質與鑑定。這項研究中,酯化氧化石墨烯(EGO)可以通過氧化石墨烯(GO)奈米片的酯化來合成。結果表明,酯基已成功接枝到氧化石墨烯的表面。酯化氧化石墨烯和聚酯(聚對苯二甲酸乙二醇酯,PET)的二元混合物可以增加氧化石墨烯和聚對苯二甲酸乙二醇酯相之間的相容性,並改善熱穩定性、機械性質和表面性能。並且通過SEM和AFM圖像觀察氧化石墨烯和酯化氧化石墨烯奈米薄片的形態,主要呈現出大約2.8 nm的厚度。同時與氧化石墨烯相比,酯化氧化石墨烯的BET比表面積增加了十倍以上,其平均孔徑僅為9.6 nm。本實驗採用熔融共混法製備了EGO/PET奈米複合材料。EGO3/PET的熱性質結果表明結晶溫度(Tc)提高了2°C、裂解溫度(Td)提高了約1°C和EGO3/PET奈米複合材料的結晶度(XC)增加了1 %。此外,與純PET相比之下,EGO3/PET薄膜具有較高的水接觸角為105.3°的和低表面自由能γSL為10 mJ/m2。另外,GO/PET和EGO3/PET的機械性能得到了增強,兩者硬度增加了大約3度和楊氏模量分別增加了約0.25和2。另一方面,EGO3/PETG的熱性能使裂解點(Td)提高了1°C。表面特性也提高了102°的水接觸角,並且呈現疏水特性和硬度增加了大約2度。此外,通過測試GO/PETG和EGO/PETG薄膜的水蒸氣和氧氣的滲透性,其結果呈現出高阻氧的特性。


    This thesis describes the esterified graphene oxides (EGO) can be synthesized by the esterification of graphene oxide (GO) and blending with polyester. The results demonstrated that ester groups have been successfully grafted onto the surface of graphene oxide. The binary blends of the esterified graphene oxide and polyester can enhance the compatibility between graphene oxide and polyethylene terephthalate phases as well as improve the thermal stability, mechanical properties, and surface properties. The morphologies of graphene oxide and esterified graphene oxide nanosheets were confirmed by SEM and AFM images which mainly present a similar thickness of around 2.8 nm. The specific surface area of esterified graphene oxide has been increased over ten times with a low mean pore diameter of 9.6 nm compared to graphene oxide. The nanocomposites of EGO/PET and EGO/PETG have been prepared by the melt-blending method. The thermal properties results of the EGO3/PET show that the crystallization temperature (Tc) has been increased by 2°C, the decomposition temperature (Td) was improved by about 1°C, and the crystallinity degrees (XC) of EGO3/PET has been increased by 1 %. Moreover, the EGO3/PET films reveal a high water contact angle of 105o with low surface free energy γ_SL about 10 mJ/m2 compared to the pristine PET. In addition, the mechanical properties of GO/PET and EGO3/PET have enhanced hardness value and Young's modulus. On the other hand, the decomposition temperature of EGO3/PETG increased by 1°C. The surface characteristic has been enhanced with a water contact angle of 102o indicating the hydrophobic properties. In addition, the mechanical properties of GO/PETG and EGO3/PETG have enhanced the hardness value. Moreover, the gas permeability of GO/PETG and EGO/PETG film was tested by water vapor transmission rate and oxygen transmission rate, the results presented the high oxygen barrier characteristic.

    Abstract I 中文摘要 III Acknowledgement IV Table of Content V List of Figures VIII List of Schemes XII List of Tables XIII Chapter 1. Introduction and Aims 1 1.1 Introduction to Polyester 1 1.1.1 Thermoplastics and Thermosets 4 1.1.2 Introduction to PET 7 1.1.3 Introduction to PETG 8 1.2 Introduction to Polymer Crystallinity 10 1.2.1 Nucleating Effect 12 1.3 Thermal Transitions in Polymers 13 1.3.1 First-and Second-Order Transitions 14 1.4 Introduction to Graphene Oxides 17 1.4.1 Introduction to Hummer’s Method 20 1.4.2 Physicochemical Aspects and Functions of Graphene 21 1.5 Introduction to Polymer Nanocomposites 23 1.5.1 Melt Blending 26 1.5.2 Solution Mixing 27 1.6 Aim of Project 28 Chapter 2. Experimental Section 29 2.1 General Procedures 29 2.1.1 Materials 30 2.1.2 Preparation of Graphene Oxide (GO) 31 2.1.3 Preparation of Esterified Graphene Oxide (EGO) 32 2.1.4 Melt-blending and Film Preparation of EGO/PET and EGO/PETG Nanocomposites 33 2.2 Instrumentation 34 Chapter 3. Results and Discussion 38 3.1 The Characterization of GO and EGO Nanosheets 38 3.1.1 FT-IR Spectrometry 38 3.1.2 X-ray Photoelectron Spectroscopy 39 3.1.3 Thermogravimetric Analysis 41 3.1.4 Raman Spectroscopy 42 3.1.5 AFM Images and Cross-section Analysis 44 3.1.6 SEM and BET Analysis 46 3.1.7 Dispersibility 48 3.2 The Characterization of GO/PET and EGO3/PET Nanocomposites 50 3.2.1 ATR-FTIR Spectroscopy 50 3.2.2 SEM Analysis 53 3.2.3 Thermal Properties 53 3.2.4 Surface Properties 57 3.2.5 Mechanical properties 61 3.3 The Characterization of GO/PETG and EGO3/PETG Nanocomposites 64 3.3.1 ATR-FTIR Spectroscopy 64 3.3.2 Thermal Properties 67 3.3.3 Surface Properties 69 3.3.4 Mechanical Properties 70 3.3.5 Gas Barrier Properties of the Films 73 Chapter 4. Conclusions 75 References 76

    [1] S. C. Yang, J. P. Kim, J. Appl. Polym. Sci. 2007, 106, 1274.
    [2] V. Sinha, M. R. Patel, J. V. Patel, J. Polym. Environ. 2010, 18, 8.
    [3] C. B. Crawford, B. Quinn, "Physiochemical properties and degradation", in Microplastic Pollutants, Elsevier, 2017, p. 57.
    [4] M. Chanda, "Condensation (Step-Growth) Polymerization", in Introduction to Polymer Science and Chemistry, CRC Press, 2013, p. 213.
    [5] W. H. Carothers, J. A. Arvin, J. Am. Chem. Soc. 1929, 51, 2560.
    [6] G. Loasby, J. Text. Inst. 1951, 42, 411.
    [7] J. E. McIntyre, "The Historical Development of Polyesters", in Modern Polyesters: Chemistry and Technology of Polyesters and Copolyesters, J. Scheirs and T.E. Long, Eds., 2004, p. 1.
    [8] J. Schmidt, R. Wei, T. Oeser, L. Dedavid E Silva, D. Breite, A. Schulze, W. Zimmermann, Polymers 2017, 9, 65.
    [9] M. Y. Mahmoud Zaghloul, M. M. Yousry Zaghloul, M. M. Yousry Zaghloul, Composite Structures 2021, 278, 114698.
    [10] X. Kong, H. Qi, J. M. Curtis, J. Appl. Polym. Sci. 2014, 131, 40579.
    [11] C. V. Pious, S. Thomas, "2 - Polymeric Materials—Structure, Properties, and Applications", in Printing on Polymers, J. Izdebska and S. Thomas, Eds., William Andrew Publishing, 2016, p. 21.
    [12] A. Rudin, "Chapter 1 - Introductory Concepts and Definitions", in The Elements of Polymer Science and Engineering, A. Rudin, Ed., Academic Press, San Diego, 1982, p. 1.
    [13] R. J. Young, P. A. Lovell, "Concepts, Nomenclature and Synthesis of Polymers", in Introduction to Polymers, CRC Press, 2011, p. 3.
    [14] A. R. Rennie, "Thermoplastics and Thermosets", in Mechanical Properties and Testing of Polymers, Springer Netherlands, 1999, p. 248.
    [15] M. Chanda, "Chain Dimensions, Structures, and Transitional Phenomena", in Introduction to Polymer Science and Chemistry, CRC Press, 2013, p. 35.
    [16] S. Khalifeh, "9 - OPTIMIZING POLYMERIC STRUCTURES OF ORGANIC ELECTRONIC PACKAGES", in Polymers in Organic Electronics, S. Khalifeh, Ed., ChemTec Publishing, 2020, p. 485.
    [17] S. Ko, Y. J. Kwon, J. U. Lee, Y.-P. Jeon, J. Ind. Eng. Chem. 2020, 83, 449.
    [18] L. De Vos, B. Van De Voorde, L. Van Daele, P. Dubruel, S. Van Vlierberghe, Eur. Polym. J. 2021, 161, 110840.
    [19] H. Shin, S. Park, S. Thanakkasaranee, K. Sadeghi, Y. Lee, G. Tak, J. Seo, Food Packag. Shelf Life 2021, 30, 100757.
    [20] S. Aoyama, I. Ismail, Y. T. Park, C. W. Macosko, T. Ougizawa, ACS Omega 2019, 4, 1228.
    [21] T. Chen, G. Jiang, G. Li, Z. Wu, J. Zhang, Rsc Adv 2015, 5, 60570.
    [22] S. Paszkiewicz, A. Szymczyk, D. Pawlikowska, I. Irska, I. Taraghi, R. Pilawka, J. Gu, X. Li, Y. Tu, E. Piesowicz, Rsc Adv 2017, 7, 41745.
    [23] T. T. Chen, J. Zhang, H. J. You, Rsc Adv 2016, 6, 102778.
    [24] K. Szykiedans, W. Credo, D. Osiński, Procedia Engineering 2017, 177, 455.
    [25] A. S. Altorbaq, A. A. Krauskopf, X. Wen, R. A. Pérez-Camargo, Y. Su, D. Wang, A. J. Müller, S. K. Kumar, Prog. Polym. Sci. 2022, 128, 101527.
    [26] Y. Furushima, C. Schick, A. Toda, Polym Crystal 2018, 1, e10005.
    [27] Z. Refaa, M. h. Boutaous, S. Xin, R. Fulchiron, J. Polym. Res. 2017, 24, 18.
    [28] L.-T. Lee, H.-Y. Tseng, T.-Y. Wu, Crystals 2021, 11, 1260.
    [29] X. L. Jiang, S. J. Luo, K. Sun, X. D. Chen, Express Polymer Letters 2007, 1, 245.
    [30] O. Agboola, E. R. Sadiku, T. Mokrani, "Carbon Containing Nanostructured Polymer Blends", in Design and Applications of Nanostructured Polymer Blends and Nanocomposite Systems, Elsevier, 2016, p. 187.
    [31] R. Fulchiron, I. Belyamani, J. U. Otaigbe, V. Bounor-Legaré, Sci. Rep. 2015, 5, 8369.
    [32] A. Chaudhuri, A. Chaudhuri, A. Joydhar, Materials Today: Proceedings 2022.
    [33] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, A. A. Firsov, Science 2004, 306, 666.
    [34] Y. Cui, S. I. Kundalwal, S. Kumar, Carbon 2016, 98, 313.
    [35] Y. Lahir, "Graphene and Graphene-Based Nanomaterials Are Suitable Vehicles for Drug Delivery", in Applications of Targeted Nano Drugs and Delivery Systems, Elsevier, 2019, p. 157.
    [36] S. Gurunathan, J.-H. Kim, International Journal of Nanomedicine 2016, 1927.
    [37] H. Kim, A. A. Abdala, C. W. Macosko, Macromolecules 2010, 43, 6515.
    [38] K. S. Novoselov, V. I. Fal′ko, L. Colombo, P. R. Gellert, M. G. Schwab, K. Kim, Nature 2012, 490, 192.
    [39] C. Sun, Devin, Y. Han, David, David, Barbara, William, Chem 2016, 1, 273.
    [40] S. Ghosh, I. Calizo, D. Teweldebrhan, E. P. Pokatilov, D. L. Nika, A. A. Balandin, W. Bao, F. Miao, C. N. Lau, Appl Phys Lett 2008, 92, 151911.
    [41] Z.-S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, H.-M. Cheng, ACS Nano 2009, 3, 411.
    [42] A. Rhazouani, H. Gamrani, M. El Achaby, K. Aziz, L. Gebrati, M. S. Uddin, F. Aziz, Biomed Res Int 2021, 2021, 5518999.
    [43] J. Chen, B. Yao, C. Li, G. Shi, Carbon 2013, 64, 225.
    [44] H. Bai, C. Li, G. Shi, Adv Mater 2011, 23, 1089.
    [45] W. S. Hummers, R. E. Offeman, J. Am. Chem. Soc. 1958, 80, 1339.
    [46] S. Eigler, A. Hirsch, Angewandte Chemie International Edition 2014, 53, 7720.
    [47] J. Aixart, F. Díaz, J. Llorca, J. Rosell-Llompart, Ceramics International 2021, 47, 22130.
    [48] H. Yu, B. Zhang, C. Bulin, R. Li, R. Xing, Sci. Rep. 2016, 6, 36143.
    [49] Z. Benzait, P. Chen, L. Trabzon, Nanoscale Advances 2021, 3, 223.
    [50] D. C. Marcano, D. V. Kosynkin, J. M. Berlin, A. Sinitskii, Z. Sun, A. Slesarev, L. B. Alemany, W. Lu, J. M. Tour, ACS Nano 2010, 4, 4806.
    [51] L. Yang, L. Zhang, T. J. Webster, Nanomedicine 2011, 6, 1231.
    [52] A. Anand, B. Unnikrishnan, J.-Y. Mao, H.-J. Lin, C.-C. Huang, Desalination 2018, 429, 119.
    [53] S. Pavlidou, C. D. Papaspyrides, Compos. Part A Appl. Sci. Manuf. 2003, 34, 1117.
    [54] M. R. Haseebuddin, S. Santhosh, A. B. Shandilya, Materials Today: Proceedings 2021, 46, 6075.
    [55] V. C. Agulto, M. J. F. Empizo, K. Shinohara, J. Micah L. Inguito, B. J. Magallanes, M. B. Nalayog, D. Umeno, K. A. Salazar, M. A. N. Judicpa, K. Yamanoi, T. Shimizu, A. C. C. Yago, R. V. Sarmago, N. Sarukura, J. Cryst. Growth 2021, 573, 126328.
    [56] A. Lipovka, I. Petrov, M. Fatkullin, G. Murastov, A. Ivanov, N. E. Villa, S. Shchadenko, A. Averkiev, A. Chernova, F. Gubarev, M. Saqib, W. Sheng, J.-J. Chen, O. Kanoun, I. Amin, R. D. Rodriguez, E. Sheremet, Carbon 2022, 194, 154.
    [57] B. A. Aragaw, J. Nanostructure Chem. 2019, 10, 9.
    [58] T. Monetta, A. Acquesta, A. Carangelo, C. Naddeo, L. Guadagno, Prog. Org. Coat. 2019, 135, 7.
    [59] L. Meng, X. Xu, B. Bai, M. Ma, S. Li, N. Hu, H. Wang, Y. Suo, J. Phys. Chem. Solids 2018, 123, 378.
    [60] S. J. Sung, J. Park, Y. S. Cho, S. H. Gihm, S. J. Yang, C. R. Park, Carbon 2019, 150, 275.
    [61] M. Raef, M. Razzaghi-Kashani, Polymer 2019, 182, 121816.
    [62] B. Adak, M. Joshi, B. S. Butola, Compos. Part B. Eng. 2019, 176, 107303.
    [63] O. Shepelev, S. Kenig, H. Dodiuk, "16 - Nanotechnology Based Thermosets", in Handbook of Thermoset Plastics (Third Edition), H. Dodiuk and S.H. Goodman, Eds., William Andrew Publishing, Boston, 2014, p. 623.
    [64] C. V. Pious, S. Thomas, "Polymeric Materials—Structure, Properties, and Applications", in Printing on Polymers, Elsevier, 2016, p. 21.
    [65] J. Yu, J. Liu, A. Clearfield, J. E. Sims, M. T. Speiegle, S. L. Suib, L. Sun, Inorg. Chem. 2016, 55, 12036.
    [66] M. Kanda, S. Puggal, N. Dhall, A. Sharma, Materials Today: Proceedings 2018, 5, 28243.
    [67] A. V. Rane, K. Kanny, V. K. Abitha, S. Thomas, "Chapter 5 - Methods for Synthesis of Nanoparticles and Fabrication of Nanocomposites", in Synthesis of Inorganic Nanomaterials, S. Mohan Bhagyaraj, O.S. Oluwafemi, N. Kalarikkal, and S. Thomas, Eds., Woodhead Publishing, 2018, p. 121.
    [68] S. Li, M. Meng Lin, M. S. Toprak, D. K. Kim, M. Muhammed, Nano Reviews 2010, 1, 5214.
    [69] H. Guo, T. Xu, S. Zhou, F. Jiang, L. Jin, N. Song, P. Ding, Compos. Part B. Eng. 2021, 212, 108716.
    [70] S. Gangarapu, K. Sunku, P. S. Babu, P. Sudarsanam, "Fabrication of Polymer-Graphene Nanocomposites", in Handbook of Polymer and Ceramic Nanotechnology, 2020, p. 1.
    [71] A. Yang, Z. Huang, Y. Zhu, Y. Han, Z. Tong, J. Cryst. Growth 2021, 571, 126247.
    [72] N. I. Zaaba, K. L. Foo, U. Hashim, S. J. Tan, W.-W. Liu, C. H. Voon, Procedia Engineering 2017, 184, 469.
    [73] H. Hu, H. Li, Y. Zhang, Y. Chen, Z. Huang, A. Huang, Y. Zhu, X. Qin, B. Lin, Rsc Adv 2015, 5, 20656.
    [74] H. Pelit, A. Sonmez, M. Budakci, Bioresources 2015, 10, 3097.
    [75] R. B. Kristiawan, B. Rusdyanto, F. Imaduddin, D. Ariawan, Polymers 2021, 14, 5.
    [76] S. H. Shim, K. T. Kim, J. U. Lee, W. H. Jo, ACS Appl Mater Interfaces 2012, 4, 4184.
    [77] Y. N. Gong, D. L. Li, Q. Fu, C. X. Pan, Prog Nat Sci-Mater 2015, 25, 379.
    [78] N. M. Stark, L. M. Matuana, Polym. Degradation Stab. 2004, 86, 1.
    [79] Y. C. Yang, X. X. Tao, H. He, N. Xu, L. F. Tang, S. W. Wang, J. F. Guo, L. Chen, Z. Yang, Int. J. Oil, Gas Coal Technol. 2017, 15, 267.
    [80] Y. Wang, Q. He, H. Qu, X. Zhang, J. Guo, J. Zhu, G. Zhao, H. A. Colorado, J. Yu, L. Sun, S. Bhana, M. A. Khan, X. Huang, D. P. Young, H. Wang, X. Wang, S. Wei, Z. Guo, J. Mater. Chem. C 2014, 2, 9478.
    [81] D. Cai, M. Song, J. Mater. Chem. 2010, 20, 7906.
    [82] J. Li, D. D. Liu, B. Li, J. Wang, S. H. Han, L. H. Liu, H. Wei, Crystengcomm 2015, 17, 520.
    [83] L. Wang, J. Zhao, Y. Y. Sun, S. B. Zhang, J. Chem. Phys. 2011, 135, 184503.
    [84] D. Cheng, X. Bai, J. Pan, J. Ran, J. Wu, S. Bi, G. Cai, X. Wang, Mater. Chem. Phys. 2020, 241, 122371.
    [85] L. M. Malard, M. A. Pimenta, G. Dresselhaus, M. S. Dresselhaus, Phys. Rep. 2009, 473, 51.
    [86] S. Eissa, J. N'Diaye, P. Brisebois, R. Izquierdo, A. C. Tavares, M. Siaj, Sci. Rep. 2020, 10, 13612.
    [87] A. M. Giuliodori, A. Brandi, S. Kotla, F. Perrozzi, R. Gunnella, L. Ottaviano, R. Spurio, A. Fabbretti, PLoS One 2017, 12, e0183952.
    [88] X. Han, H. Kong, T. Chen, J. Gao, Y. Zhao, Y. Sang, G. Hu, Nanomaterials 2021, 11, 2158.
    [89] S. Brunauer, P. H. Emmett, E. Teller, J. Am. Chem. Soc. 1938, 60, 309.
    [90] M. Thommes, K. Kaneko, A. V. Neimark, J. P. Olivier, F. Rodriguez-Reinoso, J. Rouquerol, K. S. W. Sing, Pure Appl. Chem. 2015, 87, 1051.
    [91] A. P. d. S. Pereira, M. H. P. d. Silva, É. P. Lima Júnior, A. d. S. Paula, F. J. Tommasini, Materials Research 2017, 20, 411.
    [92] Z. Chen, J. N. Hay, M. J. Jenkins, Thermochimica Acta 2013, 552, 123.
    [93] E. Silva, M. Fedel, F. Deflorian, F. Cotting, V. Lins, Coatings 2019, 9, 28.
    [94] G. Achagri, Y. Essamlali, O. Amadine, M. Majdoub, A. Chakir, M. Zahouily, Rsc Adv 2020, 10, 24941.
    [95] L. Xing, Y. Wang, S. Wang, Y. Zhang, S. Mao, G. Wang, J. Liu, L. Huang, H. Li, L. A. Belfiore, J. Tang, Polymers 2018, 10, 613.
    [96] E. Parodi, L. E. Govaert, G. W. M. Peters, Thermochimica Acta 2017, 657, 110.
    [97] Z. S. B. Souza, G. M. Pinto, G. D. C. Silva, N. R. Demarquette, G. J. M. Fechine, M. A. M. Sobrinho, Polym. Eng. Sci. 2021, 61, 1997.
    [98] J.-W. Li, H.-A. Tsai, H.-T. Lee, Y.-H. Cheng, C.-W. Chiu, M.-C. Suen, Prog. Org. Coat. 2020, 145, 105702.
    [99] A. A. El Saftawy, S. A. Abd El Aal, M. S. Ragheb, S. G. Zakhary, Nucl. Instrum. Methods Phys. Res. B 2014, 322, 48.
    [100] S. Jasmee, G. Omar, N. A. B. Masripan, A. A. Kamarolzaman, A. S. Ashikin, F. C. Ani, Mater. Res. Express. 2018, 5, 096304.
    [101] M. Nosonovsky, R. Ramachandran, Entropy 2015, 17, 4684.
    [102] M. Geoghegan, Prog. Polym. Sci. 2003, 28, 261.
    [103] S. Yesil, G. Bayram, Polymer Engineering & Science 2011, 51, 1286.
    [104] T. Makowski, M. Grala, W. Fortuniak, D. Kowalczyk, S. Brzezinski, Mater. Des. 2016, 90, 1026.
    [105] J. J. Licari, D. W. Swanson, "Test and Inspection Methods", in Adhesives Technology for Electronic Applications, Elsevier, 2011, p. 345.
    [106] A. Al-Jabareen, H. Al-Bustami, H. Harel, G. Marom, J. Appl. Polym. Sci. 2012, 128, 1534.
    [107] J. You, B. Oh, Y. S. Yun, H.-J. Jin, Macromol. Res. 2020, 28, 709.

    無法下載圖示 全文公開日期 2027/07/12 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE